All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.android.renderscript.ProgramVertex Maven / Gradle / Ivy

Go to download

A library jar that provides APIs for Applications written for the Google Android Platform.

There is a newer version: 15-robolectric-12650502
Show newest version
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * @hide
 * 

The RenderScript vertex program, also known as a vertex shader, describes a stage in * the graphics pipeline responsible for manipulating geometric data in a user-defined way. * The object is constructed by providing the RenderScript system with the following data:

*
    *
  • Element describing its varying inputs or attributes
  • *
  • GLSL shader string that defines the body of the program
  • *
  • a Type that describes the layout of an Allocation containing constant or uniform inputs
  • *
* *

Once the program is created, you bind it to the graphics context, RenderScriptGL, and it will be used for * all subsequent draw calls until you bind a new program. If the program has constant inputs, * the user needs to bind an allocation containing those inputs. The allocation's type must match * the one provided during creation. The RenderScript library then does all the necessary plumbing * to send those constants to the graphics hardware. Varying inputs to the shader, such as position, normal, * and texture coordinates are matched by name between the input Element and the Mesh object being drawn. * The signatures don't have to be exact or in any strict order. As long as the input name in the shader * matches a channel name and size available on the mesh, the runtime takes care of connecting the * two. Unlike OpenGL, there is no need to link the vertex and fragment programs.

**/ package android.renderscript; import android.compat.annotation.UnsupportedAppUsage; /** * @hide * @deprecated in API 16 * ProgramVertex, also know as a vertex shader, describes a * stage in the graphics pipeline responsible for manipulating * geometric data in a user-defined way. * **/ @Deprecated public class ProgramVertex extends Program { ProgramVertex(long id, RenderScript rs) { super(id, rs); } /** * @deprecated in API 16 * @return number of input attribute elements */ public int getInputCount() { return mInputs != null ? mInputs.length : 0; } /** * @deprecated in API 16 * @param slot location of the input to return * @return input attribute element */ public Element getInput(int slot) { if (slot < 0 || slot >= mInputs.length) { throw new IllegalArgumentException("Slot ID out of range."); } return mInputs[slot]; } /** * @hide * @deprecated in API 16 * Builder class for creating ProgramVertex objects. * The builder starts empty and the user must minimally provide * the GLSL shader code, and the varying inputs. Constant, or * uniform parameters to the shader may optionally be provided as * well. * **/ public static class Builder extends BaseProgramBuilder { /** * @deprecated in API 16 * Create a builder object. * * @param rs Context to which the program will belong. */ @UnsupportedAppUsage public Builder(RenderScript rs) { super(rs); } /** * @deprecated in API 16 * Add varying inputs to the program * * @param e element describing the layout of the varying input * structure * @return self */ @UnsupportedAppUsage public Builder addInput(Element e) throws IllegalStateException { // Should check for consistant and non-conflicting names... if(mInputCount >= MAX_INPUT) { throw new RSIllegalArgumentException("Max input count exceeded."); } if (e.isComplex()) { throw new RSIllegalArgumentException("Complex elements not allowed."); } mInputs[mInputCount++] = e; return this; } /** * @deprecated in API 16 * Creates ProgramVertex from the current state of the builder * * @return ProgramVertex */ @UnsupportedAppUsage public ProgramVertex create() { mRS.validate(); long[] tmp = new long[(mInputCount + mOutputCount + mConstantCount + mTextureCount) * 2]; String[] texNames = new String[mTextureCount]; int idx = 0; for (int i=0; i < mInputCount; i++) { tmp[idx++] = ProgramParam.INPUT.mID; tmp[idx++] = mInputs[i].getID(mRS); } for (int i=0; i < mOutputCount; i++) { tmp[idx++] = ProgramParam.OUTPUT.mID; tmp[idx++] = mOutputs[i].getID(mRS); } for (int i=0; i < mConstantCount; i++) { tmp[idx++] = ProgramParam.CONSTANT.mID; tmp[idx++] = mConstants[i].getID(mRS); } for (int i=0; i < mTextureCount; i++) { tmp[idx++] = ProgramParam.TEXTURE_TYPE.mID; tmp[idx++] = mTextureTypes[i].mID; texNames[i] = mTextureNames[i]; } long id = mRS.nProgramVertexCreate(mShader, texNames, tmp); ProgramVertex pv = new ProgramVertex(id, mRS); initProgram(pv); return pv; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy