All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.java.lang.invoke.MethodHandles Maven / Gradle / Ivy

Go to download

A library jar that provides APIs for Applications written for the Google Android Platform.

There is a newer version: 15-robolectric-12650502
Show newest version
/*
 * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.invoke;

import java.lang.reflect.*;
import java.nio.ByteOrder;
import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.NoSuchElementException;

import sun.invoke.util.VerifyAccess;
import sun.invoke.util.Wrapper;
import sun.reflect.Reflection;

import static java.lang.invoke.MethodHandleStatics.*;

/**
 * This class consists exclusively of static methods that operate on or return
 * method handles. They fall into several categories:
 * 
    *
  • Lookup methods which help create method handles for methods and fields. *
  • Combinator methods, which combine or transform pre-existing method handles into new ones. *
  • Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. *
*

* @author John Rose, JSR 292 EG * @since 1.7 */ public class MethodHandles { private MethodHandles() { } // do not instantiate // Android-changed: We do not use MemberName / MethodHandleImpl. // // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); // static { MethodHandleImpl.initStatics(); } // See IMPL_LOOKUP below. //// Method handle creation from ordinary methods. /** * Returns a {@link Lookup lookup object} with * full capabilities to emulate all supported bytecode behaviors of the caller. * These capabilities include private access to the caller. * Factory methods on the lookup object can create * direct method handles * for any member that the caller has access to via bytecodes, * including protected and private fields and methods. * This lookup object is a capability which may be delegated to trusted agents. * Do not store it in place where untrusted code can access it. *

* This method is caller sensitive, which means that it may return different * values to different callers. *

* For any given caller class {@code C}, the lookup object returned by this call * has equivalent capabilities to any lookup object * supplied by the JVM to the bootstrap method of an * invokedynamic instruction * executing in the same caller class {@code C}. * @return a lookup object for the caller of this method, with private access */ // Android-changed: Remove caller sensitive. // @CallerSensitive public static Lookup lookup() { return new Lookup(Reflection.getCallerClass()); } /** * Returns a {@link Lookup lookup object} which is trusted minimally. * It can only be used to create method handles to * publicly accessible fields and methods. *

* As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class} * of this lookup object will be {@link java.lang.Object}. * *

* Discussion: * The lookup class can be changed to any other class {@code C} using an expression of the form * {@link Lookup#in publicLookup().in(C.class)}. * Since all classes have equal access to public names, * such a change would confer no new access rights. * A public lookup object is always subject to * security manager checks. * Also, it cannot access * caller sensitive methods. * @return a lookup object which is trusted minimally */ public static Lookup publicLookup() { return Lookup.PUBLIC_LOOKUP; } /** * Performs an unchecked "crack" of a * direct method handle. * The result is as if the user had obtained a lookup object capable enough * to crack the target method handle, called * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} * on the target to obtain its symbolic reference, and then called * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} * to resolve the symbolic reference to a member. *

* If there is a security manager, its {@code checkPermission} method * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. * @param the desired type of the result, either {@link Member} or a subtype * @param target a direct method handle to crack into symbolic reference components * @param expected a class object representing the desired result type {@code T} * @return a reference to the method, constructor, or field object * @exception SecurityException if the caller is not privileged to call {@code setAccessible} * @exception NullPointerException if either argument is {@code null} * @exception IllegalArgumentException if the target is not a direct method handle * @exception ClassCastException if the member is not of the expected type * @since 1.8 */ public static T reflectAs(Class expected, MethodHandle target) { MethodHandleImpl directTarget = getMethodHandleImpl(target); // Given that this is specified to be an "unchecked" crack, we can directly allocate // a member from the underlying ArtField / Method and bypass all associated access checks. return expected.cast(directTarget.getMemberInternal()); } /** * A lookup object is a factory for creating method handles, * when the creation requires access checking. * Method handles do not perform * access checks when they are called, but rather when they are created. * Therefore, method handle access * restrictions must be enforced when a method handle is created. * The caller class against which those restrictions are enforced * is known as the {@linkplain #lookupClass lookup class}. *

* A lookup class which needs to create method handles will call * {@link #lookup MethodHandles.lookup} to create a factory for itself. * When the {@code Lookup} factory object is created, the identity of the lookup class is * determined, and securely stored in the {@code Lookup} object. * The lookup class (or its delegates) may then use factory methods * on the {@code Lookup} object to create method handles for access-checked members. * This includes all methods, constructors, and fields which are allowed to the lookup class, * even private ones. * *

Lookup Factory Methods

* The factory methods on a {@code Lookup} object correspond to all major * use cases for methods, constructors, and fields. * Each method handle created by a factory method is the functional * equivalent of a particular bytecode behavior. * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) * Here is a summary of the correspondence between these factory methods and * the behavior the resulting method handles: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
lookup expressionmemberbytecode behavior
{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}{@code FT f;}{@code (T) this.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code (T) C.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}{@code FT f;}{@code this.f = x;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code C.f = arg;}
{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}{@code T m(A*);}{@code (T) this.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}{@code static}
{@code T m(A*);}
{@code (T) C.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}{@code T m(A*);}{@code (T) super.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}{@code C(A*);}{@code new C(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}({@code static})?
{@code FT f;}
{@code (FT) aField.get(thisOrNull);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}({@code static})?
{@code FT f;}
{@code aField.set(thisOrNull, arg);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}{@code C(A*);}{@code (C) aConstructor.newInstance(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
* * Here, the type {@code C} is the class or interface being searched for a member, * documented as a parameter named {@code refc} in the lookup methods. * The method type {@code MT} is composed from the return type {@code T} * and the sequence of argument types {@code A*}. * The constructor also has a sequence of argument types {@code A*} and * is deemed to return the newly-created object of type {@code C}. * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. * The formal parameter {@code this} stands for the self-reference of type {@code C}; * if it is present, it is always the leading argument to the method handle invocation. * (In the case of some {@code protected} members, {@code this} may be * restricted in type to the lookup class; see below.) * The name {@code arg} stands for all the other method handle arguments. * In the code examples for the Core Reflection API, the name {@code thisOrNull} * stands for a null reference if the accessed method or field is static, * and {@code this} otherwise. * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand * for reflective objects corresponding to the given members. *

* In cases where the given member is of variable arity (i.e., a method or constructor) * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. * In all other cases, the returned method handle will be of fixed arity. *

* Discussion: * The equivalence between looked-up method handles and underlying * class members and bytecode behaviors * can break down in a few ways: *

    *
  • If {@code C} is not symbolically accessible from the lookup class's loader, * the lookup can still succeed, even when there is no equivalent * Java expression or bytecoded constant. *
  • Likewise, if {@code T} or {@code MT} * is not symbolically accessible from the lookup class's loader, * the lookup can still succeed. * For example, lookups for {@code MethodHandle.invokeExact} and * {@code MethodHandle.invoke} will always succeed, regardless of requested type. *
  • If there is a security manager installed, it can forbid the lookup * on various grounds (see below). * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle} * constant is not subject to security manager checks. *
  • If the looked-up method has a * very large arity, * the method handle creation may fail, due to the method handle * type having too many parameters. *
* *

Access checking

* Access checks are applied in the factory methods of {@code Lookup}, * when a method handle is created. * This is a key difference from the Core Reflection API, since * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} * performs access checking against every caller, on every call. *

* All access checks start from a {@code Lookup} object, which * compares its recorded lookup class against all requests to * create method handles. * A single {@code Lookup} object can be used to create any number * of access-checked method handles, all checked against a single * lookup class. *

* A {@code Lookup} object can be shared with other trusted code, * such as a metaobject protocol. * A shared {@code Lookup} object delegates the capability * to create method handles on private members of the lookup class. * Even if privileged code uses the {@code Lookup} object, * the access checking is confined to the privileges of the * original lookup class. *

* A lookup can fail, because * the containing class is not accessible to the lookup class, or * because the desired class member is missing, or because the * desired class member is not accessible to the lookup class, or * because the lookup object is not trusted enough to access the member. * In any of these cases, a {@code ReflectiveOperationException} will be * thrown from the attempted lookup. The exact class will be one of * the following: *

    *
  • NoSuchMethodException — if a method is requested but does not exist *
  • NoSuchFieldException — if a field is requested but does not exist *
  • IllegalAccessException — if the member exists but an access check fails *
*

* In general, the conditions under which a method handle may be * looked up for a method {@code M} are no more restrictive than the conditions * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. * Where the JVM would raise exceptions like {@code NoSuchMethodError}, * a method handle lookup will generally raise a corresponding * checked exception, such as {@code NoSuchMethodException}. * And the effect of invoking the method handle resulting from the lookup * is exactly equivalent * to executing the compiled, verified, and resolved call to {@code M}. * The same point is true of fields and constructors. *

* Discussion: * Access checks only apply to named and reflected methods, * constructors, and fields. * Other method handle creation methods, such as * {@link MethodHandle#asType MethodHandle.asType}, * do not require any access checks, and are used * independently of any {@code Lookup} object. *

* If the desired member is {@code protected}, the usual JVM rules apply, * including the requirement that the lookup class must be either be in the * same package as the desired member, or must inherit that member. * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) * In addition, if the desired member is a non-static field or method * in a different package, the resulting method handle may only be applied * to objects of the lookup class or one of its subclasses. * This requirement is enforced by narrowing the type of the leading * {@code this} parameter from {@code C} * (which will necessarily be a superclass of the lookup class) * to the lookup class itself. *

* The JVM imposes a similar requirement on {@code invokespecial} instruction, * that the receiver argument must match both the resolved method and * the current class. Again, this requirement is enforced by narrowing the * type of the leading parameter to the resulting method handle. * (See the Java Virtual Machine Specification, section 4.10.1.9.) *

* The JVM represents constructors and static initializer blocks as internal methods * with special names ({@code ""} and {@code ""}). * The internal syntax of invocation instructions allows them to refer to such internal * methods as if they were normal methods, but the JVM bytecode verifier rejects them. * A lookup of such an internal method will produce a {@code NoSuchMethodException}. *

* In some cases, access between nested classes is obtained by the Java compiler by creating * an wrapper method to access a private method of another class * in the same top-level declaration. * For example, a nested class {@code C.D} * can access private members within other related classes such as * {@code C}, {@code C.D.E}, or {@code C.B}, * but the Java compiler may need to generate wrapper methods in * those related classes. In such cases, a {@code Lookup} object on * {@code C.E} would be unable to those private members. * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, * which can transform a lookup on {@code C.E} into one on any of those other * classes, without special elevation of privilege. *

* The accesses permitted to a given lookup object may be limited, * according to its set of {@link #lookupModes lookupModes}, * to a subset of members normally accessible to the lookup class. * For example, the {@link #publicLookup publicLookup} * method produces a lookup object which is only allowed to access * public members in public classes. * The caller sensitive method {@link #lookup lookup} * produces a lookup object with full capabilities relative to * its caller class, to emulate all supported bytecode behaviors. * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object * with fewer access modes than the original lookup object. * *

* * Discussion of private access: * We say that a lookup has private access * if its {@linkplain #lookupModes lookup modes} * include the possibility of accessing {@code private} members. * As documented in the relevant methods elsewhere, * only lookups with private access possess the following capabilities: *

    *
  • access private fields, methods, and constructors of the lookup class *
  • create method handles which invoke caller sensitive methods, * such as {@code Class.forName} *
  • create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions *
  • avoid package access checks * for classes accessible to the lookup class *
  • create {@link Lookup#in delegated lookup objects} which have private access to other classes * within the same package member *
*

* Each of these permissions is a consequence of the fact that a lookup object * with private access can be securely traced back to an originating class, * whose bytecode behaviors and Java language access permissions * can be reliably determined and emulated by method handles. * *

Security manager interactions

* Although bytecode instructions can only refer to classes in * a related class loader, this API can search for methods in any * class, as long as a reference to its {@code Class} object is * available. Such cross-loader references are also possible with the * Core Reflection API, and are impossible to bytecode instructions * such as {@code invokestatic} or {@code getfield}. * There is a {@linkplain java.lang.SecurityManager security manager API} * to allow applications to check such cross-loader references. * These checks apply to both the {@code MethodHandles.Lookup} API * and the Core Reflection API * (as found on {@link java.lang.Class Class}). *

* If a security manager is present, member lookups are subject to * additional checks. * From one to three calls are made to the security manager. * Any of these calls can refuse access by throwing a * {@link java.lang.SecurityException SecurityException}. * Define {@code smgr} as the security manager, * {@code lookc} as the lookup class of the current lookup object, * {@code refc} as the containing class in which the member * is being sought, and {@code defc} as the class in which the * member is actually defined. * The value {@code lookc} is defined as not present * if the current lookup object does not have * private access. * The calls are made according to the following rules: *

    *
  • Step 1: * If {@code lookc} is not present, or if its class loader is not * the same as or an ancestor of the class loader of {@code refc}, * then {@link SecurityManager#checkPackageAccess * smgr.checkPackageAccess(refcPkg)} is called, * where {@code refcPkg} is the package of {@code refc}. *
  • Step 2: * If the retrieved member is not public and * {@code lookc} is not present, then * {@link SecurityManager#checkPermission smgr.checkPermission} * with {@code RuntimePermission("accessDeclaredMembers")} is called. *
  • Step 3: * If the retrieved member is not public, * and if {@code lookc} is not present, * and if {@code defc} and {@code refc} are different, * then {@link SecurityManager#checkPackageAccess * smgr.checkPackageAccess(defcPkg)} is called, * where {@code defcPkg} is the package of {@code defc}. *
* Security checks are performed after other access checks have passed. * Therefore, the above rules presuppose a member that is public, * or else that is being accessed from a lookup class that has * rights to access the member. * *

Caller sensitive methods

* A small number of Java methods have a special property called caller sensitivity. * A caller-sensitive method can behave differently depending on the * identity of its immediate caller. *

* If a method handle for a caller-sensitive method is requested, * the general rules for bytecode behaviors apply, * but they take account of the lookup class in a special way. * The resulting method handle behaves as if it were called * from an instruction contained in the lookup class, * so that the caller-sensitive method detects the lookup class. * (By contrast, the invoker of the method handle is disregarded.) * Thus, in the case of caller-sensitive methods, * different lookup classes may give rise to * differently behaving method handles. *

* In cases where the lookup object is * {@link #publicLookup publicLookup()}, * or some other lookup object without * private access, * the lookup class is disregarded. * In such cases, no caller-sensitive method handle can be created, * access is forbidden, and the lookup fails with an * {@code IllegalAccessException}. *

* Discussion: * For example, the caller-sensitive method * {@link java.lang.Class#forName(String) Class.forName(x)} * can return varying classes or throw varying exceptions, * depending on the class loader of the class that calls it. * A public lookup of {@code Class.forName} will fail, because * there is no reasonable way to determine its bytecode behavior. *

* If an application caches method handles for broad sharing, * it should use {@code publicLookup()} to create them. * If there is a lookup of {@code Class.forName}, it will fail, * and the application must take appropriate action in that case. * It may be that a later lookup, perhaps during the invocation of a * bootstrap method, can incorporate the specific identity * of the caller, making the method accessible. *

* The function {@code MethodHandles.lookup} is caller sensitive * so that there can be a secure foundation for lookups. * Nearly all other methods in the JSR 292 API rely on lookup * objects to check access requests. */ // Android-changed: Change link targets from MethodHandles#[public]Lookup to // #[public]Lookup to work around complaints from javadoc. public static final class Lookup { /** The class on behalf of whom the lookup is being performed. */ /* @NonNull */ private final Class lookupClass; /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ private final int allowedModes; /** A single-bit mask representing {@code public} access, * which may contribute to the result of {@link #lookupModes lookupModes}. * The value, {@code 0x01}, happens to be the same as the value of the * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. */ public static final int PUBLIC = Modifier.PUBLIC; /** A single-bit mask representing {@code private} access, * which may contribute to the result of {@link #lookupModes lookupModes}. * The value, {@code 0x02}, happens to be the same as the value of the * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. */ public static final int PRIVATE = Modifier.PRIVATE; /** A single-bit mask representing {@code protected} access, * which may contribute to the result of {@link #lookupModes lookupModes}. * The value, {@code 0x04}, happens to be the same as the value of the * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. */ public static final int PROTECTED = Modifier.PROTECTED; /** A single-bit mask representing {@code package} access (default access), * which may contribute to the result of {@link #lookupModes lookupModes}. * The value is {@code 0x08}, which does not correspond meaningfully to * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. */ public static final int PACKAGE = Modifier.STATIC; private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE); // Android-note: Android has no notion of a trusted lookup. If required, such lookups // are performed by the runtime. As a result, we always use lookupClass, which will always // be non-null in our implementation. // // private static final int TRUSTED = -1; private static int fixmods(int mods) { mods &= (ALL_MODES - PACKAGE); return (mods != 0) ? mods : PACKAGE; } /** Tells which class is performing the lookup. It is this class against * which checks are performed for visibility and access permissions. *

* The class implies a maximum level of access permission, * but the permissions may be additionally limited by the bitmask * {@link #lookupModes lookupModes}, which controls whether non-public members * can be accessed. * @return the lookup class, on behalf of which this lookup object finds members */ public Class lookupClass() { return lookupClass; } /** Tells which access-protection classes of members this lookup object can produce. * The result is a bit-mask of the bits * {@linkplain #PUBLIC PUBLIC (0x01)}, * {@linkplain #PRIVATE PRIVATE (0x02)}, * {@linkplain #PROTECTED PROTECTED (0x04)}, * and {@linkplain #PACKAGE PACKAGE (0x08)}. *

* A freshly-created lookup object * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} * has all possible bits set, since the caller class can access all its own members. * A lookup object on a new lookup class * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} * may have some mode bits set to zero. * The purpose of this is to restrict access via the new lookup object, * so that it can access only names which can be reached by the original * lookup object, and also by the new lookup class. * @return the lookup modes, which limit the kinds of access performed by this lookup object */ public int lookupModes() { return allowedModes & ALL_MODES; } /** Embody the current class (the lookupClass) as a lookup class * for method handle creation. * Must be called by from a method in this package, * which in turn is called by a method not in this package. */ Lookup(Class lookupClass) { this(lookupClass, ALL_MODES); // make sure we haven't accidentally picked up a privileged class: checkUnprivilegedlookupClass(lookupClass, ALL_MODES); } private Lookup(Class lookupClass, int allowedModes) { this.lookupClass = lookupClass; this.allowedModes = allowedModes; } /** * Creates a lookup on the specified new lookup class. * The resulting object will report the specified * class as its own {@link #lookupClass lookupClass}. *

* However, the resulting {@code Lookup} object is guaranteed * to have no more access capabilities than the original. * In particular, access capabilities can be lost as follows:

    *
  • If the new lookup class differs from the old one, * protected members will not be accessible by virtue of inheritance. * (Protected members may continue to be accessible because of package sharing.) *
  • If the new lookup class is in a different package * than the old one, protected and default (package) members will not be accessible. *
  • If the new lookup class is not within the same package member * as the old one, private members will not be accessible. *
  • If the new lookup class is not accessible to the old lookup class, * then no members, not even public members, will be accessible. * (In all other cases, public members will continue to be accessible.) *
* * @param requestedLookupClass the desired lookup class for the new lookup object * @return a lookup object which reports the desired lookup class * @throws NullPointerException if the argument is null */ public Lookup in(Class requestedLookupClass) { requestedLookupClass.getClass(); // null check // Android-changed: There's no notion of a trusted lookup. // if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all // return new Lookup(requestedLookupClass, ALL_MODES); if (requestedLookupClass == this.lookupClass) return this; // keep same capabilities int newModes = (allowedModes & (ALL_MODES & ~PROTECTED)); if ((newModes & PACKAGE) != 0 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { newModes &= ~(PACKAGE|PRIVATE); } // Allow nestmate lookups to be created without special privilege: if ((newModes & PRIVATE) != 0 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { newModes &= ~PRIVATE; } if ((newModes & PUBLIC) != 0 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { // The requested class it not accessible from the lookup class. // No permissions. newModes = 0; } checkUnprivilegedlookupClass(requestedLookupClass, newModes); return new Lookup(requestedLookupClass, newModes); } // Make sure outer class is initialized first. // // Android-changed: Removed unnecessary reference to IMPL_NAMES. // static { IMPL_NAMES.getClass(); } /** Version of lookup which is trusted minimally. * It can only be used to create method handles to * publicly accessible members. */ static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC); /** Package-private version of lookup which is trusted. */ static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES); private static void checkUnprivilegedlookupClass(Class lookupClass, int allowedModes) { String name = lookupClass.getName(); if (name.startsWith("java.lang.invoke.")) throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); // For caller-sensitive MethodHandles.lookup() // disallow lookup more restricted packages // // Android-changed: The bootstrap classloader isn't null. if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == Object.class.getClassLoader()) { if (name.startsWith("java.") || (name.startsWith("sun.") && !name.startsWith("sun.invoke.") && !name.equals("sun.reflect.ReflectionFactory"))) { throw newIllegalArgumentException("illegal lookupClass: " + lookupClass); } } } /** * Displays the name of the class from which lookups are to be made. * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) * If there are restrictions on the access permitted to this lookup, * this is indicated by adding a suffix to the class name, consisting * of a slash and a keyword. The keyword represents the strongest * allowed access, and is chosen as follows: *
    *
  • If no access is allowed, the suffix is "/noaccess". *
  • If only public access is allowed, the suffix is "/public". *
  • If only public and package access are allowed, the suffix is "/package". *
  • If only public, package, and private access are allowed, the suffix is "/private". *
* If none of the above cases apply, it is the case that full * access (public, package, private, and protected) is allowed. * In this case, no suffix is added. * This is true only of an object obtained originally from * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} * always have restricted access, and will display a suffix. *

* (It may seem strange that protected access should be * stronger than private access. Viewed independently from * package access, protected access is the first to be lost, * because it requires a direct subclass relationship between * caller and callee.) * @see #in */ @Override public String toString() { String cname = lookupClass.getName(); switch (allowedModes) { case 0: // no privileges return cname + "/noaccess"; case PUBLIC: return cname + "/public"; case PUBLIC|PACKAGE: return cname + "/package"; case ALL_MODES & ~PROTECTED: return cname + "/private"; case ALL_MODES: return cname; // Android-changed: No support for TRUSTED callers. // case TRUSTED: // return "/trusted"; // internal only; not exported default: // Should not happen, but it's a bitfield... cname = cname + "/" + Integer.toHexString(allowedModes); assert(false) : cname; return cname; } } /** * Produces a method handle for a static method. * The type of the method handle will be that of the method. * (Since static methods do not take receivers, there is no * additional receiver argument inserted into the method handle type, * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) * The method and all its argument types must be accessible to the lookup object. *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the method's variable arity modifier bit ({@code 0x0080}) is set. *

* If the returned method handle is invoked, the method's class will * be initialized, if it has not already been initialized. *

Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
  "asList", methodType(List.class, Object[].class));
assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
         * }
* @param refc the class from which the method is accessed * @param name the name of the method * @param type the type of the method * @return the desired method handle * @throws NoSuchMethodException if the method does not exist * @throws IllegalAccessException if access checking fails, * or if the method is not {@code static}, * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findStatic(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { Method method = refc.getDeclaredMethod(name, type.ptypes()); final int modifiers = method.getModifiers(); if (!Modifier.isStatic(modifiers)) { throw new IllegalAccessException("Method" + method + " is not static"); } checkReturnType(method, type); checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName()); return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type); } private MethodHandle findVirtualForMH(String name, MethodType type) { // these names require special lookups because of the implicit MethodType argument if ("invoke".equals(name)) return invoker(type); if ("invokeExact".equals(name)) return exactInvoker(type); return null; } private MethodHandle findVirtualForVH(String name, MethodType type) { VarHandle.AccessMode accessMode; try { accessMode = VarHandle.AccessMode.valueFromMethodName(name); } catch (IllegalArgumentException e) { return null; } return varHandleInvoker(accessMode, type); } private static MethodHandle createMethodHandle(Method method, int handleKind, MethodType methodType) { MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType); if (method.isVarArgs()) { return new Transformers.VarargsCollector(mh); } else { return mh; } } /** * Produces a method handle for a virtual method. * The type of the method handle will be that of the method, * with the receiver type (usually {@code refc}) prepended. * The method and all its argument types must be accessible to the lookup object. *

* When called, the handle will treat the first argument as a receiver * and dispatch on the receiver's type to determine which method * implementation to enter. * (The dispatching action is identical with that performed by an * {@code invokevirtual} or {@code invokeinterface} instruction.) *

* The first argument will be of type {@code refc} if the lookup * class has full privileges to access the member. Otherwise * the member must be {@code protected} and the first argument * will be restricted in type to the lookup class. *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the method's variable arity modifier bit ({@code 0x0080}) is set. *

* Because of the general equivalence between {@code invokevirtual} * instructions and method handles produced by {@code findVirtual}, * if the class is {@code MethodHandle} and the name string is * {@code invokeExact} or {@code invoke}, the resulting * method handle is equivalent to one produced by * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} * with the same {@code type} argument. * * Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_concat = publicLookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
  "hashCode", methodType(int.class));
MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
  "hashCode", methodType(int.class));
assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
// interface method:
MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
  "subSequence", methodType(CharSequence.class, int.class, int.class));
assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
// constructor "internal method" must be accessed differently:
MethodType MT_newString = methodType(void.class); //()V for new String()
try { assertEquals("impossible", lookup()
        .findVirtual(String.class, "", MT_newString));
 } catch (NoSuchMethodException ex) { } // OK
MethodHandle MH_newString = publicLookup()
  .findConstructor(String.class, MT_newString);
assertEquals("", (String) MH_newString.invokeExact());
         * }
* * @param refc the class or interface from which the method is accessed * @param name the name of the method * @param type the type of the method, with the receiver argument omitted * @return the desired method handle * @throws NoSuchMethodException if the method does not exist * @throws IllegalAccessException if access checking fails, * or if the method is {@code static} * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findVirtual(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { // Special case : when we're looking up a virtual method on the MethodHandles class // itself, we can return one of our specialized invokers. if (refc == MethodHandle.class) { MethodHandle mh = findVirtualForMH(name, type); if (mh != null) { return mh; } } else if (refc == VarHandle.class) { // Returns an non-exact invoker. MethodHandle mh = findVirtualForVH(name, type); if (mh != null) { return mh; } } Method method = refc.getInstanceMethod(name, type.ptypes()); if (method == null) { // This is pretty ugly and a consequence of the MethodHandles API. We have to throw // an IAE and not an NSME if the method exists but is static (even though the RI's // IAE has a message that says "no such method"). We confine the ugliness and // slowness to the failure case, and allow getInstanceMethod to remain fairly // general. try { Method m = refc.getDeclaredMethod(name, type.ptypes()); if (Modifier.isStatic(m.getModifiers())) { throw new IllegalAccessException("Method" + m + " is static"); } } catch (NoSuchMethodException ignored) { } throw new NoSuchMethodException(name + " " + Arrays.toString(type.ptypes())); } checkReturnType(method, type); // We have a valid method, perform access checks. checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName()); // Insert the leading reference parameter. MethodType handleType = type.insertParameterTypes(0, refc); return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType); } /** * Produces a method handle which creates an object and initializes it, using * the constructor of the specified type. * The parameter types of the method handle will be those of the constructor, * while the return type will be a reference to the constructor's class. * The constructor and all its argument types must be accessible to the lookup object. *

* The requested type must have a return type of {@code void}. * (This is consistent with the JVM's treatment of constructor type descriptors.) *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the constructor's variable arity modifier bit ({@code 0x0080}) is set. *

* If the returned method handle is invoked, the constructor's class will * be initialized, if it has not already been initialized. *

Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_newArrayList = publicLookup().findConstructor(
  ArrayList.class, methodType(void.class, Collection.class));
Collection orig = Arrays.asList("x", "y");
Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
assert(orig != copy);
assertEquals(orig, copy);
// a variable-arity constructor:
MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
  ProcessBuilder.class, methodType(void.class, String[].class));
ProcessBuilder pb = (ProcessBuilder)
  MH_newProcessBuilder.invoke("x", "y", "z");
assertEquals("[x, y, z]", pb.command().toString());
         * }
* @param refc the class or interface from which the method is accessed * @param type the type of the method, with the receiver argument omitted, and a void return type * @return the desired method handle * @throws NoSuchMethodException if the constructor does not exist * @throws IllegalAccessException if access checking fails * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findConstructor(Class refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { if (refc.isArray()) { throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); } // The queried |type| is (PT1,PT2,..)V Constructor constructor = refc.getDeclaredConstructor(type.ptypes()); if (constructor == null) { throw new NoSuchMethodException( "No constructor for " + constructor.getDeclaringClass() + " matching " + type); } checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(), constructor.getName()); return createMethodHandleForConstructor(constructor); } private MethodHandle createMethodHandleForConstructor(Constructor constructor) { Class refc = constructor.getDeclaringClass(); MethodType constructorType = MethodType.methodType(refc, constructor.getParameterTypes()); MethodHandle mh; if (refc == String.class) { // String constructors have optimized StringFactory methods // that matches returned type. These factory methods combine the // memory allocation and initialization calls for String objects. mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, constructorType); } else { // Constructors for all other classes use a Construct transformer to perform // their memory allocation and call to . MethodType initType = initMethodType(constructorType); MethodHandle initHandle = new MethodHandleImpl( constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType); mh = new Transformers.Construct(initHandle, constructorType); } if (constructor.isVarArgs()) { mh = new Transformers.VarargsCollector(mh); } return mh; } private static MethodType initMethodType(MethodType constructorType) { // Returns a MethodType appropriate for class // methods. Constructor MethodTypes have the form // (PT1,PT2,...)C and class MethodTypes have the // form (C,PT1,PT2,...)V. assert constructorType.rtype() != void.class; // Insert constructorType C as the first parameter type in // the MethodType for . Class [] initPtypes = new Class [constructorType.ptypes().length + 1]; initPtypes[0] = constructorType.rtype(); System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1, constructorType.ptypes().length); // Set the return type for the MethodType to be void. return MethodType.methodType(void.class, initPtypes); } /** * Produces an early-bound method handle for a virtual method. * It will bypass checks for overriding methods on the receiver, * as if called from an {@code invokespecial} * instruction from within the explicitly specified {@code specialCaller}. * The type of the method handle will be that of the method, * with a suitably restricted receiver type prepended. * (The receiver type will be {@code specialCaller} or a subtype.) * The method and all its argument types must be accessible * to the lookup object. *

* Before method resolution, * if the explicitly specified caller class is not identical with the * lookup class, or if this lookup object does not have * private access * privileges, the access fails. *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the method's variable arity modifier bit ({@code 0x0080}) is set. *

* (Note: JVM internal methods named {@code ""} are not visible to this API, * even though the {@code invokespecial} instruction can refer to them * in special circumstances. Use {@link #findConstructor findConstructor} * to access instance initialization methods in a safe manner.) *

Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
static class Listie extends ArrayList {
  public String toString() { return "[wee Listie]"; }
  static Lookup lookup() { return MethodHandles.lookup(); }
}
...
// no access to constructor via invokeSpecial:
MethodHandle MH_newListie = Listie.lookup()
  .findConstructor(Listie.class, methodType(void.class));
Listie l = (Listie) MH_newListie.invokeExact();
try { assertEquals("impossible", Listie.lookup().findSpecial(
        Listie.class, "", methodType(void.class), Listie.class));
 } catch (NoSuchMethodException ex) { } // OK
// access to super and self methods via invokeSpecial:
MethodHandle MH_super = Listie.lookup().findSpecial(
  ArrayList.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_this = Listie.lookup().findSpecial(
  Listie.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_duper = Listie.lookup().findSpecial(
  Object.class, "toString" , methodType(String.class), Listie.class);
assertEquals("[]", (String) MH_super.invokeExact(l));
assertEquals(""+l, (String) MH_this.invokeExact(l));
assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
try { assertEquals("inaccessible", Listie.lookup().findSpecial(
        String.class, "toString", methodType(String.class), Listie.class));
 } catch (IllegalAccessException ex) { } // OK
Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
         * }
* * @param refc the class or interface from which the method is accessed * @param name the name of the method (which must not be "<init>") * @param type the type of the method, with the receiver argument omitted * @param specialCaller the proposed calling class to perform the {@code invokespecial} * @return the desired method handle * @throws NoSuchMethodException if the method does not exist * @throws IllegalAccessException if access checking fails * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findSpecial(Class refc, String name, MethodType type, Class specialCaller) throws NoSuchMethodException, IllegalAccessException { if (specialCaller == null) { throw new NullPointerException("specialCaller == null"); } if (type == null) { throw new NullPointerException("type == null"); } if (name == null) { throw new NullPointerException("name == null"); } if (refc == null) { throw new NullPointerException("ref == null"); } // Make sure that the special caller is identical to the lookup class or that we have // private access. // Android-changed: Also allow access to any interface methods. checkSpecialCaller(specialCaller, refc); // Even though constructors are invoked using a "special" invoke, handles to them can't // be created using findSpecial. Callers must use findConstructor instead. Similarly, // there is no path for calling static class initializers. if (name.startsWith("<")) { throw new NoSuchMethodException(name + " is not a valid method name."); } Method method = refc.getDeclaredMethod(name, type.ptypes()); checkReturnType(method, type); return findSpecial(method, type, refc, specialCaller); } private MethodHandle findSpecial(Method method, MethodType type, Class refc, Class specialCaller) throws IllegalAccessException { if (Modifier.isStatic(method.getModifiers())) { throw new IllegalAccessException("expected a non-static method:" + method); } if (Modifier.isPrivate(method.getModifiers())) { // Since this is a private method, we'll need to also make sure that the // lookup class is the same as the refering class. We've already checked that // the specialCaller is the same as the special lookup class, both of these must // be the same as the declaring class(*) in order to access the private method. // // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those // either. if (refc != lookupClass()) { throw new IllegalAccessException("no private access for invokespecial : " + refc + ", from" + this); } // This is a private method, so there's nothing special to do. MethodType handleType = type.insertParameterTypes(0, refc); return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType); } // This is a public, protected or package-private method, which means we're expecting // invoke-super semantics. We'll have to restrict the receiver type appropriately on the // handle once we check that there really is a "super" relationship between them. if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) { throw new IllegalAccessException(refc + "is not assignable from " + specialCaller); } // Note that we restrict the receiver to "specialCaller" instances. MethodType handleType = type.insertParameterTypes(0, specialCaller); return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType); } /** * Produces a method handle giving read access to a non-static field. * The type of the method handle will have a return type of the field's * value type. * The method handle's single argument will be the instance containing * the field. * Access checking is performed immediately on behalf of the lookup class. * @param refc the class or interface from which the method is accessed * @param name the field's name * @param type the field's type * @return a method handle which can load values from the field * @throws NoSuchFieldException if the field does not exist * @throws IllegalAccessException if access checking fails, or if the field is {@code static} * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { return findAccessor(refc, name, type, MethodHandle.IGET); } private MethodHandle findAccessor(Class refc, String name, Class type, int kind) throws NoSuchFieldException, IllegalAccessException { final Field field = findFieldOfType(refc, name, type); return findAccessor(field, refc, type, kind, true /* performAccessChecks */); } private MethodHandle findAccessor(Field field, Class refc, Class type, int kind, boolean performAccessChecks) throws IllegalAccessException { final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT; final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT; commonFieldChecks(field, refc, type, isStaticKind, performAccessChecks); if (performAccessChecks) { final int modifiers = field.getModifiers(); if (isSetterKind && Modifier.isFinal(modifiers)) { throw new IllegalAccessException("Field " + field + " is final"); } } final MethodType methodType; switch (kind) { case MethodHandle.SGET: methodType = MethodType.methodType(type); break; case MethodHandle.SPUT: methodType = MethodType.methodType(void.class, type); break; case MethodHandle.IGET: methodType = MethodType.methodType(type, refc); break; case MethodHandle.IPUT: methodType = MethodType.methodType(void.class, refc, type); break; default: throw new IllegalArgumentException("Invalid kind " + kind); } return new MethodHandleImpl(field.getArtField(), kind, methodType); } /** * Produces a method handle giving write access to a non-static field. * The type of the method handle will have a void return type. * The method handle will take two arguments, the instance containing * the field, and the value to be stored. * The second argument will be of the field's value type. * Access checking is performed immediately on behalf of the lookup class. * @param refc the class or interface from which the method is accessed * @param name the field's name * @param type the field's type * @return a method handle which can store values into the field * @throws NoSuchFieldException if the field does not exist * @throws IllegalAccessException if access checking fails, or if the field is {@code static} * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { return findAccessor(refc, name, type, MethodHandle.IPUT); } // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. /** * Produces a VarHandle giving access to a non-static field {@code name} * of type {@code type} declared in a class of type {@code recv}. * The VarHandle's variable type is {@code type} and it has one * coordinate type, {@code recv}. *

* Access checking is performed immediately on behalf of the lookup * class. *

* Certain access modes of the returned VarHandle are unsupported under * the following conditions: *

    *
  • if the field is declared {@code final}, then the write, atomic * update, numeric atomic update, and bitwise atomic update access * modes are unsupported. *
  • if the field type is anything other than {@code byte}, * {@code short}, {@code char}, {@code int}, {@code long}, * {@code float}, or {@code double} then numeric atomic update * access modes are unsupported. *
  • if the field type is anything other than {@code boolean}, * {@code byte}, {@code short}, {@code char}, {@code int} or * {@code long} then bitwise atomic update access modes are * unsupported. *
*

* If the field is declared {@code volatile} then the returned VarHandle * will override access to the field (effectively ignore the * {@code volatile} declaration) in accordance to its specified * access modes. *

* If the field type is {@code float} or {@code double} then numeric * and atomic update access modes compare values using their bitwise * representation (see {@link Float#floatToRawIntBits} and * {@link Double#doubleToRawLongBits}, respectively). * @apiNote * Bitwise comparison of {@code float} values or {@code double} values, * as performed by the numeric and atomic update access modes, differ * from the primitive {@code ==} operator and the {@link Float#equals} * and {@link Double#equals} methods, specifically with respect to * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. * Care should be taken when performing a compare and set or a compare * and exchange operation with such values since the operation may * unexpectedly fail. * There are many possible NaN values that are considered to be * {@code NaN} in Java, although no IEEE 754 floating-point operation * provided by Java can distinguish between them. Operation failure can * occur if the expected or witness value is a NaN value and it is * transformed (perhaps in a platform specific manner) into another NaN * value, and thus has a different bitwise representation (see * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more * details). * The values {@code -0.0} and {@code +0.0} have different bitwise * representations but are considered equal when using the primitive * {@code ==} operator. Operation failure can occur if, for example, a * numeric algorithm computes an expected value to be say {@code -0.0} * and previously computed the witness value to be say {@code +0.0}. * @param recv the receiver class, of type {@code R}, that declares the * non-static field * @param name the field's name * @param type the field's type, of type {@code T} * @return a VarHandle giving access to non-static fields. * @throws NoSuchFieldException if the field does not exist * @throws IllegalAccessException if access checking fails, or if the field is {@code static} * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null * @since 9 * @hide */ public VarHandle findVarHandle(Class recv, String name, Class type) throws NoSuchFieldException, IllegalAccessException { final Field field = findFieldOfType(recv, name, type); final boolean isStatic = false; final boolean performAccessChecks = true; commonFieldChecks(field, recv, type, isStatic, performAccessChecks); return FieldVarHandle.create(field); } // END Android-changed: OpenJDK 9+181 VarHandle API factory method. // BEGIN Android-added: Common field resolution and access check methods. private Field findFieldOfType(final Class refc, String name, Class type) throws NoSuchFieldException { Field field = null; // Search refc and super classes for the field. for (Class cls = refc; cls != null; cls = cls.getSuperclass()) { try { field = cls.getDeclaredField(name); break; } catch (NoSuchFieldException e) { } } if (field == null) { // Force failure citing refc. field = refc.getDeclaredField(name); } final Class fieldType = field.getType(); if (fieldType != type) { throw new NoSuchFieldException(name); } return field; } private void commonFieldChecks(Field field, Class refc, Class type, boolean isStatic, boolean performAccessChecks) throws IllegalAccessException { final int modifiers = field.getModifiers(); if (performAccessChecks) { checkAccess(refc, field.getDeclaringClass(), modifiers, field.getName()); } if (Modifier.isStatic(modifiers) != isStatic) { String reason = "Field " + field + " is " + (isStatic ? "not " : "") + "static"; throw new IllegalAccessException(reason); } } // END Android-added: Common field resolution and access check methods. /** * Produces a method handle giving read access to a static field. * The type of the method handle will have a return type of the field's * value type. * The method handle will take no arguments. * Access checking is performed immediately on behalf of the lookup class. *

* If the returned method handle is invoked, the field's class will * be initialized, if it has not already been initialized. * @param refc the class or interface from which the method is accessed * @param name the field's name * @param type the field's type * @return a method handle which can load values from the field * @throws NoSuchFieldException if the field does not exist * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findStaticGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { return findAccessor(refc, name, type, MethodHandle.SGET); } /** * Produces a method handle giving write access to a static field. * The type of the method handle will have a void return type. * The method handle will take a single * argument, of the field's value type, the value to be stored. * Access checking is performed immediately on behalf of the lookup class. *

* If the returned method handle is invoked, the field's class will * be initialized, if it has not already been initialized. * @param refc the class or interface from which the method is accessed * @param name the field's name * @param type the field's type * @return a method handle which can store values into the field * @throws NoSuchFieldException if the field does not exist * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null */ public MethodHandle findStaticSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { return findAccessor(refc, name, type, MethodHandle.SPUT); } // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. /** * Produces a VarHandle giving access to a static field {@code name} of * type {@code type} declared in a class of type {@code decl}. * The VarHandle's variable type is {@code type} and it has no * coordinate types. *

* Access checking is performed immediately on behalf of the lookup * class. *

* If the returned VarHandle is operated on, the declaring class will be * initialized, if it has not already been initialized. *

* Certain access modes of the returned VarHandle are unsupported under * the following conditions: *

    *
  • if the field is declared {@code final}, then the write, atomic * update, numeric atomic update, and bitwise atomic update access * modes are unsupported. *
  • if the field type is anything other than {@code byte}, * {@code short}, {@code char}, {@code int}, {@code long}, * {@code float}, or {@code double}, then numeric atomic update * access modes are unsupported. *
  • if the field type is anything other than {@code boolean}, * {@code byte}, {@code short}, {@code char}, {@code int} or * {@code long} then bitwise atomic update access modes are * unsupported. *
*

* If the field is declared {@code volatile} then the returned VarHandle * will override access to the field (effectively ignore the * {@code volatile} declaration) in accordance to its specified * access modes. *

* If the field type is {@code float} or {@code double} then numeric * and atomic update access modes compare values using their bitwise * representation (see {@link Float#floatToRawIntBits} and * {@link Double#doubleToRawLongBits}, respectively). * @apiNote * Bitwise comparison of {@code float} values or {@code double} values, * as performed by the numeric and atomic update access modes, differ * from the primitive {@code ==} operator and the {@link Float#equals} * and {@link Double#equals} methods, specifically with respect to * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. * Care should be taken when performing a compare and set or a compare * and exchange operation with such values since the operation may * unexpectedly fail. * There are many possible NaN values that are considered to be * {@code NaN} in Java, although no IEEE 754 floating-point operation * provided by Java can distinguish between them. Operation failure can * occur if the expected or witness value is a NaN value and it is * transformed (perhaps in a platform specific manner) into another NaN * value, and thus has a different bitwise representation (see * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more * details). * The values {@code -0.0} and {@code +0.0} have different bitwise * representations but are considered equal when using the primitive * {@code ==} operator. Operation failure can occur if, for example, a * numeric algorithm computes an expected value to be say {@code -0.0} * and previously computed the witness value to be say {@code +0.0}. * @param decl the class that declares the static field * @param name the field's name * @param type the field's type, of type {@code T} * @return a VarHandle giving access to a static field * @throws NoSuchFieldException if the field does not exist * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null * @since 9 * @hide */ public VarHandle findStaticVarHandle(Class decl, String name, Class type) throws NoSuchFieldException, IllegalAccessException { final Field field = findFieldOfType(decl, name, type); final boolean isStatic = true; final boolean performAccessChecks = true; commonFieldChecks(field, decl, type, isStatic, performAccessChecks); return FieldVarHandle.create(field); } // END Android-changed: OpenJDK 9+181 VarHandle API factory method. /** * Produces an early-bound method handle for a non-static method. * The receiver must have a supertype {@code defc} in which a method * of the given name and type is accessible to the lookup class. * The method and all its argument types must be accessible to the lookup object. * The type of the method handle will be that of the method, * without any insertion of an additional receiver parameter. * The given receiver will be bound into the method handle, * so that every call to the method handle will invoke the * requested method on the given receiver. *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the method's variable arity modifier bit ({@code 0x0080}) is set * and the trailing array argument is not the only argument. * (If the trailing array argument is the only argument, * the given receiver value will be bound to it.) *

* This is equivalent to the following code: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle mh0 = lookup().findVirtual(defc, name, type);
MethodHandle mh1 = mh0.bindTo(receiver);
MethodType mt1 = mh1.type();
if (mh0.isVarargsCollector())
  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
return mh1;
         * }
* where {@code defc} is either {@code receiver.getClass()} or a super * type of that class, in which the requested method is accessible * to the lookup class. * (Note that {@code bindTo} does not preserve variable arity.) * @param receiver the object from which the method is accessed * @param name the name of the method * @param type the type of the method, with the receiver argument omitted * @return the desired method handle * @throws NoSuchMethodException if the method does not exist * @throws IllegalAccessException if access checking fails * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @exception SecurityException if a security manager is present and it * refuses access * @throws NullPointerException if any argument is null * @see MethodHandle#bindTo * @see #findVirtual */ public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { MethodHandle handle = findVirtual(receiver.getClass(), name, type); MethodHandle adapter = handle.bindTo(receiver); MethodType adapterType = adapter.type(); if (handle.isVarargsCollector()) { adapter = adapter.asVarargsCollector( adapterType.parameterType(adapterType.parameterCount() - 1)); } return adapter; } /** * Makes a direct method handle * to m, if the lookup class has permission. * If m is non-static, the receiver argument is treated as an initial argument. * If m is virtual, overriding is respected on every call. * Unlike the Core Reflection API, exceptions are not wrapped. * The type of the method handle will be that of the method, * with the receiver type prepended (but only if it is non-static). * If the method's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. * If m is not public, do not share the resulting handle with untrusted parties. *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the method's variable arity modifier bit ({@code 0x0080}) is set. *

* If m is static, and * if the returned method handle is invoked, the method's class will * be initialized, if it has not already been initialized. * @param m the reflected method * @return a method handle which can invoke the reflected method * @throws IllegalAccessException if access checking fails * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @throws NullPointerException if the argument is null */ public MethodHandle unreflect(Method m) throws IllegalAccessException { if (m == null) { throw new NullPointerException("m == null"); } MethodType methodType = MethodType.methodType(m.getReturnType(), m.getParameterTypes()); // We should only perform access checks if setAccessible hasn't been called yet. if (!m.isAccessible()) { checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(), m.getName()); } if (Modifier.isStatic(m.getModifiers())) { return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType); } else { methodType = methodType.insertParameterTypes(0, m.getDeclaringClass()); return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType); } } /** * Produces a method handle for a reflected method. * It will bypass checks for overriding methods on the receiver, * as if called from an {@code invokespecial} * instruction from within the explicitly specified {@code specialCaller}. * The type of the method handle will be that of the method, * with a suitably restricted receiver type prepended. * (The receiver type will be {@code specialCaller} or a subtype.) * If the method's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class, * as if {@code invokespecial} instruction were being linked. *

* Before method resolution, * if the explicitly specified caller class is not identical with the * lookup class, or if this lookup object does not have * private access * privileges, the access fails. *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the method's variable arity modifier bit ({@code 0x0080}) is set. * @param m the reflected method * @param specialCaller the class nominally calling the method * @return a method handle which can invoke the reflected method * @throws IllegalAccessException if access checking fails * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @throws NullPointerException if any argument is null */ public MethodHandle unreflectSpecial(Method m, Class specialCaller) throws IllegalAccessException { if (m == null) { throw new NullPointerException("m == null"); } if (specialCaller == null) { throw new NullPointerException("specialCaller == null"); } if (!m.isAccessible()) { // Android-changed: Match Java language 9 behavior where unreflectSpecial continues // to require exact caller lookupClass match. checkSpecialCaller(specialCaller, null); } final MethodType methodType = MethodType.methodType(m.getReturnType(), m.getParameterTypes()); return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller); } /** * Produces a method handle for a reflected constructor. * The type of the method handle will be that of the constructor, * with the return type changed to the declaring class. * The method handle will perform a {@code newInstance} operation, * creating a new instance of the constructor's class on the * arguments passed to the method handle. *

* If the constructor's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. *

* The returned method handle will have * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if * the constructor's variable arity modifier bit ({@code 0x0080}) is set. *

* If the returned method handle is invoked, the constructor's class will * be initialized, if it has not already been initialized. * @param c the reflected constructor * @return a method handle which can invoke the reflected constructor * @throws IllegalAccessException if access checking fails * or if the method's variable arity modifier bit * is set and {@code asVarargsCollector} fails * @throws NullPointerException if the argument is null */ public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException { if (c == null) { throw new NullPointerException("c == null"); } if (!c.isAccessible()) { checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(), c.getName()); } return createMethodHandleForConstructor(c); } /** * Produces a method handle giving read access to a reflected field. * The type of the method handle will have a return type of the field's * value type. * If the field is static, the method handle will take no arguments. * Otherwise, its single argument will be the instance containing * the field. * If the field's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. *

* If the field is static, and * if the returned method handle is invoked, the field's class will * be initialized, if it has not already been initialized. * @param f the reflected field * @return a method handle which can load values from the reflected field * @throws IllegalAccessException if access checking fails * @throws NullPointerException if the argument is null */ public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { return findAccessor(f, f.getDeclaringClass(), f.getType(), Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET, !f.isAccessible() /* performAccessChecks */); } /** * Produces a method handle giving write access to a reflected field. * The type of the method handle will have a void return type. * If the field is static, the method handle will take a single * argument, of the field's value type, the value to be stored. * Otherwise, the two arguments will be the instance containing * the field, and the value to be stored. * If the field's {@code accessible} flag is not set, * access checking is performed immediately on behalf of the lookup class. *

* If the field is static, and * if the returned method handle is invoked, the field's class will * be initialized, if it has not already been initialized. * @param f the reflected field * @return a method handle which can store values into the reflected field * @throws IllegalAccessException if access checking fails * @throws NullPointerException if the argument is null */ public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { return findAccessor(f, f.getDeclaringClass(), f.getType(), Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT, !f.isAccessible() /* performAccessChecks */); } // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. /** * Produces a VarHandle giving access to a reflected field {@code f} * of type {@code T} declared in a class of type {@code R}. * The VarHandle's variable type is {@code T}. * If the field is non-static the VarHandle has one coordinate type, * {@code R}. Otherwise, the field is static, and the VarHandle has no * coordinate types. *

* Access checking is performed immediately on behalf of the lookup * class, regardless of the value of the field's {@code accessible} * flag. *

* If the field is static, and if the returned VarHandle is operated * on, the field's declaring class will be initialized, if it has not * already been initialized. *

* Certain access modes of the returned VarHandle are unsupported under * the following conditions: *

    *
  • if the field is declared {@code final}, then the write, atomic * update, numeric atomic update, and bitwise atomic update access * modes are unsupported. *
  • if the field type is anything other than {@code byte}, * {@code short}, {@code char}, {@code int}, {@code long}, * {@code float}, or {@code double} then numeric atomic update * access modes are unsupported. *
  • if the field type is anything other than {@code boolean}, * {@code byte}, {@code short}, {@code char}, {@code int} or * {@code long} then bitwise atomic update access modes are * unsupported. *
*

* If the field is declared {@code volatile} then the returned VarHandle * will override access to the field (effectively ignore the * {@code volatile} declaration) in accordance to its specified * access modes. *

* If the field type is {@code float} or {@code double} then numeric * and atomic update access modes compare values using their bitwise * representation (see {@link Float#floatToRawIntBits} and * {@link Double#doubleToRawLongBits}, respectively). * @apiNote * Bitwise comparison of {@code float} values or {@code double} values, * as performed by the numeric and atomic update access modes, differ * from the primitive {@code ==} operator and the {@link Float#equals} * and {@link Double#equals} methods, specifically with respect to * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. * Care should be taken when performing a compare and set or a compare * and exchange operation with such values since the operation may * unexpectedly fail. * There are many possible NaN values that are considered to be * {@code NaN} in Java, although no IEEE 754 floating-point operation * provided by Java can distinguish between them. Operation failure can * occur if the expected or witness value is a NaN value and it is * transformed (perhaps in a platform specific manner) into another NaN * value, and thus has a different bitwise representation (see * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more * details). * The values {@code -0.0} and {@code +0.0} have different bitwise * representations but are considered equal when using the primitive * {@code ==} operator. Operation failure can occur if, for example, a * numeric algorithm computes an expected value to be say {@code -0.0} * and previously computed the witness value to be say {@code +0.0}. * @param f the reflected field, with a field of type {@code T}, and * a declaring class of type {@code R} * @return a VarHandle giving access to non-static fields or a static * field * @throws IllegalAccessException if access checking fails * @throws NullPointerException if the argument is null * @since 9 * @hide */ public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { final boolean isStatic = Modifier.isStatic(f.getModifiers()); final boolean performAccessChecks = true; commonFieldChecks(f, f.getDeclaringClass(), f.getType(), isStatic, performAccessChecks); return FieldVarHandle.create(f); } // END Android-changed: OpenJDK 9+181 VarHandle API factory method. /** * Cracks a direct method handle * created by this lookup object or a similar one. * Security and access checks are performed to ensure that this lookup object * is capable of reproducing the target method handle. * This means that the cracking may fail if target is a direct method handle * but was created by an unrelated lookup object. * This can happen if the method handle is caller sensitive * and was created by a lookup object for a different class. * @param target a direct method handle to crack into symbolic reference components * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object * @exception SecurityException if a security manager is present and it * refuses access * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails * @exception NullPointerException if the target is {@code null} * @see MethodHandleInfo * @since 1.8 */ public MethodHandleInfo revealDirect(MethodHandle target) { MethodHandleImpl directTarget = getMethodHandleImpl(target); MethodHandleInfo info = directTarget.reveal(); try { checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(), info.getName()); } catch (IllegalAccessException exception) { throw new IllegalArgumentException("Unable to access memeber.", exception); } return info; } private boolean hasPrivateAccess() { return (allowedModes & PRIVATE) != 0; } /** Check public/protected/private bits on the symbolic reference class and its member. */ void checkAccess(Class refc, Class defc, int mods, String methName) throws IllegalAccessException { int allowedModes = this.allowedModes; if (Modifier.isProtected(mods) && defc == Object.class && "clone".equals(methName) && refc.isArray()) { // The JVM does this hack also. // (See ClassVerifier::verify_invoke_instructions // and LinkResolver::check_method_accessability.) // Because the JVM does not allow separate methods on array types, // there is no separate method for int[].clone. // All arrays simply inherit Object.clone. // But for access checking logic, we make Object.clone // (normally protected) appear to be public. // Later on, when the DirectMethodHandle is created, // its leading argument will be restricted to the // requested array type. // N.B. The return type is not adjusted, because // that is *not* the bytecode behavior. mods ^= Modifier.PROTECTED | Modifier.PUBLIC; } if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) { // cannot "new" a protected ctor in a different package mods ^= Modifier.PROTECTED; } if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0) return; // common case int requestedModes = fixmods(mods); // adjust 0 => PACKAGE if ((requestedModes & allowedModes) != 0) { if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes)) return; } else { // Protected members can also be checked as if they were package-private. if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 && VerifyAccess.isSamePackage(defc, lookupClass())) return; } throwMakeAccessException(accessFailedMessage(refc, defc, mods), this); } String accessFailedMessage(Class refc, Class defc, int mods) { // check the class first: boolean classOK = (Modifier.isPublic(defc.getModifiers()) && (defc == refc || Modifier.isPublic(refc.getModifiers()))); if (!classOK && (allowedModes & PACKAGE) != 0) { classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) && (defc == refc || VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES))); } if (!classOK) return "class is not public"; if (Modifier.isPublic(mods)) return "access to public member failed"; // (how?) if (Modifier.isPrivate(mods)) return "member is private"; if (Modifier.isProtected(mods)) return "member is protected"; return "member is private to package"; } // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false, // as in upstream OpenJDK. // // private static final boolean ALLOW_NESTMATE_ACCESS = false; // Android-changed: Match java language 9 behavior allowing special access if the reflected // class (called 'refc', the class from which the method is being accessed) is an interface // and is implemented by the caller. private void checkSpecialCaller(Class specialCaller, Class refc) throws IllegalAccessException { // Android-changed: No support for TRUSTED lookups. Also construct the // IllegalAccessException by hand because the upstream code implicitly assumes // that the lookupClass == specialCaller. // // if (allowedModes == TRUSTED) return; boolean isInterfaceLookup = (refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller)); if (!hasPrivateAccess() || (specialCaller != lookupClass() && !isInterfaceLookup)) { throw new IllegalAccessException("no private access for invokespecial : " + specialCaller + ", from" + this); } } private void throwMakeAccessException(String message, Object from) throws IllegalAccessException{ message = message + ": "+ toString(); if (from != null) message += ", from " + from; throw new IllegalAccessException(message); } private void checkReturnType(Method method, MethodType methodType) throws NoSuchMethodException { if (method.getReturnType() != methodType.rtype()) { throw new NoSuchMethodException(method.getName() + methodType); } } } /** * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}. */ private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) { // Special case : We implement handles to constructors as transformers, // so we must extract the underlying handle from the transformer. if (target instanceof Transformers.Construct) { target = ((Transformers.Construct) target).getConstructorHandle(); } // Special case: Var-args methods are also implemented as Transformers, // so we should get the underlying handle in that case as well. if (target instanceof Transformers.VarargsCollector) { target = target.asFixedArity(); } if (target instanceof MethodHandleImpl) { return (MethodHandleImpl) target; } throw new IllegalArgumentException(target + " is not a direct handle"); } // BEGIN Android-added: method to check if a class is an array. private static void checkClassIsArray(Class c) { if (!c.isArray()) { throw new IllegalArgumentException("Not an array type: " + c); } } private static void checkTypeIsViewable(Class componentType) { if (componentType == short.class || componentType == char.class || componentType == int.class || componentType == long.class || componentType == float.class || componentType == double.class) { return; } throw new UnsupportedOperationException("Component type not supported: " + componentType); } // END Android-added: method to check if a class is an array. /** * Produces a method handle giving read access to elements of an array. * The type of the method handle will have a return type of the array's * element type. Its first argument will be the array type, * and the second will be {@code int}. * @param arrayClass an array type * @return a method handle which can load values from the given array type * @throws NullPointerException if the argument is null * @throws IllegalArgumentException if arrayClass is not an array type */ public static MethodHandle arrayElementGetter(Class arrayClass) throws IllegalArgumentException { checkClassIsArray(arrayClass); final Class componentType = arrayClass.getComponentType(); if (componentType.isPrimitive()) { try { return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "arrayElementGetter", MethodType.methodType(componentType, arrayClass, int.class)); } catch (NoSuchMethodException | IllegalAccessException exception) { throw new AssertionError(exception); } } return new Transformers.ReferenceArrayElementGetter(arrayClass); } /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; } /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; } /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; } /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; } /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; } /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; } /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; } /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; } /** * Produces a method handle giving write access to elements of an array. * The type of the method handle will have a void return type. * Its last argument will be the array's element type. * The first and second arguments will be the array type and int. * @param arrayClass the class of an array * @return a method handle which can store values into the array type * @throws NullPointerException if the argument is null * @throws IllegalArgumentException if arrayClass is not an array type */ public static MethodHandle arrayElementSetter(Class arrayClass) throws IllegalArgumentException { checkClassIsArray(arrayClass); final Class componentType = arrayClass.getComponentType(); if (componentType.isPrimitive()) { try { return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "arrayElementSetter", MethodType.methodType(void.class, arrayClass, int.class, componentType)); } catch (NoSuchMethodException | IllegalAccessException exception) { throw new AssertionError(exception); } } return new Transformers.ReferenceArrayElementSetter(arrayClass); } /** @hide */ public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; } /** @hide */ public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; } /** @hide */ public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; } /** @hide */ public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; } /** @hide */ public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; } /** @hide */ public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; } /** @hide */ public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; } /** @hide */ public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; } // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory methods. /** * Produces a VarHandle giving access to elements of an array of type * {@code arrayClass}. The VarHandle's variable type is the component type * of {@code arrayClass} and the list of coordinate types is * {@code (arrayClass, int)}, where the {@code int} coordinate type * corresponds to an argument that is an index into an array. *

* Certain access modes of the returned VarHandle are unsupported under * the following conditions: *

    *
  • if the component type is anything other than {@code byte}, * {@code short}, {@code char}, {@code int}, {@code long}, * {@code float}, or {@code double} then numeric atomic update access * modes are unsupported. *
  • if the field type is anything other than {@code boolean}, * {@code byte}, {@code short}, {@code char}, {@code int} or * {@code long} then bitwise atomic update access modes are * unsupported. *
*

* If the component type is {@code float} or {@code double} then numeric * and atomic update access modes compare values using their bitwise * representation (see {@link Float#floatToRawIntBits} and * {@link Double#doubleToRawLongBits}, respectively). * @apiNote * Bitwise comparison of {@code float} values or {@code double} values, * as performed by the numeric and atomic update access modes, differ * from the primitive {@code ==} operator and the {@link Float#equals} * and {@link Double#equals} methods, specifically with respect to * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. * Care should be taken when performing a compare and set or a compare * and exchange operation with such values since the operation may * unexpectedly fail. * There are many possible NaN values that are considered to be * {@code NaN} in Java, although no IEEE 754 floating-point operation * provided by Java can distinguish between them. Operation failure can * occur if the expected or witness value is a NaN value and it is * transformed (perhaps in a platform specific manner) into another NaN * value, and thus has a different bitwise representation (see * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more * details). * The values {@code -0.0} and {@code +0.0} have different bitwise * representations but are considered equal when using the primitive * {@code ==} operator. Operation failure can occur if, for example, a * numeric algorithm computes an expected value to be say {@code -0.0} * and previously computed the witness value to be say {@code +0.0}. * @param arrayClass the class of an array, of type {@code T[]} * @return a VarHandle giving access to elements of an array * @throws NullPointerException if the arrayClass is null * @throws IllegalArgumentException if arrayClass is not an array type * @since 9 * @hide */ public static VarHandle arrayElementVarHandle(Class arrayClass) throws IllegalArgumentException { checkClassIsArray(arrayClass); return ArrayElementVarHandle.create(arrayClass); } /** * Produces a VarHandle giving access to elements of a {@code byte[]} array * viewed as if it were a different primitive array type, such as * {@code int[]} or {@code long[]}. * The VarHandle's variable type is the component type of * {@code viewArrayClass} and the list of coordinate types is * {@code (byte[], int)}, where the {@code int} coordinate type * corresponds to an argument that is an index into a {@code byte[]} array. * The returned VarHandle accesses bytes at an index in a {@code byte[]} * array, composing bytes to or from a value of the component type of * {@code viewArrayClass} according to the given endianness. *

* The supported component types (variables types) are {@code short}, * {@code char}, {@code int}, {@code long}, {@code float} and * {@code double}. *

* Access of bytes at a given index will result in an * {@code IndexOutOfBoundsException} if the index is less than {@code 0} * or greater than the {@code byte[]} array length minus the size (in bytes) * of {@code T}. *

* Access of bytes at an index may be aligned or misaligned for {@code T}, * with respect to the underlying memory address, {@code A} say, associated * with the array and index. * If access is misaligned then access for anything other than the * {@code get} and {@code set} access modes will result in an * {@code IllegalStateException}. In such cases atomic access is only * guaranteed with respect to the largest power of two that divides the GCD * of {@code A} and the size (in bytes) of {@code T}. * If access is aligned then following access modes are supported and are * guaranteed to support atomic access: *

    *
  • read write access modes for all {@code T}, with the exception of * access modes {@code get} and {@code set} for {@code long} and * {@code double} on 32-bit platforms. *
  • atomic update access modes for {@code int}, {@code long}, * {@code float} or {@code double}. * (Future major platform releases of the JDK may support additional * types for certain currently unsupported access modes.) *
  • numeric atomic update access modes for {@code int} and {@code long}. * (Future major platform releases of the JDK may support additional * numeric types for certain currently unsupported access modes.) *
  • bitwise atomic update access modes for {@code int} and {@code long}. * (Future major platform releases of the JDK may support additional * numeric types for certain currently unsupported access modes.) *
*

* Misaligned access, and therefore atomicity guarantees, may be determined * for {@code byte[]} arrays without operating on a specific array. Given * an {@code index}, {@code T} and it's corresponding boxed type, * {@code T_BOX}, misalignment may be determined as follows: *

{@code
     * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
     * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
     *     alignmentOffset(0, sizeOfT);
     * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
     * boolean isMisaligned = misalignedAtIndex != 0;
     * }
*

* If the variable type is {@code float} or {@code double} then atomic * update access modes compare values using their bitwise representation * (see {@link Float#floatToRawIntBits} and * {@link Double#doubleToRawLongBits}, respectively). * @param viewArrayClass the view array class, with a component type of * type {@code T} * @param byteOrder the endianness of the view array elements, as * stored in the underlying {@code byte} array * @return a VarHandle giving access to elements of a {@code byte[]} array * viewed as if elements corresponding to the components type of the view * array class * @throws NullPointerException if viewArrayClass or byteOrder is null * @throws IllegalArgumentException if viewArrayClass is not an array type * @throws UnsupportedOperationException if the component type of * viewArrayClass is not supported as a variable type * @since 9 * @hide */ public static VarHandle byteArrayViewVarHandle(Class viewArrayClass, ByteOrder byteOrder) throws IllegalArgumentException { checkClassIsArray(viewArrayClass); checkTypeIsViewable(viewArrayClass.getComponentType()); return ByteArrayViewVarHandle.create(viewArrayClass, byteOrder); } /** * Produces a VarHandle giving access to elements of a {@code ByteBuffer} * viewed as if it were an array of elements of a different primitive * component type to that of {@code byte}, such as {@code int[]} or * {@code long[]}. * The VarHandle's variable type is the component type of * {@code viewArrayClass} and the list of coordinate types is * {@code (ByteBuffer, int)}, where the {@code int} coordinate type * corresponds to an argument that is an index into a {@code byte[]} array. * The returned VarHandle accesses bytes at an index in a * {@code ByteBuffer}, composing bytes to or from a value of the component * type of {@code viewArrayClass} according to the given endianness. *

* The supported component types (variables types) are {@code short}, * {@code char}, {@code int}, {@code long}, {@code float} and * {@code double}. *

* Access will result in a {@code ReadOnlyBufferException} for anything * other than the read access modes if the {@code ByteBuffer} is read-only. *

* Access of bytes at a given index will result in an * {@code IndexOutOfBoundsException} if the index is less than {@code 0} * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of * {@code T}. *

* Access of bytes at an index may be aligned or misaligned for {@code T}, * with respect to the underlying memory address, {@code A} say, associated * with the {@code ByteBuffer} and index. * If access is misaligned then access for anything other than the * {@code get} and {@code set} access modes will result in an * {@code IllegalStateException}. In such cases atomic access is only * guaranteed with respect to the largest power of two that divides the GCD * of {@code A} and the size (in bytes) of {@code T}. * If access is aligned then following access modes are supported and are * guaranteed to support atomic access: *

    *
  • read write access modes for all {@code T}, with the exception of * access modes {@code get} and {@code set} for {@code long} and * {@code double} on 32-bit platforms. *
  • atomic update access modes for {@code int}, {@code long}, * {@code float} or {@code double}. * (Future major platform releases of the JDK may support additional * types for certain currently unsupported access modes.) *
  • numeric atomic update access modes for {@code int} and {@code long}. * (Future major platform releases of the JDK may support additional * numeric types for certain currently unsupported access modes.) *
  • bitwise atomic update access modes for {@code int} and {@code long}. * (Future major platform releases of the JDK may support additional * numeric types for certain currently unsupported access modes.) *
*

* Misaligned access, and therefore atomicity guarantees, may be determined * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an * {@code index}, {@code T} and it's corresponding boxed type, * {@code T_BOX}, as follows: *

{@code
     * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
     * ByteBuffer bb = ...
     * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
     * boolean isMisaligned = misalignedAtIndex != 0;
     * }
*

* If the variable type is {@code float} or {@code double} then atomic * update access modes compare values using their bitwise representation * (see {@link Float#floatToRawIntBits} and * {@link Double#doubleToRawLongBits}, respectively). * @param viewArrayClass the view array class, with a component type of * type {@code T} * @param byteOrder the endianness of the view array elements, as * stored in the underlying {@code ByteBuffer} (Note this overrides the * endianness of a {@code ByteBuffer}) * @return a VarHandle giving access to elements of a {@code ByteBuffer} * viewed as if elements corresponding to the components type of the view * array class * @throws NullPointerException if viewArrayClass or byteOrder is null * @throws IllegalArgumentException if viewArrayClass is not an array type * @throws UnsupportedOperationException if the component type of * viewArrayClass is not supported as a variable type * @since 9 * @hide */ public static VarHandle byteBufferViewVarHandle(Class viewArrayClass, ByteOrder byteOrder) throws IllegalArgumentException { checkClassIsArray(viewArrayClass); checkTypeIsViewable(viewArrayClass.getComponentType()); return ByteBufferViewVarHandle.create(viewArrayClass, byteOrder); } // END Android-changed: OpenJDK 9+181 VarHandle API factory methods. /// method handle invocation (reflective style) /** * Produces a method handle which will invoke any method handle of the * given {@code type}, with a given number of trailing arguments replaced by * a single trailing {@code Object[]} array. * The resulting invoker will be a method handle with the following * arguments: *

    *
  • a single {@code MethodHandle} target *
  • zero or more leading values (counted by {@code leadingArgCount}) *
  • an {@code Object[]} array containing trailing arguments *
*

* The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with * the indicated {@code type}. * That is, if the target is exactly of the given {@code type}, it will behave * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} * is used to convert the target to the required {@code type}. *

* The type of the returned invoker will not be the given {@code type}, but rather * will have all parameters except the first {@code leadingArgCount} * replaced by a single array of type {@code Object[]}, which will be * the final parameter. *

* Before invoking its target, the invoker will spread the final array, apply * reference casts as necessary, and unbox and widen primitive arguments. * If, when the invoker is called, the supplied array argument does * not have the correct number of elements, the invoker will throw * an {@link IllegalArgumentException} instead of invoking the target. *

* This method is equivalent to the following code (though it may be more efficient): *

{@code
MethodHandle invoker = MethodHandles.invoker(type);
int spreadArgCount = type.parameterCount() - leadingArgCount;
invoker = invoker.asSpreader(Object[].class, spreadArgCount);
return invoker;
     * }
* This method throws no reflective or security exceptions. * @param type the desired target type * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target * @return a method handle suitable for invoking any method handle of the given type * @throws NullPointerException if {@code type} is null * @throws IllegalArgumentException if {@code leadingArgCount} is not in * the range from 0 to {@code type.parameterCount()} inclusive, * or if the resulting method handle's type would have * too many parameters */ static public MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) throw newIllegalArgumentException("bad argument count", leadingArgCount); MethodHandle invoker = MethodHandles.invoker(type); int spreadArgCount = type.parameterCount() - leadingArgCount; invoker = invoker.asSpreader(Object[].class, spreadArgCount); return invoker; } /** * Produces a special invoker method handle which can be used to * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. * The resulting invoker will have a type which is * exactly equal to the desired type, except that it will accept * an additional leading argument of type {@code MethodHandle}. *

* This method is equivalent to the following code (though it may be more efficient): * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} * *

* Discussion: * Invoker method handles can be useful when working with variable method handles * of unknown types. * For example, to emulate an {@code invokeExact} call to a variable method * handle {@code M}, extract its type {@code T}, * look up the invoker method {@code X} for {@code T}, * and call the invoker method, as {@code X.invoke(T, A...)}. * (It would not work to call {@code X.invokeExact}, since the type {@code T} * is unknown.) * If spreading, collecting, or other argument transformations are required, * they can be applied once to the invoker {@code X} and reused on many {@code M} * method handle values, as long as they are compatible with the type of {@code X}. *

* (Note: The invoker method is not available via the Core Reflection API. * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} * on the declared {@code invokeExact} or {@code invoke} method will raise an * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) *

* This method throws no reflective or security exceptions. * @param type the desired target type * @return a method handle suitable for invoking any method handle of the given type * @throws IllegalArgumentException if the resulting method handle's type would have * too many parameters */ static public MethodHandle exactInvoker(MethodType type) { return new Transformers.Invoker(type, true /* isExactInvoker */); } /** * Produces a special invoker method handle which can be used to * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. * The resulting invoker will have a type which is * exactly equal to the desired type, except that it will accept * an additional leading argument of type {@code MethodHandle}. *

* Before invoking its target, if the target differs from the expected type, * the invoker will apply reference casts as * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. * Similarly, the return value will be converted as necessary. * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. *

* This method is equivalent to the following code (though it may be more efficient): * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} *

* Discussion: * A {@linkplain MethodType#genericMethodType general method type} is one which * mentions only {@code Object} arguments and return values. * An invoker for such a type is capable of calling any method handle * of the same arity as the general type. *

* (Note: The invoker method is not available via the Core Reflection API. * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} * on the declared {@code invokeExact} or {@code invoke} method will raise an * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) *

* This method throws no reflective or security exceptions. * @param type the desired target type * @return a method handle suitable for invoking any method handle convertible to the given type * @throws IllegalArgumentException if the resulting method handle's type would have * too many parameters */ static public MethodHandle invoker(MethodType type) { return new Transformers.Invoker(type, false /* isExactInvoker */); } // BEGIN Android-added: resolver for VarHandle accessor methods. static private MethodHandle methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode, MethodType type, boolean isExactInvoker) { Class refc = VarHandle.class; Method method; try { method = refc.getDeclaredMethod(accessMode.methodName(), Object[].class); } catch (NoSuchMethodException e) { throw new InternalError("No method for AccessMode " + accessMode, e); } MethodType methodType = type.insertParameterTypes(0, VarHandle.class); int kind = isExactInvoker ? MethodHandle.INVOKE_VAR_HANDLE_EXACT : MethodHandle.INVOKE_VAR_HANDLE; return new MethodHandleImpl(method.getArtMethod(), kind, methodType); } // END Android-added: resolver for VarHandle accessor methods. /** * Produces a special invoker method handle which can be used to * invoke a signature-polymorphic access mode method on any VarHandle whose * associated access mode type is compatible with the given type. * The resulting invoker will have a type which is exactly equal to the * desired given type, except that it will accept an additional leading * argument of type {@code VarHandle}. * * @param accessMode the VarHandle access mode * @param type the desired target type * @return a method handle suitable for invoking an access mode method of * any VarHandle whose access mode type is of the given type. * @since 9 * @hide */ static public MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { return methodHandleForVarHandleAccessor(accessMode, type, true /* isExactInvoker */); } /** * Produces a special invoker method handle which can be used to * invoke a signature-polymorphic access mode method on any VarHandle whose * associated access mode type is compatible with the given type. * The resulting invoker will have a type which is exactly equal to the * desired given type, except that it will accept an additional leading * argument of type {@code VarHandle}. *

* Before invoking its target, if the access mode type differs from the * desired given type, the invoker will apply reference casts as necessary * and box, unbox, or widen primitive values, as if by * {@link MethodHandle#asType asType}. Similarly, the return value will be * converted as necessary. *

* This method is equivalent to the following code (though it may be more * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} * * @param accessMode the VarHandle access mode * @param type the desired target type * @return a method handle suitable for invoking an access mode method of * any VarHandle whose access mode type is convertible to the given * type. * @since 9 * @hide */ static public MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { return methodHandleForVarHandleAccessor(accessMode, type, false /* isExactInvoker */); } // Android-changed: Basic invokers are not supported. // // static /*non-public*/ // MethodHandle basicInvoker(MethodType type) { // return type.invokers().basicInvoker(); // } /// method handle modification (creation from other method handles) /** * Produces a method handle which adapts the type of the * given method handle to a new type by pairwise argument and return type conversion. * The original type and new type must have the same number of arguments. * The resulting method handle is guaranteed to report a type * which is equal to the desired new type. *

* If the original type and new type are equal, returns target. *

* The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, * and some additional conversions are also applied if those conversions fail. * Given types T0, T1, one of the following conversions is applied * if possible, before or instead of any conversions done by {@code asType}: *

    *
  • If T0 and T1 are references, and T1 is an interface type, * then the value of type T0 is passed as a T1 without a cast. * (This treatment of interfaces follows the usage of the bytecode verifier.) *
  • If T0 is boolean and T1 is another primitive, * the boolean is converted to a byte value, 1 for true, 0 for false. * (This treatment follows the usage of the bytecode verifier.) *
  • If T1 is boolean and T0 is another primitive, * T0 is converted to byte via Java casting conversion (JLS 5.5), * and the low order bit of the result is tested, as if by {@code (x & 1) != 0}. *
  • If T0 and T1 are primitives other than boolean, * then a Java casting conversion (JLS 5.5) is applied. * (Specifically, T0 will convert to T1 by * widening and/or narrowing.) *
  • If T0 is a reference and T1 a primitive, an unboxing * conversion will be applied at runtime, possibly followed * by a Java casting conversion (JLS 5.5) on the primitive value, * possibly followed by a conversion from byte to boolean by testing * the low-order bit. *
  • If T0 is a reference and T1 a primitive, * and if the reference is null at runtime, a zero value is introduced. *
* @param target the method handle to invoke after arguments are retyped * @param newType the expected type of the new method handle * @return a method handle which delegates to the target after performing * any necessary argument conversions, and arranges for any * necessary return value conversions * @throws NullPointerException if either argument is null * @throws WrongMethodTypeException if the conversion cannot be made * @see MethodHandle#asType */ public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { explicitCastArgumentsChecks(target, newType); // use the asTypeCache when possible: MethodType oldType = target.type(); if (oldType == newType) return target; if (oldType.explicitCastEquivalentToAsType(newType)) { if (Transformers.Transformer.class.isAssignableFrom(target.getClass())) { // The StackFrameReader and StackFrameWriter used to perform transforms on // EmulatedStackFrames (in Transformers.java) do not how to perform asType() // conversions, but we know here that an explicit cast transform is the same as // having called asType() on the method handle. return new Transformers.ExplicitCastArguments(target.asFixedArity(), newType); } else { // Runtime will perform asType() conversion during invocation. return target.asFixedArity().asType(newType); } } return new Transformers.ExplicitCastArguments(target, newType); } private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { if (target.type().parameterCount() != newType.parameterCount()) { throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType); } } /** * Produces a method handle which adapts the calling sequence of the * given method handle to a new type, by reordering the arguments. * The resulting method handle is guaranteed to report a type * which is equal to the desired new type. *

* The given array controls the reordering. * Call {@code #I} the number of incoming parameters (the value * {@code newType.parameterCount()}, and call {@code #O} the number * of outgoing parameters (the value {@code target.type().parameterCount()}). * Then the length of the reordering array must be {@code #O}, * and each element must be a non-negative number less than {@code #I}. * For every {@code N} less than {@code #O}, the {@code N}-th * outgoing argument will be taken from the {@code I}-th incoming * argument, where {@code I} is {@code reorder[N]}. *

* No argument or return value conversions are applied. * The type of each incoming argument, as determined by {@code newType}, * must be identical to the type of the corresponding outgoing parameter * or parameters in the target method handle. * The return type of {@code newType} must be identical to the return * type of the original target. *

* The reordering array need not specify an actual permutation. * An incoming argument will be duplicated if its index appears * more than once in the array, and an incoming argument will be dropped * if its index does not appear in the array. * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, * incoming arguments which are not mentioned in the reordering array * are may be any type, as determined only by {@code newType}. *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodType intfn1 = methodType(int.class, int.class);
MethodType intfn2 = methodType(int.class, int.class, int.class);
MethodHandle sub = ... (int x, int y) -> (x-y) ...;
assert(sub.type().equals(intfn2));
MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
assert((int)rsub.invokeExact(1, 100) == 99);
MethodHandle add = ... (int x, int y) -> (x+y) ...;
assert(add.type().equals(intfn2));
MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
assert(twice.type().equals(intfn1));
assert((int)twice.invokeExact(21) == 42);
     * }
* @param target the method handle to invoke after arguments are reordered * @param newType the expected type of the new method handle * @param reorder an index array which controls the reordering * @return a method handle which delegates to the target after it * drops unused arguments and moves and/or duplicates the other arguments * @throws NullPointerException if any argument is null * @throws IllegalArgumentException if the index array length is not equal to * the arity of the target, or if any index array element * not a valid index for a parameter of {@code newType}, * or if two corresponding parameter types in * {@code target.type()} and {@code newType} are not identical, */ public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { reorder = reorder.clone(); // get a private copy MethodType oldType = target.type(); permuteArgumentChecks(reorder, newType, oldType); return new Transformers.PermuteArguments(newType, target, reorder); } // Android-changed: findFirstDupOrDrop is unused and removed. // private static int findFirstDupOrDrop(int[] reorder, int newArity); private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { if (newType.returnType() != oldType.returnType()) throw newIllegalArgumentException("return types do not match", oldType, newType); if (reorder.length == oldType.parameterCount()) { int limit = newType.parameterCount(); boolean bad = false; for (int j = 0; j < reorder.length; j++) { int i = reorder[j]; if (i < 0 || i >= limit) { bad = true; break; } Class src = newType.parameterType(i); Class dst = oldType.parameterType(j); if (src != dst) throw newIllegalArgumentException("parameter types do not match after reorder", oldType, newType); } if (!bad) return true; } throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); } /** * Produces a method handle of the requested return type which returns the given * constant value every time it is invoked. *

* Before the method handle is returned, the passed-in value is converted to the requested type. * If the requested type is primitive, widening primitive conversions are attempted, * else reference conversions are attempted. *

The returned method handle is equivalent to {@code identity(type).bindTo(value)}. * @param type the return type of the desired method handle * @param value the value to return * @return a method handle of the given return type and no arguments, which always returns the given value * @throws NullPointerException if the {@code type} argument is null * @throws ClassCastException if the value cannot be converted to the required return type * @throws IllegalArgumentException if the given type is {@code void.class} */ public static MethodHandle constant(Class type, Object value) { if (type.isPrimitive()) { if (type == void.class) throw newIllegalArgumentException("void type"); Wrapper w = Wrapper.forPrimitiveType(type); value = w.convert(value, type); } return new Transformers.Constant(type, value); } /** * Produces a method handle which returns its sole argument when invoked. * @param type the type of the sole parameter and return value of the desired method handle * @return a unary method handle which accepts and returns the given type * @throws NullPointerException if the argument is null * @throws IllegalArgumentException if the given type is {@code void.class} */ public static MethodHandle identity(Class type) { if (type == null) { throw new NullPointerException("type == null"); } if (type.isPrimitive()) { try { return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity", MethodType.methodType(type, type)); } catch (NoSuchMethodException | IllegalAccessException e) { throw new AssertionError(e); } } return new Transformers.ReferenceIdentity(type); } /** @hide */ public static byte identity(byte val) { return val; } /** @hide */ public static boolean identity(boolean val) { return val; } /** @hide */ public static char identity(char val) { return val; } /** @hide */ public static short identity(short val) { return val; } /** @hide */ public static int identity(int val) { return val; } /** @hide */ public static long identity(long val) { return val; } /** @hide */ public static float identity(float val) { return val; } /** @hide */ public static double identity(double val) { return val; } /** * Provides a target method handle with one or more bound arguments * in advance of the method handle's invocation. * The formal parameters to the target corresponding to the bound * arguments are called bound parameters. * Returns a new method handle which saves away the bound arguments. * When it is invoked, it receives arguments for any non-bound parameters, * binds the saved arguments to their corresponding parameters, * and calls the original target. *

* The type of the new method handle will drop the types for the bound * parameters from the original target type, since the new method handle * will no longer require those arguments to be supplied by its callers. *

* Each given argument object must match the corresponding bound parameter type. * If a bound parameter type is a primitive, the argument object * must be a wrapper, and will be unboxed to produce the primitive value. *

* The {@code pos} argument selects which parameters are to be bound. * It may range between zero and N-L (inclusively), * where N is the arity of the target method handle * and L is the length of the values array. * @param target the method handle to invoke after the argument is inserted * @param pos where to insert the argument (zero for the first) * @param values the series of arguments to insert * @return a method handle which inserts an additional argument, * before calling the original method handle * @throws NullPointerException if the target or the {@code values} array is null * @see MethodHandle#bindTo */ public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { int insCount = values.length; Class[] ptypes = insertArgumentsChecks(target, insCount, pos); if (insCount == 0) { return target; } // Throw ClassCastExceptions early if we can't cast any of the provided values // to the required type. for (int i = 0; i < insCount; i++) { final Class ptype = ptypes[pos + i]; if (!ptype.isPrimitive()) { ptypes[pos + i].cast(values[i]); } else { // Will throw a ClassCastException if something terrible happens. values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype); } } return new Transformers.InsertArguments(target, pos, values); } // Android-changed: insertArgumentPrimitive is unused. // // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, // Class ptype, Object value) { // Wrapper w = Wrapper.forPrimitiveType(ptype); // // perform unboxing and/or primitive conversion // value = w.convert(value, ptype); // switch (w) { // case INT: return result.bindArgumentI(pos, (int)value); // case LONG: return result.bindArgumentJ(pos, (long)value); // case FLOAT: return result.bindArgumentF(pos, (float)value); // case DOUBLE: return result.bindArgumentD(pos, (double)value); // default: return result.bindArgumentI(pos, ValueConversions.widenSubword(value)); // } // } private static Class[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { MethodType oldType = target.type(); int outargs = oldType.parameterCount(); int inargs = outargs - insCount; if (inargs < 0) throw newIllegalArgumentException("too many values to insert"); if (pos < 0 || pos > inargs) throw newIllegalArgumentException("no argument type to append"); return oldType.ptypes(); } /** * Produces a method handle which will discard some dummy arguments * before calling some other specified target method handle. * The type of the new method handle will be the same as the target's type, * except it will also include the dummy argument types, * at some given position. *

* The {@code pos} argument may range between zero and N, * where N is the arity of the target. * If {@code pos} is zero, the dummy arguments will precede * the target's real arguments; if {@code pos} is N * they will come after. *

* Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
assertEquals(bigType, d0.type());
assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
     * }
*

* This method is also equivalent to the following code: *

     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
     * 
* @param target the method handle to invoke after the arguments are dropped * @param valueTypes the type(s) of the argument(s) to drop * @param pos position of first argument to drop (zero for the leftmost) * @return a method handle which drops arguments of the given types, * before calling the original method handle * @throws NullPointerException if the target is null, * or if the {@code valueTypes} list or any of its elements is null * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, * or if {@code pos} is negative or greater than the arity of the target, * or if the new method handle's type would have too many parameters */ public static MethodHandle dropArguments(MethodHandle target, int pos, List> valueTypes) { valueTypes = copyTypes(valueTypes); MethodType oldType = target.type(); // get NPE int dropped = dropArgumentChecks(oldType, pos, valueTypes); MethodType newType = oldType.insertParameterTypes(pos, valueTypes); if (dropped == 0) { return target; } return new Transformers.DropArguments(newType, target, pos, valueTypes.size()); } private static List> copyTypes(List> types) { Object[] a = types.toArray(); return Arrays.asList(Arrays.copyOf(a, a.length, Class[].class)); } private static int dropArgumentChecks(MethodType oldType, int pos, List> valueTypes) { int dropped = valueTypes.size(); MethodType.checkSlotCount(dropped); int outargs = oldType.parameterCount(); int inargs = outargs + dropped; if (pos < 0 || pos > outargs) throw newIllegalArgumentException("no argument type to remove" + Arrays.asList(oldType, pos, valueTypes, inargs, outargs) ); return dropped; } /** * Produces a method handle which will discard some dummy arguments * before calling some other specified target method handle. * The type of the new method handle will be the same as the target's type, * except it will also include the dummy argument types, * at some given position. *

* The {@code pos} argument may range between zero and N, * where N is the arity of the target. * If {@code pos} is zero, the dummy arguments will precede * the target's real arguments; if {@code pos} is N * they will come after. *

* Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle d0 = dropArguments(cat, 0, String.class);
assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
MethodHandle d1 = dropArguments(cat, 1, String.class);
assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
MethodHandle d2 = dropArguments(cat, 2, String.class);
assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
     * }
*

* This method is also equivalent to the following code: *

     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
     * 
* @param target the method handle to invoke after the arguments are dropped * @param valueTypes the type(s) of the argument(s) to drop * @param pos position of first argument to drop (zero for the leftmost) * @return a method handle which drops arguments of the given types, * before calling the original method handle * @throws NullPointerException if the target is null, * or if the {@code valueTypes} array or any of its elements is null * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, * or if {@code pos} is negative or greater than the arity of the target, * or if the new method handle's type would have * too many parameters */ public static MethodHandle dropArguments(MethodHandle target, int pos, Class... valueTypes) { return dropArguments(target, pos, Arrays.asList(valueTypes)); } /** * Adapts a target method handle by pre-processing * one or more of its arguments, each with its own unary filter function, * and then calling the target with each pre-processed argument * replaced by the result of its corresponding filter function. *

* The pre-processing is performed by one or more method handles, * specified in the elements of the {@code filters} array. * The first element of the filter array corresponds to the {@code pos} * argument of the target, and so on in sequence. *

* Null arguments in the array are treated as identity functions, * and the corresponding arguments left unchanged. * (If there are no non-null elements in the array, the original target is returned.) * Each filter is applied to the corresponding argument of the adapter. *

* If a filter {@code F} applies to the {@code N}th argument of * the target, then {@code F} must be a method handle which * takes exactly one argument. The type of {@code F}'s sole argument * replaces the corresponding argument type of the target * in the resulting adapted method handle. * The return type of {@code F} must be identical to the corresponding * parameter type of the target. *

* It is an error if there are elements of {@code filters} * (null or not) * which do not correspond to argument positions in the target. *

Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle upcase = lookup().findVirtual(String.class,
  "toUpperCase", methodType(String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle f0 = filterArguments(cat, 0, upcase);
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
MethodHandle f1 = filterArguments(cat, 1, upcase);
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
     * }
*

Here is pseudocode for the resulting adapter: *

{@code
     * V target(P... p, A[i]... a[i], B... b);
     * A[i] filter[i](V[i]);
     * T adapter(P... p, V[i]... v[i], B... b) {
     *   return target(p..., f[i](v[i])..., b...);
     * }
     * }
* * @param target the method handle to invoke after arguments are filtered * @param pos the position of the first argument to filter * @param filters method handles to call initially on filtered arguments * @return method handle which incorporates the specified argument filtering logic * @throws NullPointerException if the target is null * or if the {@code filters} array is null * @throws IllegalArgumentException if a non-null element of {@code filters} * does not match a corresponding argument type of target as described above, * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, * or if the resulting method handle's type would have * too many parameters */ public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { filterArgumentsCheckArity(target, pos, filters); for (int i = 0; i < filters.length; ++i) { filterArgumentChecks(target, i + pos, filters[i]); } return new Transformers.FilterArguments(target, pos, filters); } private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { MethodType targetType = target.type(); int maxPos = targetType.parameterCount(); if (pos + filters.length > maxPos) throw newIllegalArgumentException("too many filters"); } private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { MethodType targetType = target.type(); MethodType filterType = filter.type(); if (filterType.parameterCount() != 1 || filterType.returnType() != targetType.parameterType(pos)) throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); } /** * Adapts a target method handle by pre-processing * a sub-sequence of its arguments with a filter (another method handle). * The pre-processed arguments are replaced by the result (if any) of the * filter function. * The target is then called on the modified (usually shortened) argument list. *

* If the filter returns a value, the target must accept that value as * its argument in position {@code pos}, preceded and/or followed by * any arguments not passed to the filter. * If the filter returns void, the target must accept all arguments * not passed to the filter. * No arguments are reordered, and a result returned from the filter * replaces (in order) the whole subsequence of arguments originally * passed to the adapter. *

* The argument types (if any) of the filter * replace zero or one argument types of the target, at position {@code pos}, * in the resulting adapted method handle. * The return type of the filter (if any) must be identical to the * argument type of the target at position {@code pos}, and that target argument * is supplied by the return value of the filter. *

* In all cases, {@code pos} must be greater than or equal to zero, and * {@code pos} must also be less than or equal to the target's arity. *

Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle deepToString = publicLookup()
  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));

MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
assertEquals("[strange]", (String) ts1.invokeExact("strange"));

MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));

MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
assertEquals("[top, [up, down], strange]",
             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
assertEquals("[top, [up, down], [strange]]",
             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
assertEquals("[top, [[up, down, strange], charm], bottom]",
             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
     * }
*

Here is pseudocode for the resulting adapter: *

{@code
     * T target(A...,V,C...);
     * V filter(B...);
     * T adapter(A... a,B... b,C... c) {
     *   V v = filter(b...);
     *   return target(a...,v,c...);
     * }
     * // and if the filter has no arguments:
     * T target2(A...,V,C...);
     * V filter2();
     * T adapter2(A... a,C... c) {
     *   V v = filter2();
     *   return target2(a...,v,c...);
     * }
     * // and if the filter has a void return:
     * T target3(A...,C...);
     * void filter3(B...);
     * void adapter3(A... a,B... b,C... c) {
     *   filter3(b...);
     *   return target3(a...,c...);
     * }
     * }
*

* A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to * one which first "folds" the affected arguments, and then drops them, in separate * steps as follows: *

{@code
     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
     * mh = MethodHandles.foldArguments(mh, coll); //step 1
     * }
* If the target method handle consumes no arguments besides than the result * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} * is equivalent to {@code filterReturnValue(coll, mh)}. * If the filter method handle {@code coll} consumes one argument and produces * a non-void result, then {@code collectArguments(mh, N, coll)} * is equivalent to {@code filterArguments(mh, N, coll)}. * Other equivalences are possible but would require argument permutation. * * @param target the method handle to invoke after filtering the subsequence of arguments * @param pos the position of the first adapter argument to pass to the filter, * and/or the target argument which receives the result of the filter * @param filter method handle to call on the subsequence of arguments * @return method handle which incorporates the specified argument subsequence filtering logic * @throws NullPointerException if either argument is null * @throws IllegalArgumentException if the return type of {@code filter} * is non-void and is not the same as the {@code pos} argument of the target, * or if {@code pos} is not between 0 and the target's arity, inclusive, * or if the resulting method handle's type would have * too many parameters * @see MethodHandles#foldArguments * @see MethodHandles#filterArguments * @see MethodHandles#filterReturnValue */ public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { MethodType newType = collectArgumentsChecks(target, pos, filter); return new Transformers.CollectArguments(target, filter, pos, newType); } private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { MethodType targetType = target.type(); MethodType filterType = filter.type(); Class rtype = filterType.returnType(); List> filterArgs = filterType.parameterList(); if (rtype == void.class) { return targetType.insertParameterTypes(pos, filterArgs); } if (rtype != targetType.parameterType(pos)) { throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); } return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs); } /** * Adapts a target method handle by post-processing * its return value (if any) with a filter (another method handle). * The result of the filter is returned from the adapter. *

* If the target returns a value, the filter must accept that value as * its only argument. * If the target returns void, the filter must accept no arguments. *

* The return type of the filter * replaces the return type of the target * in the resulting adapted method handle. * The argument type of the filter (if any) must be identical to the * return type of the target. *

Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle length = lookup().findVirtual(String.class,
  "length", methodType(int.class));
System.out.println((String) cat.invokeExact("x", "y")); // xy
MethodHandle f0 = filterReturnValue(cat, length);
System.out.println((int) f0.invokeExact("x", "y")); // 2
     * }
*

Here is pseudocode for the resulting adapter: *

{@code
     * V target(A...);
     * T filter(V);
     * T adapter(A... a) {
     *   V v = target(a...);
     *   return filter(v);
     * }
     * // and if the target has a void return:
     * void target2(A...);
     * T filter2();
     * T adapter2(A... a) {
     *   target2(a...);
     *   return filter2();
     * }
     * // and if the filter has a void return:
     * V target3(A...);
     * void filter3(V);
     * void adapter3(A... a) {
     *   V v = target3(a...);
     *   filter3(v);
     * }
     * }
* @param target the method handle to invoke before filtering the return value * @param filter method handle to call on the return value * @return method handle which incorporates the specified return value filtering logic * @throws NullPointerException if either argument is null * @throws IllegalArgumentException if the argument list of {@code filter} * does not match the return type of target as described above */ public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { MethodType targetType = target.type(); MethodType filterType = filter.type(); filterReturnValueChecks(targetType, filterType); return new Transformers.FilterReturnValue(target, filter); } private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { Class rtype = targetType.returnType(); int filterValues = filterType.parameterCount(); if (filterValues == 0 ? (rtype != void.class) : (rtype != filterType.parameterType(0) || filterValues != 1)) throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); } /** * Adapts a target method handle by pre-processing * some of its arguments, and then calling the target with * the result of the pre-processing, inserted into the original * sequence of arguments. *

* The pre-processing is performed by {@code combiner}, a second method handle. * Of the arguments passed to the adapter, the first {@code N} arguments * are copied to the combiner, which is then called. * (Here, {@code N} is defined as the parameter count of the combiner.) * After this, control passes to the target, with any result * from the combiner inserted before the original {@code N} incoming * arguments. *

* If the combiner returns a value, the first parameter type of the target * must be identical with the return type of the combiner, and the next * {@code N} parameter types of the target must exactly match the parameters * of the combiner. *

* If the combiner has a void return, no result will be inserted, * and the first {@code N} parameter types of the target * must exactly match the parameters of the combiner. *

* The resulting adapter is the same type as the target, except that the * first parameter type is dropped, * if it corresponds to the result of the combiner. *

* (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments * that either the combiner or the target does not wish to receive. * If some of the incoming arguments are destined only for the combiner, * consider using {@link MethodHandle#asCollector asCollector} instead, since those * arguments will not need to be live on the stack on entry to the * target.) *

Example: *

{@code
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  "println", methodType(void.class, String.class))
    .bindTo(System.out);
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
MethodHandle catTrace = foldArguments(cat, trace);
// also prints "boo":
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
     * }
*

Here is pseudocode for the resulting adapter: *

{@code
     * // there are N arguments in A...
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
     * // and if the combiner has a void return:
     * T target2(A[N]..., B...);
     * void combiner2(A...);
     * T adapter2(A... a, B... b) {
     *   combiner2(a...);
     *   return target2(a..., b...);
     * }
     * }
* @param target the method handle to invoke after arguments are combined * @param combiner method handle to call initially on the incoming arguments * @return method handle which incorporates the specified argument folding logic * @throws NullPointerException if either argument is null * @throws IllegalArgumentException if {@code combiner}'s return type * is non-void and not the same as the first argument type of * the target, or if the initial {@code N} argument types * of the target * (skipping one matching the {@code combiner}'s return type) * are not identical with the argument types of {@code combiner} */ public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { int foldPos = 0; MethodType targetType = target.type(); MethodType combinerType = combiner.type(); Class rtype = foldArgumentChecks(foldPos, targetType, combinerType); return new Transformers.FoldArguments(target, combiner); } private static Class foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { int foldArgs = combinerType.parameterCount(); Class rtype = combinerType.returnType(); int foldVals = rtype == void.class ? 0 : 1; int afterInsertPos = foldPos + foldVals; boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); if (ok && !(combinerType.parameterList() .equals(targetType.parameterList().subList(afterInsertPos, afterInsertPos + foldArgs)))) ok = false; if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(0)) ok = false; if (!ok) throw misMatchedTypes("target and combiner types", targetType, combinerType); return rtype; } /** * Makes a method handle which adapts a target method handle, * by guarding it with a test, a boolean-valued method handle. * If the guard fails, a fallback handle is called instead. * All three method handles must have the same corresponding * argument and return types, except that the return type * of the test must be boolean, and the test is allowed * to have fewer arguments than the other two method handles. *

Here is pseudocode for the resulting adapter: *

{@code
     * boolean test(A...);
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
     *   if (test(a...))
     *     return target(a..., b...);
     *   else
     *     return fallback(a..., b...);
     * }
     * }
* Note that the test arguments ({@code a...} in the pseudocode) cannot * be modified by execution of the test, and so are passed unchanged * from the caller to the target or fallback as appropriate. * @param test method handle used for test, must return boolean * @param target method handle to call if test passes * @param fallback method handle to call if test fails * @return method handle which incorporates the specified if/then/else logic * @throws NullPointerException if any argument is null * @throws IllegalArgumentException if {@code test} does not return boolean, * or if all three method types do not match (with the return * type of {@code test} changed to match that of the target). */ public static MethodHandle guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback) { MethodType gtype = test.type(); MethodType ttype = target.type(); MethodType ftype = fallback.type(); if (!ttype.equals(ftype)) throw misMatchedTypes("target and fallback types", ttype, ftype); if (gtype.returnType() != boolean.class) throw newIllegalArgumentException("guard type is not a predicate "+gtype); List> targs = ttype.parameterList(); List> gargs = gtype.parameterList(); if (!targs.equals(gargs)) { int gpc = gargs.size(), tpc = targs.size(); if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs)) throw misMatchedTypes("target and test types", ttype, gtype); test = dropArguments(test, gpc, targs.subList(gpc, tpc)); gtype = test.type(); } return new Transformers.GuardWithTest(test, target, fallback); } static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) { return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); } /** * Makes a method handle which adapts a target method handle, * by running it inside an exception handler. * If the target returns normally, the adapter returns that value. * If an exception matching the specified type is thrown, the fallback * handle is called instead on the exception, plus the original arguments. *

* The target and handler must have the same corresponding * argument and return types, except that handler may omit trailing arguments * (similarly to the predicate in {@link #guardWithTest guardWithTest}). * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. *

Here is pseudocode for the resulting adapter: *

{@code
     * T target(A..., B...);
     * T handler(ExType, A...);
     * T adapter(A... a, B... b) {
     *   try {
     *     return target(a..., b...);
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
     * }
     * }
* Note that the saved arguments ({@code a...} in the pseudocode) cannot * be modified by execution of the target, and so are passed unchanged * from the caller to the handler, if the handler is invoked. *

* The target and handler must return the same type, even if the handler * always throws. (This might happen, for instance, because the handler * is simulating a {@code finally} clause). * To create such a throwing handler, compose the handler creation logic * with {@link #throwException throwException}, * in order to create a method handle of the correct return type. * @param target method handle to call * @param exType the type of exception which the handler will catch * @param handler method handle to call if a matching exception is thrown * @return method handle which incorporates the specified try/catch logic * @throws NullPointerException if any argument is null * @throws IllegalArgumentException if {@code handler} does not accept * the given exception type, or if the method handle types do * not match in their return types and their * corresponding parameters */ public static MethodHandle catchException(MethodHandle target, Class exType, MethodHandle handler) { MethodType ttype = target.type(); MethodType htype = handler.type(); if (htype.parameterCount() < 1 || !htype.parameterType(0).isAssignableFrom(exType)) throw newIllegalArgumentException("handler does not accept exception type "+exType); if (htype.returnType() != ttype.returnType()) throw misMatchedTypes("target and handler return types", ttype, htype); List> targs = ttype.parameterList(); List> hargs = htype.parameterList(); hargs = hargs.subList(1, hargs.size()); // omit leading parameter from handler if (!targs.equals(hargs)) { int hpc = hargs.size(), tpc = targs.size(); if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs)) throw misMatchedTypes("target and handler types", ttype, htype); } return new Transformers.CatchException(target, handler, exType); } /** * Produces a method handle which will throw exceptions of the given {@code exType}. * The method handle will accept a single argument of {@code exType}, * and immediately throw it as an exception. * The method type will nominally specify a return of {@code returnType}. * The return type may be anything convenient: It doesn't matter to the * method handle's behavior, since it will never return normally. * @param returnType the return type of the desired method handle * @param exType the parameter type of the desired method handle * @return method handle which can throw the given exceptions * @throws NullPointerException if either argument is null */ public static MethodHandle throwException(Class returnType, Class exType) { if (!Throwable.class.isAssignableFrom(exType)) throw new ClassCastException(exType.getName()); return new Transformers.AlwaysThrow(returnType, exType); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy