All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.android.opengl.Matrix Maven / Gradle / Ivy

Go to download

A library jar that provides APIs for Applications written for the Google Android Platform.

There is a newer version: 15-robolectric-12650502
Show newest version
/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.opengl;

/**
 * Matrix math utilities. These methods operate on OpenGL ES format
 * matrices and vectors stored in float arrays.
 * 

* Matrices are 4 x 4 column-vector matrices stored in column-major * order: *

 *  m[offset +  0] m[offset +  4] m[offset +  8] m[offset + 12]
 *  m[offset +  1] m[offset +  5] m[offset +  9] m[offset + 13]
 *  m[offset +  2] m[offset +  6] m[offset + 10] m[offset + 14]
 *  m[offset +  3] m[offset +  7] m[offset + 11] m[offset + 15]
* * Vectors are 4 x 1 column vectors stored in order: *
 * v[offset + 0]
 * v[offset + 1]
 * v[offset + 2]
 * v[offset + 3]
*/ public class Matrix { /** Temporary memory for operations that need temporary matrix data. */ private final static float[] sTemp = new float[32]; /** * @deprecated All methods are static, do not instantiate this class. */ @Deprecated public Matrix() {} /** * Multiplies two 4x4 matrices together and stores the result in a third 4x4 * matrix. In matrix notation: result = lhs x rhs. Due to the way * matrix multiplication works, the result matrix will have the same * effect as first multiplying by the rhs matrix, then multiplying by * the lhs matrix. This is the opposite of what you might expect. *

* The same float array may be passed for result, lhs, and/or rhs. However, * the result element values are undefined if the result elements overlap * either the lhs or rhs elements. * * @param result The float array that holds the result. * @param resultOffset The offset into the result array where the result is * stored. * @param lhs The float array that holds the left-hand-side matrix. * @param lhsOffset The offset into the lhs array where the lhs is stored * @param rhs The float array that holds the right-hand-side matrix. * @param rhsOffset The offset into the rhs array where the rhs is stored. * * @throws IllegalArgumentException if result, lhs, or rhs are null, or if * resultOffset + 16 > result.length or lhsOffset + 16 > lhs.length or * rhsOffset + 16 > rhs.length. */ public static native void multiplyMM(float[] result, int resultOffset, float[] lhs, int lhsOffset, float[] rhs, int rhsOffset); /** * Multiplies a 4 element vector by a 4x4 matrix and stores the result in a * 4-element column vector. In matrix notation: result = lhs x rhs *

* The same float array may be passed for resultVec, lhsMat, and/or rhsVec. * However, the resultVec element values are undefined if the resultVec * elements overlap either the lhsMat or rhsVec elements. * * @param resultVec The float array that holds the result vector. * @param resultVecOffset The offset into the result array where the result * vector is stored. * @param lhsMat The float array that holds the left-hand-side matrix. * @param lhsMatOffset The offset into the lhs array where the lhs is stored * @param rhsVec The float array that holds the right-hand-side vector. * @param rhsVecOffset The offset into the rhs vector where the rhs vector * is stored. * * @throws IllegalArgumentException if resultVec, lhsMat, * or rhsVec are null, or if resultVecOffset + 4 > resultVec.length * or lhsMatOffset + 16 > lhsMat.length or * rhsVecOffset + 4 > rhsVec.length. */ public static native void multiplyMV(float[] resultVec, int resultVecOffset, float[] lhsMat, int lhsMatOffset, float[] rhsVec, int rhsVecOffset); /** * Transposes a 4 x 4 matrix. *

* mTrans and m must not overlap. * * @param mTrans the array that holds the output transposed matrix * @param mTransOffset an offset into mTrans where the transposed matrix is * stored. * @param m the input array * @param mOffset an offset into m where the input matrix is stored. */ public static void transposeM(float[] mTrans, int mTransOffset, float[] m, int mOffset) { for (int i = 0; i < 4; i++) { int mBase = i * 4 + mOffset; mTrans[i + mTransOffset] = m[mBase]; mTrans[i + 4 + mTransOffset] = m[mBase + 1]; mTrans[i + 8 + mTransOffset] = m[mBase + 2]; mTrans[i + 12 + mTransOffset] = m[mBase + 3]; } } /** * Inverts a 4 x 4 matrix. *

* mInv and m must not overlap. * * @param mInv the array that holds the output inverted matrix * @param mInvOffset an offset into mInv where the inverted matrix is * stored. * @param m the input array * @param mOffset an offset into m where the input matrix is stored. * @return true if the matrix could be inverted, false if it could not. */ public static boolean invertM(float[] mInv, int mInvOffset, float[] m, int mOffset) { // Invert a 4 x 4 matrix using Cramer's Rule // transpose matrix final float src0 = m[mOffset + 0]; final float src4 = m[mOffset + 1]; final float src8 = m[mOffset + 2]; final float src12 = m[mOffset + 3]; final float src1 = m[mOffset + 4]; final float src5 = m[mOffset + 5]; final float src9 = m[mOffset + 6]; final float src13 = m[mOffset + 7]; final float src2 = m[mOffset + 8]; final float src6 = m[mOffset + 9]; final float src10 = m[mOffset + 10]; final float src14 = m[mOffset + 11]; final float src3 = m[mOffset + 12]; final float src7 = m[mOffset + 13]; final float src11 = m[mOffset + 14]; final float src15 = m[mOffset + 15]; // calculate pairs for first 8 elements (cofactors) final float atmp0 = src10 * src15; final float atmp1 = src11 * src14; final float atmp2 = src9 * src15; final float atmp3 = src11 * src13; final float atmp4 = src9 * src14; final float atmp5 = src10 * src13; final float atmp6 = src8 * src15; final float atmp7 = src11 * src12; final float atmp8 = src8 * src14; final float atmp9 = src10 * src12; final float atmp10 = src8 * src13; final float atmp11 = src9 * src12; // calculate first 8 elements (cofactors) final float dst0 = (atmp0 * src5 + atmp3 * src6 + atmp4 * src7) - (atmp1 * src5 + atmp2 * src6 + atmp5 * src7); final float dst1 = (atmp1 * src4 + atmp6 * src6 + atmp9 * src7) - (atmp0 * src4 + atmp7 * src6 + atmp8 * src7); final float dst2 = (atmp2 * src4 + atmp7 * src5 + atmp10 * src7) - (atmp3 * src4 + atmp6 * src5 + atmp11 * src7); final float dst3 = (atmp5 * src4 + atmp8 * src5 + atmp11 * src6) - (atmp4 * src4 + atmp9 * src5 + atmp10 * src6); final float dst4 = (atmp1 * src1 + atmp2 * src2 + atmp5 * src3) - (atmp0 * src1 + atmp3 * src2 + atmp4 * src3); final float dst5 = (atmp0 * src0 + atmp7 * src2 + atmp8 * src3) - (atmp1 * src0 + atmp6 * src2 + atmp9 * src3); final float dst6 = (atmp3 * src0 + atmp6 * src1 + atmp11 * src3) - (atmp2 * src0 + atmp7 * src1 + atmp10 * src3); final float dst7 = (atmp4 * src0 + atmp9 * src1 + atmp10 * src2) - (atmp5 * src0 + atmp8 * src1 + atmp11 * src2); // calculate pairs for second 8 elements (cofactors) final float btmp0 = src2 * src7; final float btmp1 = src3 * src6; final float btmp2 = src1 * src7; final float btmp3 = src3 * src5; final float btmp4 = src1 * src6; final float btmp5 = src2 * src5; final float btmp6 = src0 * src7; final float btmp7 = src3 * src4; final float btmp8 = src0 * src6; final float btmp9 = src2 * src4; final float btmp10 = src0 * src5; final float btmp11 = src1 * src4; // calculate second 8 elements (cofactors) final float dst8 = (btmp0 * src13 + btmp3 * src14 + btmp4 * src15) - (btmp1 * src13 + btmp2 * src14 + btmp5 * src15); final float dst9 = (btmp1 * src12 + btmp6 * src14 + btmp9 * src15) - (btmp0 * src12 + btmp7 * src14 + btmp8 * src15); final float dst10 = (btmp2 * src12 + btmp7 * src13 + btmp10 * src15) - (btmp3 * src12 + btmp6 * src13 + btmp11 * src15); final float dst11 = (btmp5 * src12 + btmp8 * src13 + btmp11 * src14) - (btmp4 * src12 + btmp9 * src13 + btmp10 * src14); final float dst12 = (btmp2 * src10 + btmp5 * src11 + btmp1 * src9 ) - (btmp4 * src11 + btmp0 * src9 + btmp3 * src10); final float dst13 = (btmp8 * src11 + btmp0 * src8 + btmp7 * src10) - (btmp6 * src10 + btmp9 * src11 + btmp1 * src8 ); final float dst14 = (btmp6 * src9 + btmp11 * src11 + btmp3 * src8 ) - (btmp10 * src11 + btmp2 * src8 + btmp7 * src9 ); final float dst15 = (btmp10 * src10 + btmp4 * src8 + btmp9 * src9 ) - (btmp8 * src9 + btmp11 * src10 + btmp5 * src8 ); // calculate determinant final float det = src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3; if (det == 0.0f) { return false; } // calculate matrix inverse final float invdet = 1.0f / det; mInv[ mInvOffset] = dst0 * invdet; mInv[ 1 + mInvOffset] = dst1 * invdet; mInv[ 2 + mInvOffset] = dst2 * invdet; mInv[ 3 + mInvOffset] = dst3 * invdet; mInv[ 4 + mInvOffset] = dst4 * invdet; mInv[ 5 + mInvOffset] = dst5 * invdet; mInv[ 6 + mInvOffset] = dst6 * invdet; mInv[ 7 + mInvOffset] = dst7 * invdet; mInv[ 8 + mInvOffset] = dst8 * invdet; mInv[ 9 + mInvOffset] = dst9 * invdet; mInv[10 + mInvOffset] = dst10 * invdet; mInv[11 + mInvOffset] = dst11 * invdet; mInv[12 + mInvOffset] = dst12 * invdet; mInv[13 + mInvOffset] = dst13 * invdet; mInv[14 + mInvOffset] = dst14 * invdet; mInv[15 + mInvOffset] = dst15 * invdet; return true; } /** * Computes an orthographic projection matrix. * * @param m returns the result * @param mOffset * @param left * @param right * @param bottom * @param top * @param near * @param far */ public static void orthoM(float[] m, int mOffset, float left, float right, float bottom, float top, float near, float far) { if (left == right) { throw new IllegalArgumentException("left == right"); } if (bottom == top) { throw new IllegalArgumentException("bottom == top"); } if (near == far) { throw new IllegalArgumentException("near == far"); } final float r_width = 1.0f / (right - left); final float r_height = 1.0f / (top - bottom); final float r_depth = 1.0f / (far - near); final float x = 2.0f * (r_width); final float y = 2.0f * (r_height); final float z = -2.0f * (r_depth); final float tx = -(right + left) * r_width; final float ty = -(top + bottom) * r_height; final float tz = -(far + near) * r_depth; m[mOffset + 0] = x; m[mOffset + 5] = y; m[mOffset +10] = z; m[mOffset +12] = tx; m[mOffset +13] = ty; m[mOffset +14] = tz; m[mOffset +15] = 1.0f; m[mOffset + 1] = 0.0f; m[mOffset + 2] = 0.0f; m[mOffset + 3] = 0.0f; m[mOffset + 4] = 0.0f; m[mOffset + 6] = 0.0f; m[mOffset + 7] = 0.0f; m[mOffset + 8] = 0.0f; m[mOffset + 9] = 0.0f; m[mOffset + 11] = 0.0f; } /** * Defines a projection matrix in terms of six clip planes. * * @param m the float array that holds the output perspective matrix * @param offset the offset into float array m where the perspective * matrix data is written * @param left * @param right * @param bottom * @param top * @param near * @param far */ public static void frustumM(float[] m, int offset, float left, float right, float bottom, float top, float near, float far) { if (left == right) { throw new IllegalArgumentException("left == right"); } if (top == bottom) { throw new IllegalArgumentException("top == bottom"); } if (near == far) { throw new IllegalArgumentException("near == far"); } if (near <= 0.0f) { throw new IllegalArgumentException("near <= 0.0f"); } if (far <= 0.0f) { throw new IllegalArgumentException("far <= 0.0f"); } final float r_width = 1.0f / (right - left); final float r_height = 1.0f / (top - bottom); final float r_depth = 1.0f / (near - far); final float x = 2.0f * (near * r_width); final float y = 2.0f * (near * r_height); final float A = (right + left) * r_width; final float B = (top + bottom) * r_height; final float C = (far + near) * r_depth; final float D = 2.0f * (far * near * r_depth); m[offset + 0] = x; m[offset + 5] = y; m[offset + 8] = A; m[offset + 9] = B; m[offset + 10] = C; m[offset + 14] = D; m[offset + 11] = -1.0f; m[offset + 1] = 0.0f; m[offset + 2] = 0.0f; m[offset + 3] = 0.0f; m[offset + 4] = 0.0f; m[offset + 6] = 0.0f; m[offset + 7] = 0.0f; m[offset + 12] = 0.0f; m[offset + 13] = 0.0f; m[offset + 15] = 0.0f; } /** * Defines a projection matrix in terms of a field of view angle, an * aspect ratio, and z clip planes. * * @param m the float array that holds the perspective matrix * @param offset the offset into float array m where the perspective * matrix data is written * @param fovy field of view in y direction, in degrees * @param aspect width to height aspect ratio of the viewport * @param zNear * @param zFar */ public static void perspectiveM(float[] m, int offset, float fovy, float aspect, float zNear, float zFar) { float f = 1.0f / (float) Math.tan(fovy * (Math.PI / 360.0)); float rangeReciprocal = 1.0f / (zNear - zFar); m[offset + 0] = f / aspect; m[offset + 1] = 0.0f; m[offset + 2] = 0.0f; m[offset + 3] = 0.0f; m[offset + 4] = 0.0f; m[offset + 5] = f; m[offset + 6] = 0.0f; m[offset + 7] = 0.0f; m[offset + 8] = 0.0f; m[offset + 9] = 0.0f; m[offset + 10] = (zFar + zNear) * rangeReciprocal; m[offset + 11] = -1.0f; m[offset + 12] = 0.0f; m[offset + 13] = 0.0f; m[offset + 14] = 2.0f * zFar * zNear * rangeReciprocal; m[offset + 15] = 0.0f; } /** * Computes the length of a vector. * * @param x x coordinate of a vector * @param y y coordinate of a vector * @param z z coordinate of a vector * @return the length of a vector */ public static float length(float x, float y, float z) { return (float) Math.sqrt(x * x + y * y + z * z); } /** * Sets matrix m to the identity matrix. * * @param sm returns the result * @param smOffset index into sm where the result matrix starts */ public static void setIdentityM(float[] sm, int smOffset) { for (int i=0 ; i<16 ; i++) { sm[smOffset + i] = 0; } for(int i = 0; i < 16; i += 5) { sm[smOffset + i] = 1.0f; } } /** * Scales matrix m by x, y, and z, putting the result in sm. *

* m and sm must not overlap. * * @param sm returns the result * @param smOffset index into sm where the result matrix starts * @param m source matrix * @param mOffset index into m where the source matrix starts * @param x scale factor x * @param y scale factor y * @param z scale factor z */ public static void scaleM(float[] sm, int smOffset, float[] m, int mOffset, float x, float y, float z) { for (int i=0 ; i<4 ; i++) { int smi = smOffset + i; int mi = mOffset + i; sm[ smi] = m[ mi] * x; sm[ 4 + smi] = m[ 4 + mi] * y; sm[ 8 + smi] = m[ 8 + mi] * z; sm[12 + smi] = m[12 + mi]; } } /** * Scales matrix m in place by sx, sy, and sz. * * @param m matrix to scale * @param mOffset index into m where the matrix starts * @param x scale factor x * @param y scale factor y * @param z scale factor z */ public static void scaleM(float[] m, int mOffset, float x, float y, float z) { for (int i=0 ; i<4 ; i++) { int mi = mOffset + i; m[ mi] *= x; m[ 4 + mi] *= y; m[ 8 + mi] *= z; } } /** * Translates matrix m by x, y, and z, putting the result in tm. *

* m and tm must not overlap. * * @param tm returns the result * @param tmOffset index into sm where the result matrix starts * @param m source matrix * @param mOffset index into m where the source matrix starts * @param x translation factor x * @param y translation factor y * @param z translation factor z */ public static void translateM(float[] tm, int tmOffset, float[] m, int mOffset, float x, float y, float z) { for (int i=0 ; i<12 ; i++) { tm[tmOffset + i] = m[mOffset + i]; } for (int i=0 ; i<4 ; i++) { int tmi = tmOffset + i; int mi = mOffset + i; tm[12 + tmi] = m[mi] * x + m[4 + mi] * y + m[8 + mi] * z + m[12 + mi]; } } /** * Translates matrix m by x, y, and z in place. * * @param m matrix * @param mOffset index into m where the matrix starts * @param x translation factor x * @param y translation factor y * @param z translation factor z */ public static void translateM( float[] m, int mOffset, float x, float y, float z) { for (int i=0 ; i<4 ; i++) { int mi = mOffset + i; m[12 + mi] += m[mi] * x + m[4 + mi] * y + m[8 + mi] * z; } } /** * Rotates matrix m by angle a (in degrees) around the axis (x, y, z). *

* m and rm must not overlap. * * @param rm returns the result * @param rmOffset index into rm where the result matrix starts * @param m source matrix * @param mOffset index into m where the source matrix starts * @param a angle to rotate in degrees * @param x X axis component * @param y Y axis component * @param z Z axis component */ public static void rotateM(float[] rm, int rmOffset, float[] m, int mOffset, float a, float x, float y, float z) { synchronized(sTemp) { setRotateM(sTemp, 0, a, x, y, z); multiplyMM(rm, rmOffset, m, mOffset, sTemp, 0); } } /** * Rotates matrix m in place by angle a (in degrees) * around the axis (x, y, z). * * @param m source matrix * @param mOffset index into m where the matrix starts * @param a angle to rotate in degrees * @param x X axis component * @param y Y axis component * @param z Z axis component */ public static void rotateM(float[] m, int mOffset, float a, float x, float y, float z) { synchronized(sTemp) { setRotateM(sTemp, 0, a, x, y, z); multiplyMM(sTemp, 16, m, mOffset, sTemp, 0); System.arraycopy(sTemp, 16, m, mOffset, 16); } } /** * Creates a matrix for rotation by angle a (in degrees) * around the axis (x, y, z). *

* An optimized path will be used for rotation about a major axis * (e.g. x=1.0f y=0.0f z=0.0f). * * @param rm returns the result * @param rmOffset index into rm where the result matrix starts * @param a angle to rotate in degrees * @param x X axis component * @param y Y axis component * @param z Z axis component */ public static void setRotateM(float[] rm, int rmOffset, float a, float x, float y, float z) { rm[rmOffset + 3] = 0; rm[rmOffset + 7] = 0; rm[rmOffset + 11]= 0; rm[rmOffset + 12]= 0; rm[rmOffset + 13]= 0; rm[rmOffset + 14]= 0; rm[rmOffset + 15]= 1; a *= (float) (Math.PI / 180.0f); float s = (float) Math.sin(a); float c = (float) Math.cos(a); if (1.0f == x && 0.0f == y && 0.0f == z) { rm[rmOffset + 5] = c; rm[rmOffset + 10]= c; rm[rmOffset + 6] = s; rm[rmOffset + 9] = -s; rm[rmOffset + 1] = 0; rm[rmOffset + 2] = 0; rm[rmOffset + 4] = 0; rm[rmOffset + 8] = 0; rm[rmOffset + 0] = 1; } else if (0.0f == x && 1.0f == y && 0.0f == z) { rm[rmOffset + 0] = c; rm[rmOffset + 10]= c; rm[rmOffset + 8] = s; rm[rmOffset + 2] = -s; rm[rmOffset + 1] = 0; rm[rmOffset + 4] = 0; rm[rmOffset + 6] = 0; rm[rmOffset + 9] = 0; rm[rmOffset + 5] = 1; } else if (0.0f == x && 0.0f == y && 1.0f == z) { rm[rmOffset + 0] = c; rm[rmOffset + 5] = c; rm[rmOffset + 1] = s; rm[rmOffset + 4] = -s; rm[rmOffset + 2] = 0; rm[rmOffset + 6] = 0; rm[rmOffset + 8] = 0; rm[rmOffset + 9] = 0; rm[rmOffset + 10]= 1; } else { float len = length(x, y, z); if (1.0f != len) { float recipLen = 1.0f / len; x *= recipLen; y *= recipLen; z *= recipLen; } float nc = 1.0f - c; float xy = x * y; float yz = y * z; float zx = z * x; float xs = x * s; float ys = y * s; float zs = z * s; rm[rmOffset + 0] = x*x*nc + c; rm[rmOffset + 4] = xy*nc - zs; rm[rmOffset + 8] = zx*nc + ys; rm[rmOffset + 1] = xy*nc + zs; rm[rmOffset + 5] = y*y*nc + c; rm[rmOffset + 9] = yz*nc - xs; rm[rmOffset + 2] = zx*nc - ys; rm[rmOffset + 6] = yz*nc + xs; rm[rmOffset + 10] = z*z*nc + c; } } /** * Converts Euler angles to a rotation matrix. * * @param rm returns the result * @param rmOffset index into rm where the result matrix starts * @param x angle of rotation, in degrees * @param y angle of rotation, in degrees * @param z angle of rotation, in degrees */ public static void setRotateEulerM(float[] rm, int rmOffset, float x, float y, float z) { x *= (float) (Math.PI / 180.0f); y *= (float) (Math.PI / 180.0f); z *= (float) (Math.PI / 180.0f); float cx = (float) Math.cos(x); float sx = (float) Math.sin(x); float cy = (float) Math.cos(y); float sy = (float) Math.sin(y); float cz = (float) Math.cos(z); float sz = (float) Math.sin(z); float cxsy = cx * sy; float sxsy = sx * sy; rm[rmOffset + 0] = cy * cz; rm[rmOffset + 1] = -cy * sz; rm[rmOffset + 2] = sy; rm[rmOffset + 3] = 0.0f; rm[rmOffset + 4] = cxsy * cz + cx * sz; rm[rmOffset + 5] = -cxsy * sz + cx * cz; rm[rmOffset + 6] = -sx * cy; rm[rmOffset + 7] = 0.0f; rm[rmOffset + 8] = -sxsy * cz + sx * sz; rm[rmOffset + 9] = sxsy * sz + sx * cz; rm[rmOffset + 10] = cx * cy; rm[rmOffset + 11] = 0.0f; rm[rmOffset + 12] = 0.0f; rm[rmOffset + 13] = 0.0f; rm[rmOffset + 14] = 0.0f; rm[rmOffset + 15] = 1.0f; } /** * Defines a viewing transformation in terms of an eye point, a center of * view, and an up vector. * * @param rm returns the result * @param rmOffset index into rm where the result matrix starts * @param eyeX eye point X * @param eyeY eye point Y * @param eyeZ eye point Z * @param centerX center of view X * @param centerY center of view Y * @param centerZ center of view Z * @param upX up vector X * @param upY up vector Y * @param upZ up vector Z */ public static void setLookAtM(float[] rm, int rmOffset, float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { // See the OpenGL GLUT documentation for gluLookAt for a description // of the algorithm. We implement it in a straightforward way: float fx = centerX - eyeX; float fy = centerY - eyeY; float fz = centerZ - eyeZ; // Normalize f float rlf = 1.0f / Matrix.length(fx, fy, fz); fx *= rlf; fy *= rlf; fz *= rlf; // compute s = f x up (x means "cross product") float sx = fy * upZ - fz * upY; float sy = fz * upX - fx * upZ; float sz = fx * upY - fy * upX; // and normalize s float rls = 1.0f / Matrix.length(sx, sy, sz); sx *= rls; sy *= rls; sz *= rls; // compute u = s x f float ux = sy * fz - sz * fy; float uy = sz * fx - sx * fz; float uz = sx * fy - sy * fx; rm[rmOffset + 0] = sx; rm[rmOffset + 1] = ux; rm[rmOffset + 2] = -fx; rm[rmOffset + 3] = 0.0f; rm[rmOffset + 4] = sy; rm[rmOffset + 5] = uy; rm[rmOffset + 6] = -fy; rm[rmOffset + 7] = 0.0f; rm[rmOffset + 8] = sz; rm[rmOffset + 9] = uz; rm[rmOffset + 10] = -fz; rm[rmOffset + 11] = 0.0f; rm[rmOffset + 12] = 0.0f; rm[rmOffset + 13] = 0.0f; rm[rmOffset + 14] = 0.0f; rm[rmOffset + 15] = 1.0f; translateM(rm, rmOffset, -eyeX, -eyeY, -eyeZ); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy