src.java.util.Formatter Maven / Gradle / Ivy
Show all versions of android-all Show documentation
/*
* Copyright (C) 2014 The Android Open Source Project
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.io.BufferedWriter;
import java.io.Closeable;
import java.io.IOException;
import java.io.File;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.Flushable;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintStream;
import java.io.UnsupportedEncodingException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
import java.nio.charset.Charset;
import java.nio.charset.IllegalCharsetNameException;
import java.nio.charset.UnsupportedCharsetException;
import java.text.DateFormatSymbols;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.time.DateTimeException;
import java.time.Instant;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.temporal.ChronoField;
import java.time.temporal.TemporalAccessor;
import java.time.temporal.TemporalQueries;
import libcore.icu.DecimalFormatData;
import libcore.icu.LocaleData;
import jdk.internal.math.DoubleConsts;
import jdk.internal.math.FormattedFloatingDecimal;
// Android-changed: Use localized exponent separator for %e.
/**
* An interpreter for printf-style format strings. This class provides support
* for layout justification and alignment, common formats for numeric, string,
* and date/time data, and locale-specific output. Common Java types such as
* {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
* are supported. Limited formatting customization for arbitrary user types is
* provided through the {@link Formattable} interface.
*
* Formatters are not necessarily safe for multithreaded access. Thread
* safety is optional and is the responsibility of users of methods in this
* class.
*
*
Formatted printing for the Java language is heavily inspired by C's
* {@code printf}. Although the format strings are similar to C, some
* customizations have been made to accommodate the Java language and exploit
* some of its features. Also, Java formatting is more strict than C's; for
* example, if a conversion is incompatible with a flag, an exception will be
* thrown. In C inapplicable flags are silently ignored. The format strings
* are thus intended to be recognizable to C programmers but not necessarily
* completely compatible with those in C.
*
*
Examples of expected usage:
*
*
* StringBuilder sb = new StringBuilder();
* // Send all output to the Appendable object sb
* Formatter formatter = new Formatter(sb, Locale.US);
*
* // Explicit argument indices may be used to re-order output.
* formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
* // -> " d c b a"
*
* // Optional locale as the first argument can be used to get
* // locale-specific formatting of numbers. The precision and width can be
* // given to round and align the value.
* formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
* // -> "e = +2,7183"
*
* // The '(' numeric flag may be used to format negative numbers with
* // parentheses rather than a minus sign. Group separators are
* // automatically inserted.
* formatter.format("Amount gained or lost since last statement: $ %(,.2f",
* balanceDelta);
* // -> "Amount gained or lost since last statement: $ (6,217.58)"
*
*
* Convenience methods for common formatting requests exist as illustrated
* by the following invocations:
*
*
* // Writes a formatted string to System.out.
* System.out.format("Local time: %tT", Calendar.getInstance());
* // -> "Local time: 13:34:18"
*
* // Writes formatted output to System.err.
* System.err.printf("Unable to open file '%1$s': %2$s",
* fileName, exception.getMessage());
* // -> "Unable to open file 'food': No such file or directory"
*
*
* Like C's {@code sprintf(3)}, Strings may be formatted using the static
* method {@link String#format(String,Object...) String.format}:
*
*
* // Format a string containing a date.
* import java.util.Calendar;
* import java.util.GregorianCalendar;
* import static java.util.Calendar.*;
*
* Calendar c = new GregorianCalendar(1995, MAY, 23);
* String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
* // -> s == "Duke's Birthday: May 23, 1995"
*
*
* Organization
*
* This specification is divided into two sections. The first section, Summary, covers the basic formatting concepts. This
* section is intended for users who want to get started quickly and are
* familiar with formatted printing in other programming languages. The second
* section, Details, covers the specific implementation
* details. It is intended for users who want more precise specification of
* formatting behavior.
*
*
Summary
*
* This section is intended to provide a brief overview of formatting
* concepts. For precise behavioral details, refer to the Details section.
*
*
Format String Syntax
*
* Every method which produces formatted output requires a format
* string and an argument list. The format string is a {@link
* String} which may contain fixed text and one or more embedded format
* specifiers. Consider the following example:
*
*
* Calendar c = ...;
* String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
*
*
* This format string is the first argument to the {@code format} method. It
* contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
* "{@code %1$tY}" which indicate how the arguments should be processed and
* where they should be inserted in the text. The remaining portions of the
* format string are fixed text including {@code "Dukes Birthday: "} and any
* other spaces or punctuation.
*
* The argument list consists of all arguments passed to the method after the
* format string. In the above example, the argument list is of size one and
* consists of the {@link java.util.Calendar Calendar} object {@code c}.
*
*
*
* - The format specifiers for general, character, and numeric types have
* the following syntax:
*
*
* %[argument_index$][flags][width][.precision]conversion
*
*
* The optional argument_index is a decimal integer indicating the
* position of the argument in the argument list. The first argument is
* referenced by "{@code 1$}", the second by "{@code 2$}", etc.
*
*
The optional flags is a set of characters that modify the output
* format. The set of valid flags depends on the conversion.
*
*
The optional width is a positive decimal integer indicating
* the minimum number of characters to be written to the output.
*
*
The optional precision is a non-negative decimal integer usually
* used to restrict the number of characters. The specific behavior depends on
* the conversion.
*
*
The required conversion is a character indicating how the
* argument should be formatted. The set of valid conversions for a given
* argument depends on the argument's data type.
*
*
- The format specifiers for types which are used to represents dates and
* times have the following syntax:
*
*
* %[argument_index$][flags][width]conversion
*
*
* The optional argument_index, flags and width are
* defined as above.
*
*
The required conversion is a two character sequence. The first
* character is {@code 't'} or {@code 'T'}. The second character indicates
* the format to be used. These characters are similar to but not completely
* identical to those defined by GNU {@code date} and POSIX
* {@code strftime(3c)}.
*
*
- The format specifiers which do not correspond to arguments have the
* following syntax:
*
*
* %[flags][width]conversion
*
*
* The optional flags and width is defined as above.
*
*
The required conversion is a character indicating content to be
* inserted in the output.
*
*
*
* Conversions
*
* Conversions are divided into the following categories:
*
*
*
* - General - may be applied to any argument
* type
*
*
- Character - may be applied to basic types which represent
* Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
* Byte}, {@code short}, and {@link Short}. This conversion may also be
* applied to the types {@code int} and {@link Integer} when {@link
* Character#isValidCodePoint} returns {@code true}
*
*
- Numeric
*
*
*
* - Integral - may be applied to Java integral types: {@code byte},
* {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
* Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
* BigInteger} (but not {@code char} or {@link Character})
*
*
- Floating Point - may be applied to Java floating-point types:
* {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
* java.math.BigDecimal BigDecimal}
*
*
*
* - Date/Time - may be applied to Java types which are capable of
* encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
* {@link Date} and {@link TemporalAccessor TemporalAccessor}
*
*
- Percent - produces a literal {@code '%'}
* ('\u0025')
*
*
- Line Separator - produces the platform-specific line separator
*
*
*
* The following table summarizes the supported conversions. Conversions
* denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
* {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
* {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
* lower-case conversion characters except that the result is converted to
* upper case according to the rules of the prevailing {@link java.util.Locale
* Locale}. The result is equivalent to the following invocation of {@link
* String#toUpperCase()}
*
*
* out.toUpperCase()
*
*
*
* Conversion
* Argument Category
* Description
*
* {@code 'b'}, {@code 'B'}
* general
* If the argument arg is {@code null}, then the result is
* "{@code false}". If arg is a {@code boolean} or {@link
* Boolean}, then the result is the string returned by {@link
* String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is
* "true".
*
* {@code 'h'}, {@code 'H'}
* general
* If the argument arg is {@code null}, then the result is
* "{@code null}". Otherwise, the result is obtained by invoking
* {@code Integer.toHexString(arg.hashCode())}.
*
* {@code 's'}, {@code 'S'}
* general
* If the argument arg is {@code null}, then the result is
* "{@code null}". If arg implements {@link Formattable}, then
* {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
* result is obtained by invoking {@code arg.toString()}.
*
* {@code 'c'}, {@code 'C'}
* character
* The result is a Unicode character
*
* {@code 'd'}
* integral
* The result is formatted as a decimal integer
*
* {@code 'o'}
* integral
* The result is formatted as an octal integer
*
* {@code 'x'}, {@code 'X'}
* integral
* The result is formatted as a hexadecimal integer
*
* {@code 'e'}, {@code 'E'}
* floating point
* The result is formatted as a decimal number in computerized
* scientific notation
*
* {@code 'f'}
* floating point
* The result is formatted as a decimal number
*
* {@code 'g'}, {@code 'G'}
* floating point
* The result is formatted using computerized scientific notation or
* decimal format, depending on the precision and the value after rounding.
*
* {@code 'a'}, {@code 'A'}
* floating point
* The result is formatted as a hexadecimal floating-point number with
* a significand and an exponent. This conversion is not supported
* for the {@code BigDecimal} type despite the latter's being in the
* floating point argument category.
*
* {@code 't'}, {@code 'T'}
* date/time
* Prefix for date and time conversion characters. See Date/Time Conversions.
*
* {@code '%'}
* percent
* The result is a literal {@code '%'} ('\u0025')
*
* {@code 'n'}
* line separator
* The result is the platform-specific line separator
*
*
*
* Any characters not explicitly defined as conversions are illegal and are
* reserved for future extensions.
*
*
Date/Time Conversions
*
* The following date and time conversion suffix characters are defined for
* the {@code 't'} and {@code 'T'} conversions. The types are similar to but
* not completely identical to those defined by GNU {@code date} and POSIX
* {@code strftime(3c)}. Additional conversion types are provided to access
* Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
* second).
*
*
The following conversion characters are used for formatting times:
*
*
*
* {@code 'H'}
* Hour of the day for the 24-hour clock, formatted as two digits with
* a leading zero as necessary i.e. {@code 00 - 23}.
*
* {@code 'I'}
* Hour for the 12-hour clock, formatted as two digits with a leading
* zero as necessary, i.e. {@code 01 - 12}.
*
* {@code 'k'}
* Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
*
* {@code 'l'}
* Hour for the 12-hour clock, i.e. {@code 1 - 12}.
*
* {@code 'M'}
* Minute within the hour formatted as two digits with a leading zero
* as necessary, i.e. {@code 00 - 59}.
*
* {@code 'S'}
* Seconds within the minute, formatted as two digits with a leading
* zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
* value required to support leap seconds).
*
* {@code 'L'}
* Millisecond within the second formatted as three digits with
* leading zeros as necessary, i.e. {@code 000 - 999}.
*
* {@code 'N'}
* Nanosecond within the second, formatted as nine digits with leading
* zeros as necessary, i.e. {@code 000000000 - 999999999}.
*
* {@code 'p'}
* Locale-specific {@linkplain
* java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
* in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
* prefix {@code 'T'} forces this output to upper case.
*
* {@code 'z'}
* RFC 822
* style numeric time zone offset from GMT, e.g. {@code -0800}. This
* value will be adjusted as necessary for Daylight Saving Time. For
* {@code long}, {@link Long}, and {@link Date} the time zone used is
* the {@linkplain TimeZone#getDefault() default time zone} for this
* instance of the Java virtual machine.
*
* {@code 'Z'}
* A string representing the abbreviation for the time zone. This
* value will be adjusted as necessary for Daylight Saving Time. For
* {@code long}, {@link Long}, and {@link Date} the time zone used is
* the {@linkplain TimeZone#getDefault() default time zone} for this
* instance of the Java virtual machine. The Formatter's locale will
* supersede the locale of the argument (if any).
*
* {@code 's'}
* Seconds since the beginning of the epoch starting at 1 January 1970
* {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
* {@code Long.MAX_VALUE/1000}.
*
* {@code 'Q'}
* Milliseconds since the beginning of the epoch starting at 1 January
* 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
* {@code Long.MAX_VALUE}.
*
*
*
* The following conversion characters are used for formatting dates:
*
*
*
* {@code 'B'}
* Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
* full month name}, e.g. {@code "January"}, {@code "February"}.
*
* {@code 'b'}
* Locale-specific {@linkplain
* java.text.DateFormatSymbols#getShortMonths abbreviated month name},
* e.g. {@code "Jan"}, {@code "Feb"}.
*
* {@code 'h'}
* Same as {@code 'b'}.
*
* {@code 'A'}
* Locale-specific full name of the {@linkplain
* java.text.DateFormatSymbols#getWeekdays day of the week},
* e.g. {@code "Sunday"}, {@code "Monday"}
*
* {@code 'a'}
* Locale-specific short name of the {@linkplain
* java.text.DateFormatSymbols#getShortWeekdays day of the week},
* e.g. {@code "Sun"}, {@code "Mon"}
*
* {@code 'C'}
* Four-digit year divided by {@code 100}, formatted as two digits
* with leading zero as necessary, i.e. {@code 00 - 99}
*
* {@code 'Y'}
* Year, formatted as at least four digits with leading zeros as
* necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
* calendar.
*
* {@code 'y'}
* Last two digits of the year, formatted with leading zeros as
* necessary, i.e. {@code 00 - 99}.
*
* {@code 'j'}
* Day of year, formatted as three digits with leading zeros as
* necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
*
* {@code 'm'}
* Month, formatted as two digits with leading zeros as necessary,
* i.e. {@code 01 - 13}.
*
* {@code 'd'}
* Day of month, formatted as two digits with leading zeros as
* necessary, i.e. {@code 01 - 31}
*
* {@code 'e'}
* Day of month, formatted as two digits, i.e. {@code 1 - 31}.
*
*
*
* The following conversion characters are used for formatting common
* date/time compositions.
*
*
*
* {@code 'R'}
* Time formatted for the 24-hour clock as {@code "%tH:%tM"}
*
* {@code 'T'}
* Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
*
* {@code 'r'}
* Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
* The location of the morning or afternoon marker ({@code '%Tp'}) may be
* locale-dependent.
*
* {@code 'D'}
* Date formatted as {@code "%tm/%td/%ty"}.
*
* {@code 'F'}
* ISO 8601
* complete date formatted as {@code "%tY-%tm-%td"}.
*
* {@code 'c'}
* Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
* e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
*
*
*
* Any characters not explicitly defined as date/time conversion suffixes
* are illegal and are reserved for future extensions.
*
*
Flags
*
* The following table summarizes the supported flags. y means the
* flag is supported for the indicated argument types.
*
*
*
* Flag General
* Character Integral
* Floating Point
* Date/Time
* Description
*
* '-' y
* y
* y
* y
* y
* The result will be left-justified.
*
* '#' y1
* -
* y3
* y
* -
* The result should use a conversion-dependent alternate form
*
* '+' -
* -
* y4
* y
* -
* The result will always include a sign
*
* ' ' -
* -
* y4
* y
* -
* The result will include a leading space for positive values
*
* '0' -
* -
* y
* y
* -
* The result will be zero-padded
*
* ',' -
* -
* y2
* y5
* -
* The result will include locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
*
* '(' -
* -
* y4
* y5
* -
* The result will enclose negative numbers in parentheses
*
*
*
* 1 Depends on the definition of {@link Formattable}.
*
*
2 For {@code 'd'} conversion only.
*
*
3 For {@code 'o'}, {@code 'x'}, and {@code 'X'}
* conversions only.
*
*
4 For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
* {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
* or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
* Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
*
*
5 For {@code 'e'}, {@code 'E'}, {@code 'f'},
* {@code 'g'}, and {@code 'G'} conversions only.
*
*
Any characters not explicitly defined as flags are illegal and are
* reserved for future extensions.
*
*
Width
*
* The width is the minimum number of characters to be written to the
* output. For the line separator conversion, width is not applicable; if it
* is provided, an exception will be thrown.
*
*
Precision
*
* For general argument types, the precision is the maximum number of
* characters to be written to the output.
*
*
For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
* {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
* radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the
* precision is the total number of digits in the resulting magnitude after
* rounding.
*
*
For character, integral, and date/time argument types and the percent
* and line separator conversions, the precision is not applicable; if a
* precision is provided, an exception will be thrown.
*
*
Argument Index
*
* The argument index is a decimal integer indicating the position of the
* argument in the argument list. The first argument is referenced by
* "{@code 1$}", the second by "{@code 2$}", etc.
*
*
Another way to reference arguments by position is to use the
* {@code '<'} ('\u003c') flag, which causes the argument for
* the previous format specifier to be re-used. For example, the following two
* statements would produce identical strings:
*
*
* Calendar c = ...;
* String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
*
* String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c);
*
*
*
* Details
*
* This section is intended to provide behavioral details for formatting,
* including conditions and exceptions, supported data types, localization, and
* interactions between flags, conversions, and data types. For an overview of
* formatting concepts, refer to the Summary
*
*
Any characters not explicitly defined as conversions, date/time
* conversion suffixes, or flags are illegal and are reserved for
* future extensions. Use of such a character in a format string will
* cause an {@link UnknownFormatConversionException} or {@link
* UnknownFormatFlagsException} to be thrown.
*
*
If the format specifier contains a width or precision with an invalid
* value or which is otherwise unsupported, then a {@link
* IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
* respectively will be thrown.
*
*
If a format specifier contains a conversion character that is not
* applicable to the corresponding argument, then an {@link
* IllegalFormatConversionException} will be thrown.
*
*
All specified exceptions may be thrown by any of the {@code format}
* methods of {@code Formatter} as well as by any {@code format} convenience
* methods such as {@link String#format(String,Object...) String.format} and
* {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
*
*
Conversions denoted by an upper-case character (i.e. {@code 'B'},
* {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
* {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
* corresponding lower-case conversion characters except that the result is
* converted to upper case according to the rules of the prevailing {@link
* java.util.Locale Locale}. The result is equivalent to the following
* invocation of {@link String#toUpperCase()}
*
*
* out.toUpperCase()
*
* General
*
* The following general conversions may be applied to any argument type:
*
*
*
* {@code 'b'}
* '\u0062'
* Produces either "{@code true}" or "{@code false}" as returned by
* {@link Boolean#toString(boolean)}.
*
* If the argument is {@code null}, then the result is
* "{@code false}". If the argument is a {@code boolean} or {@link
* Boolean}, then the result is the string returned by {@link
* String#valueOf(boolean) String.valueOf()}. Otherwise, the result is
* "{@code true}".
*
*
If the {@code '#'} flag is given, then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'B'}
* '\u0042'
* The upper-case variant of {@code 'b'}.
*
* {@code 'h'}
* '\u0068'
* Produces a string representing the hash code value of the object.
*
* If the argument, arg is {@code null}, then the
* result is "{@code null}". Otherwise, the result is obtained
* by invoking {@code Integer.toHexString(arg.hashCode())}.
*
*
If the {@code '#'} flag is given, then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'H'}
* '\u0048'
* The upper-case variant of {@code 'h'}.
*
* {@code 's'}
* '\u0073'
* Produces a string.
*
* If the argument is {@code null}, then the result is
* "{@code null}". If the argument implements {@link Formattable}, then
* its {@link Formattable#formatTo formatTo} method is invoked.
* Otherwise, the result is obtained by invoking the argument's
* {@code toString()} method.
*
*
If the {@code '#'} flag is given and the argument is not a {@link
* Formattable} , then a {@link FormatFlagsConversionMismatchException}
* will be thrown.
*
*
{@code 'S'}
* '\u0053'
* The upper-case variant of {@code 's'}.
*
*
*
* The following flags apply to general conversions:
*
*
*
* {@code '-'}
* '\u002d'
* Left justifies the output. Spaces ('\u0020') will be
* added at the end of the converted value as required to fill the minimum
* width of the field. If the width is not provided, then a {@link
* MissingFormatWidthException} will be thrown. If this flag is not given
* then the output will be right-justified.
*
* {@code '#'}
* '\u0023'
* Requires the output use an alternate form. The definition of the
* form is specified by the conversion.
*
*
*
* The width is the minimum number of characters to
* be written to the
* output. If the length of the converted value is less than the width then
* the output will be padded by ' ' ('\u0020')
* until the total number of characters equals the width. The padding is on
* the left by default. If the {@code '-'} flag is given, then the padding
* will be on the right. If the width is not specified then there is no
* minimum.
*
*
The precision is the maximum number of characters to be written to the
* output. The precision is applied before the width, thus the output will be
* truncated to {@code precision} characters even if the width is greater than
* the precision. If the precision is not specified then there is no explicit
* limit on the number of characters.
*
*
Character
*
* This conversion may be applied to {@code char} and {@link Character}. It
* may also be applied to the types {@code byte}, {@link Byte},
* {@code short}, and {@link Short}, {@code int} and {@link Integer} when
* {@link Character#isValidCodePoint} returns {@code true}. If it returns
* {@code false} then an {@link IllegalFormatCodePointException} will be
* thrown.
*
*
*
* {@code 'c'}
* '\u0063'
* Formats the argument as a Unicode character as described in Unicode Character
* Representation. This may be more than one 16-bit {@code char} in
* the case where the argument represents a supplementary character.
*
* If the {@code '#'} flag is given, then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'C'}
* '\u0043'
* The upper-case variant of {@code 'c'}.
*
*
*
* The {@code '-'} flag defined for General
* conversions applies. If the {@code '#'} flag is given, then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
The width is defined as for General conversions.
*
*
The precision is not applicable. If the precision is specified then an
* {@link IllegalFormatPrecisionException} will be thrown.
*
*
Numeric
*
* Numeric conversions are divided into the following categories:
*
*
*
* - Byte, Short, Integer, and Long
*
*
- BigInteger
*
*
- Float and Double
*
*
- BigDecimal
*
*
*
* Numeric types will be formatted according to the following algorithm:
*
*
Number Localization Algorithm
*
*
After digits are obtained for the integer part, fractional part, and
* exponent (as appropriate for the data type), the following transformation
* is applied:
*
*
*
* - Each digit character d in the string is replaced by a
* locale-specific digit computed relative to the current locale's
* {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
* z; that is d - {@code '0'}
* + z.
*
*
- If a decimal separator is present, a locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
* substituted.
*
*
- If the {@code ','} ('\u002c')
* flag is given, then the locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
* inserted by scanning the integer part of the string from least significant
* to most significant digits and inserting a separator at intervals defined by
* the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
* size}.
*
*
- If the {@code '0'} flag is given, then the locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
* after the sign character, if any, and before the first non-zero digit, until
* the length of the string is equal to the requested field width.
*
*
- If the value is negative and the {@code '('} flag is given, then a
* {@code '('} ('\u0028') is prepended and a {@code ')'}
* ('\u0029') is appended.
*
*
- If the value is negative (or floating-point negative zero) and
* {@code '('} flag is not given, then a {@code '-'} ('\u002d')
* is prepended.
*
*
- If the {@code '+'} flag is given and the value is positive or zero (or
* floating-point positive zero), then a {@code '+'} ('\u002b')
* will be prepended.
*
*
*
* If the value is NaN or positive infinity the literal strings "NaN" or
* "Infinity" respectively, will be output. If the value is negative infinity,
* then the output will be "(Infinity)" if the {@code '('} flag is given
* otherwise the output will be "-Infinity". These values are not localized.
*
*
Byte, Short, Integer, and Long
*
*
The following conversions may be applied to {@code byte}, {@link Byte},
* {@code short}, {@link Short}, {@code int} and {@link Integer},
* {@code long}, and {@link Long}.
*
*
*
* {@code 'd'}
* '\u0064'
* Formats the argument as a decimal integer. The localization algorithm is applied.
*
* If the {@code '0'} flag is given and the value is negative, then
* the zero padding will occur after the sign.
*
*
If the {@code '#'} flag is given then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'o'}
* '\u006f'
* Formats the argument as an integer in base eight. No localization
* is applied.
*
* If x is negative then the result will be an unsigned value
* generated by adding 2n to the value where {@code n} is the
* number of bits in the type as returned by the static {@code SIZE} field
* in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
* {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
* classes as appropriate.
*
*
If the {@code '#'} flag is given then the output will always begin
* with the radix indicator {@code '0'}.
*
*
If the {@code '0'} flag is given then the output will be padded
* with leading zeros to the field width following any indication of sign.
*
*
If {@code '('}, {@code '+'}, ' ', or {@code ','} flags
* are given then a {@link FormatFlagsConversionMismatchException} will be
* thrown.
*
*
{@code 'x'}
* '\u0078'
* Formats the argument as an integer in base sixteen. No
* localization is applied.
*
* If x is negative then the result will be an unsigned value
* generated by adding 2n to the value where {@code n} is the
* number of bits in the type as returned by the static {@code SIZE} field
* in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
* {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
* classes as appropriate.
*
*
If the {@code '#'} flag is given then the output will always begin
* with the radix indicator {@code "0x"}.
*
*
If the {@code '0'} flag is given then the output will be padded to
* the field width with leading zeros after the radix indicator or sign (if
* present).
*
*
If {@code '('}, ' ', {@code '+'}, or
* {@code ','} flags are given then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'X'}
* '\u0058'
* The upper-case variant of {@code 'x'}. The entire string
* representing the number will be converted to {@linkplain
* String#toUpperCase upper case} including the {@code 'x'} (if any) and
* all hexadecimal digits {@code 'a'} - {@code 'f'}
* ('\u0061' - '\u0066').
*
*
*
* If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
* both the {@code '#'} and the {@code '0'} flags are given, then result will
* contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
* {@code "0X"} for hexadecimal), some number of zeros (based on the width),
* and the value.
*
*
If the {@code '-'} flag is not given, then the space padding will occur
* before the sign.
*
*
The following flags apply to numeric integral
* conversions:
*
*
*
* {@code '+'}
* '\u002b'
* Requires the output to include a positive sign for all positive
* numbers. If this flag is not given then only negative values will
* include a sign.
*
* If both the {@code '+'} and ' ' flags are given
* then an {@link IllegalFormatFlagsException} will be thrown.
*
*
' '
* '\u0020'
* Requires the output to include a single extra space
* ('\u0020') for non-negative values.
*
* If both the {@code '+'} and ' ' flags are given
* then an {@link IllegalFormatFlagsException} will be thrown.
*
*
{@code '0'}
* '\u0030'
* Requires the output to be padded with leading {@linkplain
* java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
* width following any sign or radix indicator except when converting NaN
* or infinity. If the width is not provided, then a {@link
* MissingFormatWidthException} will be thrown.
*
* If both the {@code '-'} and {@code '0'} flags are given then an
* {@link IllegalFormatFlagsException} will be thrown.
*
*
{@code ','}
* '\u002c'
* Requires the output to include the locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
* described in the "group" section of the
* localization algorithm.
*
* {@code '('}
* '\u0028'
* Requires the output to prepend a {@code '('}
* ('\u0028') and append a {@code ')'}
* ('\u0029') to negative values.
*
*
*
* If no flags are given the default formatting is
* as follows:
*
*
*
* - The output is right-justified within the {@code width}
*
*
- Negative numbers begin with a {@code '-'} ('\u002d')
*
*
- Positive numbers and zero do not include a sign or extra leading
* space
*
*
- No grouping separators are included
*
*
*
* The width is the minimum number of characters to
* be written to the output. This includes any signs, digits, grouping
* separators, radix indicator, and parentheses. If the length of the
* converted value is less than the width then the output will be padded by
* spaces ('\u0020') until the total number of characters equals
* width. The padding is on the left by default. If {@code '-'} flag is
* given then the padding will be on the right. If width is not specified then
* there is no minimum.
*
*
The precision is not applicable. If precision is specified then an
* {@link IllegalFormatPrecisionException} will be thrown.
*
*
BigInteger
*
*
The following conversions may be applied to {@link
* java.math.BigInteger}.
*
*
*
* {@code 'd'}
* '\u0064'
* Requires the output to be formatted as a decimal integer. The localization algorithm is applied.
*
* If the {@code '#'} flag is given {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'o'}
* '\u006f'
* Requires the output to be formatted as an integer in base eight.
* No localization is applied.
*
* If x is negative then the result will be a signed value
* beginning with {@code '-'} ('\u002d'). Signed output is
* allowed for this type because unlike the primitive types it is not
* possible to create an unsigned equivalent without assuming an explicit
* data-type size.
*
*
If x is positive or zero and the {@code '+'} flag is given
* then the result will begin with {@code '+'} ('\u002b').
*
*
If the {@code '#'} flag is given then the output will always begin
* with {@code '0'} prefix.
*
*
If the {@code '0'} flag is given then the output will be padded
* with leading zeros to the field width following any indication of sign.
*
*
If the {@code ','} flag is given then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'x'}
* '\u0078'
* Requires the output to be formatted as an integer in base
* sixteen. No localization is applied.
*
* If x is negative then the result will be a signed value
* beginning with {@code '-'} ('\u002d'). Signed output is
* allowed for this type because unlike the primitive types it is not
* possible to create an unsigned equivalent without assuming an explicit
* data-type size.
*
*
If x is positive or zero and the {@code '+'} flag is given
* then the result will begin with {@code '+'} ('\u002b').
*
*
If the {@code '#'} flag is given then the output will always begin
* with the radix indicator {@code "0x"}.
*
*
If the {@code '0'} flag is given then the output will be padded to
* the field width with leading zeros after the radix indicator or sign (if
* present).
*
*
If the {@code ','} flag is given then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'X'}
* '\u0058'
* The upper-case variant of {@code 'x'}. The entire string
* representing the number will be converted to {@linkplain
* String#toUpperCase upper case} including the {@code 'x'} (if any) and
* all hexadecimal digits {@code 'a'} - {@code 'f'}
* ('\u0061' - '\u0066').
*
*
*
* If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
* both the {@code '#'} and the {@code '0'} flags are given, then result will
* contain the base indicator ({@code '0'} for octal and {@code "0x"} or
* {@code "0X"} for hexadecimal), some number of zeros (based on the width),
* and the value.
*
*
If the {@code '0'} flag is given and the value is negative, then the
* zero padding will occur after the sign.
*
*
If the {@code '-'} flag is not given, then the space padding will occur
* before the sign.
*
*
All flags defined for Byte, Short, Integer, and
* Long apply. The default behavior when no flags are
* given is the same as for Byte, Short, Integer, and Long.
*
*
The specification of width is the same as
* defined for Byte, Short, Integer, and Long.
*
*
The precision is not applicable. If precision is specified then an
* {@link IllegalFormatPrecisionException} will be thrown.
*
*
Float and Double
*
*
The following conversions may be applied to {@code float}, {@link
* Float}, {@code double} and {@link Double}.
*
*
*
* {@code 'e'}
* '\u0065'
* Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied.
*
* The formatting of the magnitude m depends upon its value.
*
*
If m is NaN or infinite, the literal strings "NaN" or
* "Infinity", respectively, will be output. These values are not
* localized.
*
*
If m is positive-zero or negative-zero, then the exponent
* will be {@code "+00"}.
*
*
Otherwise, the result is a string that represents the sign and
* magnitude (absolute value) of the argument. The formatting of the sign
* is described in the localization
* algorithm. The formatting of the magnitude m depends upon its
* value.
*
*
Let n be the unique integer such that 10n
* <= m < 10n+1; then let a be the
* mathematically exact quotient of m and 10n so
* that 1 <= a < 10. The magnitude is then represented as the
* integer part of a, as a single decimal digit, followed by the
* decimal separator followed by decimal digits representing the fractional
* part of a, followed by the lower-case locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getExponentSeparator exponent separator}
* (e.g. {@code 'e'}), followed by the sign of the exponent, followed
* by a representation of n as a decimal integer, as produced by the
* method {@link Long#toString(long, int)}, and zero-padded to include at
* least two digits.
*
*
The number of digits in the result for the fractional part of
* m or a is equal to the precision. If the precision is not
* specified then the default value is {@code 6}. If the precision is less
* than the number of digits which would appear after the decimal point in
* the string returned by {@link Float#toString(float)} or {@link
* Double#toString(double)} respectively, then the value will be rounded
* using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
* algorithm}. Otherwise, zeros may be appended to reach the precision.
* For a canonical representation of the value, use {@link
* Float#toString(float)} or {@link Double#toString(double)} as
* appropriate.
*
*
If the {@code ','} flag is given, then an {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'E'}
* '\u0045'
* The upper-case variant of {@code 'e'}. The exponent symbol
* will be the upper-case locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getExponentSeparator exponent separator}
* (e.g. {@code 'E'}).
*
* {@code 'g'}
* '\u0067'
* Requires the output to be formatted in general scientific notation
* as described below. The localization
* algorithm is applied.
*
* After rounding for the precision, the formatting of the resulting
* magnitude m depends on its value.
*
*
If m is greater than or equal to 10-4 but less
* than 10precision then it is represented in decimal format.
*
*
If m is less than 10-4 or greater than or equal to
* 10precision, then it is represented in computerized scientific notation.
*
*
The total number of significant digits in m is equal to the
* precision. If the precision is not specified, then the default value is
* {@code 6}. If the precision is {@code 0}, then it is taken to be
* {@code 1}.
*
*
If the {@code '#'} flag is given then an {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'G'}
* '\u0047'
* The upper-case variant of {@code 'g'}.
*
* {@code 'f'}
* '\u0066'
* Requires the output to be formatted using decimal
* format. The localization algorithm is
* applied.
*
* The result is a string that represents the sign and magnitude
* (absolute value) of the argument. The formatting of the sign is
* described in the localization
* algorithm. The formatting of the magnitude m depends upon its
* value.
*
*
If m NaN or infinite, the literal strings "NaN" or
* "Infinity", respectively, will be output. These values are not
* localized.
*
*
The magnitude is formatted as the integer part of m, with no
* leading zeroes, followed by the decimal separator followed by one or
* more decimal digits representing the fractional part of m.
*
*
The number of digits in the result for the fractional part of
* m or a is equal to the precision. If the precision is not
* specified then the default value is {@code 6}. If the precision is less
* than the number of digits which would appear after the decimal point in
* the string returned by {@link Float#toString(float)} or {@link
* Double#toString(double)} respectively, then the value will be rounded
* using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
* algorithm}. Otherwise, zeros may be appended to reach the precision.
* For a canonical representation of the value, use {@link
* Float#toString(float)} or {@link Double#toString(double)} as
* appropriate.
*
*
{@code 'a'}
* '\u0061'
* Requires the output to be formatted in hexadecimal exponential
* form. No localization is applied.
*
* The result is a string that represents the sign and magnitude
* (absolute value) of the argument x.
*
*
If x is negative or a negative-zero value then the result
* will begin with {@code '-'} ('\u002d').
*
*
If x is positive or a positive-zero value and the
* {@code '+'} flag is given then the result will begin with {@code '+'}
* ('\u002b').
*
*
The formatting of the magnitude m depends upon its value.
*
*
*
* - If the value is NaN or infinite, the literal strings "NaN" or
* "Infinity", respectively, will be output.
*
*
- If m is zero then it is represented by the string
* {@code "0x0.0p0"}.
*
*
- If m is a {@code double} value with a normalized
* representation then substrings are used to represent the significand and
* exponent fields. The significand is represented by the characters
* {@code "0x1."} followed by the hexadecimal representation of the rest
* of the significand as a fraction. The exponent is represented by
* {@code 'p'} ('\u0070') followed by a decimal string of the
* unbiased exponent as if produced by invoking {@link
* Integer#toString(int) Integer.toString} on the exponent value. If the
* precision is specified, the value is rounded to the given number of
* hexadecimal digits.
*
*
- If m is a {@code double} value with a subnormal
* representation then, unless the precision is specified to be in the range
* 1 through 12, inclusive, the significand is represented by the characters
* {@code '0x0.'} followed by the hexadecimal representation of the rest of
* the significand as a fraction, and the exponent represented by
* {@code 'p-1022'}. If the precision is in the interval
* [1, 12], the subnormal value is normalized such that it
* begins with the characters {@code '0x1.'}, rounded to the number of
* hexadecimal digits of precision, and the exponent adjusted
* accordingly. Note that there must be at least one nonzero digit in a
* subnormal significand.
*
*
*
* If the {@code '('} or {@code ','} flags are given, then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'A'}
* '\u0041'
* The upper-case variant of {@code 'a'}. The entire string
* representing the number will be converted to upper case including the
* {@code 'x'} ('\u0078') and {@code 'p'}
* ('\u0070' and all hexadecimal digits {@code 'a'} -
* {@code 'f'} ('\u0061' - '\u0066').
*
*
*
* All flags defined for Byte, Short, Integer, and
* Long apply.
*
*
If the {@code '#'} flag is given, then the decimal separator will
* always be present.
*
*
If no flags are given the default formatting
* is as follows:
*
*
*
* - The output is right-justified within the {@code width}
*
*
- Negative numbers begin with a {@code '-'}
*
*
- Positive numbers and positive zero do not include a sign or extra
* leading space
*
*
- No grouping separators are included
*
*
- The decimal separator will only appear if a digit follows it
*
*
*
* The width is the minimum number of characters
* to be written to the output. This includes any signs, digits, grouping
* separators, decimal separators, exponential symbol, radix indicator,
* parentheses, and strings representing infinity and NaN as applicable. If
* the length of the converted value is less than the width then the output
* will be padded by spaces ('\u0020') until the total number of
* characters equals width. The padding is on the left by default. If the
* {@code '-'} flag is given then the padding will be on the right. If width
* is not specified then there is no minimum.
*
*
If the conversion is {@code 'e'},
* {@code 'E'} or {@code 'f'}, then the precision is the number of digits
* after the decimal separator. If the precision is not specified, then it is
* assumed to be {@code 6}.
*
*
If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
* the total number of significant digits in the resulting magnitude after
* rounding. If the precision is not specified, then the default value is
* {@code 6}. If the precision is {@code 0}, then it is taken to be
* {@code 1}.
*
*
If the conversion is {@code 'a'} or {@code 'A'}, then the precision
* is the number of hexadecimal digits after the radix point. If the
* precision is not provided, then all of the digits as returned by {@link
* Double#toHexString(double)} will be output.
*
*
BigDecimal
*
*
The following conversions may be applied {@link java.math.BigDecimal
* BigDecimal}.
*
*
*
* {@code 'e'}
* '\u0065'
* Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied.
*
* The formatting of the magnitude m depends upon its value.
*
*
If m is positive-zero or negative-zero, then the exponent
* will be {@code "+00"}.
*
*
Otherwise, the result is a string that represents the sign and
* magnitude (absolute value) of the argument. The formatting of the sign
* is described in the localization
* algorithm. The formatting of the magnitude m depends upon its
* value.
*
*
Let n be the unique integer such that 10n
* <= m < 10n+1; then let a be the
* mathematically exact quotient of m and 10n so
* that 1 <= a < 10. The magnitude is then represented as the
* integer part of a, as a single decimal digit, followed by the
* decimal separator followed by decimal digits representing the fractional
* part of a, followed by the exponent symbol {@code 'e'}
* ('\u0065'), followed by the sign of the exponent, followed
* by a representation of n as a decimal integer, as produced by the
* method {@link Long#toString(long, int)}, and zero-padded to include at
* least two digits.
*
*
The number of digits in the result for the fractional part of
* m or a is equal to the precision. If the precision is not
* specified then the default value is {@code 6}. If the precision is
* less than the number of digits to the right of the decimal point then
* the value will be rounded using the
* {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
* algorithm}. Otherwise, zeros may be appended to reach the precision.
* For a canonical representation of the value, use {@link
* BigDecimal#toString()}.
*
*
If the {@code ','} flag is given, then an {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'E'}
* '\u0045'
* The upper-case variant of {@code 'e'}. The exponent symbol
* will be {@code 'E'} ('\u0045').
*
* {@code 'g'}
* '\u0067'
* Requires the output to be formatted in general scientific notation
* as described below. The localization
* algorithm is applied.
*
* After rounding for the precision, the formatting of the resulting
* magnitude m depends on its value.
*
*
If m is greater than or equal to 10-4 but less
* than 10precision then it is represented in decimal format.
*
*
If m is less than 10-4 or greater than or equal to
* 10precision, then it is represented in computerized scientific notation.
*
*
The total number of significant digits in m is equal to the
* precision. If the precision is not specified, then the default value is
* {@code 6}. If the precision is {@code 0}, then it is taken to be
* {@code 1}.
*
*
If the {@code '#'} flag is given then an {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
{@code 'G'}
* '\u0047'
* The upper-case variant of {@code 'g'}.
*
* {@code 'f'}
* '\u0066'
* Requires the output to be formatted using decimal
* format. The localization algorithm is
* applied.
*
* The result is a string that represents the sign and magnitude
* (absolute value) of the argument. The formatting of the sign is
* described in the localization
* algorithm. The formatting of the magnitude m depends upon its
* value.
*
*
The magnitude is formatted as the integer part of m, with no
* leading zeroes, followed by the decimal separator followed by one or
* more decimal digits representing the fractional part of m.
*
*
The number of digits in the result for the fractional part of
* m or a is equal to the precision. If the precision is not
* specified then the default value is {@code 6}. If the precision is
* less than the number of digits to the right of the decimal point
* then the value will be rounded using the
* {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
* algorithm}. Otherwise, zeros may be appended to reach the precision.
* For a canonical representation of the value, use {@link
* BigDecimal#toString()}.
*
*
*
* All flags defined for Byte, Short, Integer, and
* Long apply.
*
*
If the {@code '#'} flag is given, then the decimal separator will
* always be present.
*
*
The default behavior when no flags are
* given is the same as for Float and Double.
*
*
The specification of width and precision is the same as defined for Float and
* Double.
*
*
Date/Time
*
* This conversion may be applied to {@code long}, {@link Long}, {@link
* Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
*
*
*
* {@code 't'}
* '\u0074'
* Prefix for date and time conversion characters.
* {@code 'T'}
* '\u0054'
* The upper-case variant of {@code 't'}.
*
*
*
* The following date and time conversion character suffixes are defined
* for the {@code 't'} and {@code 'T'} conversions. The types are similar to
* but not completely identical to those defined by GNU {@code date} and
* POSIX {@code strftime(3c)}. Additional conversion types are provided to
* access Java-specific functionality (e.g. {@code 'L'} for milliseconds
* within the second).
*
*
The following conversion characters are used for formatting times:
*
*
*
* {@code 'H'}
* '\u0048'
* Hour of the day for the 24-hour clock, formatted as two digits with
* a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
* corresponds to midnight.
*
* {@code 'I'}
* '\u0049'
* Hour for the 12-hour clock, formatted as two digits with a leading
* zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to
* one o'clock (either morning or afternoon).
*
* {@code 'k'}
* '\u006b'
* Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
* {@code 0} corresponds to midnight.
*
* {@code 'l'}
* '\u006c'
* Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1}
* corresponds to one o'clock (either morning or afternoon).
*
* {@code 'M'}
* '\u004d'
* Minute within the hour formatted as two digits with a leading zero
* as necessary, i.e. {@code 00 - 59}.
*
* {@code 'S'}
* '\u0053'
* Seconds within the minute, formatted as two digits with a leading
* zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
* value required to support leap seconds).
*
* {@code 'L'}
* '\u004c'
* Millisecond within the second formatted as three digits with
* leading zeros as necessary, i.e. {@code 000 - 999}.
*
* {@code 'N'}
* '\u004e'
* Nanosecond within the second, formatted as nine digits with leading
* zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision
* of this value is limited by the resolution of the underlying operating
* system or hardware.
*
* {@code 'p'}
* '\u0070'
* Locale-specific {@linkplain
* java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
* in lower case, e.g."{@code am}" or "{@code pm}". Use of the
* conversion prefix {@code 'T'} forces this output to upper case. (Note
* that {@code 'p'} produces lower-case output. This is different from
* GNU {@code date} and POSIX {@code strftime(3c)} which produce
* upper-case output.)
*
* {@code 'z'}
* '\u007a'
* RFC 822
* style numeric time zone offset from GMT, e.g. {@code -0800}. This
* value will be adjusted as necessary for Daylight Saving Time. For
* {@code long}, {@link Long}, and {@link Date} the time zone used is
* the {@linkplain TimeZone#getDefault() default time zone} for this
* instance of the Java virtual machine.
*
* {@code 'Z'}
* '\u005a'
* A string representing the abbreviation for the time zone. This
* value will be adjusted as necessary for Daylight Saving Time. For
* {@code long}, {@link Long}, and {@link Date} the time zone used is
* the {@linkplain TimeZone#getDefault() default time zone} for this
* instance of the Java virtual machine. The Formatter's locale will
* supersede the locale of the argument (if any).
*
* {@code 's'}
* '\u0073'
* Seconds since the beginning of the epoch starting at 1 January 1970
* {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
* {@code Long.MAX_VALUE/1000}.
*
* {@code 'Q'}
* '\u004f'
* Milliseconds since the beginning of the epoch starting at 1 January
* 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
* {@code Long.MAX_VALUE}. The precision of this value is limited by
* the resolution of the underlying operating system or hardware.
*
*
*
* The following conversion characters are used for formatting dates:
*
*
*
* {@code 'B'}
* '\u0042'
* Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
* full month name}, e.g. {@code "January"}, {@code "February"}.
*
* {@code 'b'}
* '\u0062'
* Locale-specific {@linkplain
* java.text.DateFormatSymbols#getShortMonths abbreviated month name},
* e.g. {@code "Jan"}, {@code "Feb"}.
*
* {@code 'h'}
* '\u0068'
* Same as {@code 'b'}.
*
* {@code 'A'}
* '\u0041'
* Locale-specific full name of the {@linkplain
* java.text.DateFormatSymbols#getWeekdays day of the week},
* e.g. {@code "Sunday"}, {@code "Monday"}
*
* {@code 'a'}
* '\u0061'
* Locale-specific short name of the {@linkplain
* java.text.DateFormatSymbols#getShortWeekdays day of the week},
* e.g. {@code "Sun"}, {@code "Mon"}
*
* {@code 'C'}
* '\u0043'
* Four-digit year divided by {@code 100}, formatted as two digits
* with leading zero as necessary, i.e. {@code 00 - 99}
*
* {@code 'Y'}
* '\u0059' Year, formatted to at least
* four digits with leading zeros as necessary, e.g. {@code 0092} equals
* {@code 92} CE for the Gregorian calendar.
*
* {@code 'y'}
* '\u0079'
* Last two digits of the year, formatted with leading zeros as
* necessary, i.e. {@code 00 - 99}.
*
* {@code 'j'}
* '\u006a'
* Day of year, formatted as three digits with leading zeros as
* necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
* {@code 001} corresponds to the first day of the year.
*
* {@code 'm'}
* '\u006d'
* Month, formatted as two digits with leading zeros as necessary,
* i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
* year and ("{@code 13}" is a special value required to support lunar
* calendars).
*
* {@code 'd'}
* '\u0064'
* Day of month, formatted as two digits with leading zeros as
* necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
* of the month.
*
* {@code 'e'}
* '\u0065'
* Day of month, formatted as two digits, i.e. {@code 1 - 31} where
* "{@code 1}" is the first day of the month.
*
*
*
* The following conversion characters are used for formatting common
* date/time compositions.
*
*
*
* {@code 'R'}
* '\u0052'
* Time formatted for the 24-hour clock as {@code "%tH:%tM"}
*
* {@code 'T'}
* '\u0054'
* Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
*
* {@code 'r'}
* '\u0072'
* Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
* %Tp"}. The location of the morning or afternoon marker
* ({@code '%Tp'}) may be locale-dependent.
*
* {@code 'D'}
* '\u0044'
* Date formatted as {@code "%tm/%td/%ty"}.
*
* {@code 'F'}
* '\u0046'
* ISO 8601
* complete date formatted as {@code "%tY-%tm-%td"}.
*
* {@code 'c'}
* '\u0063'
* Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
* e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
*
*
*
* The {@code '-'} flag defined for General
* conversions applies. If the {@code '#'} flag is given, then a {@link
* FormatFlagsConversionMismatchException} will be thrown.
*
*
The width is the minimum number of characters to
* be written to the output. If the length of the converted value is less than
* the {@code width} then the output will be padded by spaces
* ('\u0020') until the total number of characters equals width.
* The padding is on the left by default. If the {@code '-'} flag is given
* then the padding will be on the right. If width is not specified then there
* is no minimum.
*
*
The precision is not applicable. If the precision is specified then an
* {@link IllegalFormatPrecisionException} will be thrown.
*
*
Percent
*
* The conversion does not correspond to any argument.
*
*
*
* {@code '%'}
* The result is a literal {@code '%'} ('\u0025')
*
* The width is the minimum number of characters to
* be written to the output including the {@code '%'}. If the length of the
* converted value is less than the {@code width} then the output will be
* padded by spaces ('\u0020') until the total number of
* characters equals width. The padding is on the left. If width is not
* specified then just the {@code '%'} is output.
*
*
The {@code '-'} flag defined for General
* conversions applies. If any other flags are provided, then a
* {@link FormatFlagsConversionMismatchException} will be thrown.
*
*
The precision is not applicable. If the precision is specified an
* {@link IllegalFormatPrecisionException} will be thrown.
*
*
*
* Line Separator
*
* The conversion does not correspond to any argument.
*
*
*
* {@code 'n'}
* the platform-specific line separator as returned by {@link
* System#getProperty System.getProperty("line.separator")}.
*
*
*
* Flags, width, and precision are not applicable. If any are provided an
* {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
* and {@link IllegalFormatPrecisionException}, respectively will be thrown.
*
*
Argument Index
*
* Format specifiers can reference arguments in three ways:
*
*
*
* - Explicit indexing is used when the format specifier contains an
* argument index. The argument index is a decimal integer indicating the
* position of the argument in the argument list. The first argument is
* referenced by "{@code 1$}", the second by "{@code 2$}", etc. An argument
* may be referenced more than once.
*
*
For example:
*
*
* formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
* "a", "b", "c", "d")
* // -> "d c b a d c b a"
*
*
* - Relative indexing is used when the format specifier contains a
* {@code '<'} ('\u003c') flag which causes the argument for
* the previous format specifier to be re-used. If there is no previous
* argument, then a {@link MissingFormatArgumentException} is thrown.
*
*
* formatter.format("%s %s %<s %<s", "a", "b", "c", "d")
* // -> "a b b b"
* // "c" and "d" are ignored because they are not referenced
*
*
* - Ordinary indexing is used when the format specifier contains
* neither an argument index nor a {@code '<'} flag. Each format specifier
* which uses ordinary indexing is assigned a sequential implicit index into
* argument list which is independent of the indices used by explicit or
* relative indexing.
*
*
* formatter.format("%s %s %s %s", "a", "b", "c", "d")
* // -> "a b c d"
*
*
*
*
* It is possible to have a format string which uses all forms of indexing,
* for example:
*
*
* formatter.format("%2$s %s %<s %s", "a", "b", "c", "d")
* // -> "b a a b"
* // "c" and "d" are ignored because they are not referenced
*
*
* The maximum number of arguments is limited by the maximum dimension of a
* Java array as defined by
* The Java™ Virtual Machine Specification.
* If the argument index is does not correspond to an
* available argument, then a {@link MissingFormatArgumentException} is thrown.
*
*
If there are more arguments than format specifiers, the extra arguments
* are ignored.
*
*
Unless otherwise specified, passing a {@code null} argument to any
* method or constructor in this class will cause a {@link
* NullPointerException} to be thrown.
*
* @author Iris Clark
* @since 1.5
*/
public final class Formatter implements Closeable, Flushable {
private Appendable a;
private final Locale l;
private IOException lastException;
private final char zero;
private static double scaleUp;
// 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
// + 3 (max # exp digits) + 4 (error) = 30
private static final int MAX_FD_CHARS = 30;
/**
* Returns a charset object for the given charset name.
* @throws NullPointerException is csn is null
* @throws UnsupportedEncodingException if the charset is not supported
*/
private static Charset toCharset(String csn)
throws UnsupportedEncodingException
{
Objects.requireNonNull(csn, "charsetName");
try {
return Charset.forName(csn);
} catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
// UnsupportedEncodingException should be thrown
throw new UnsupportedEncodingException(csn);
}
}
private static final Appendable nonNullAppendable(Appendable a) {
if (a == null)
return new StringBuilder();
return a;
}
/* Private constructors */
private Formatter(Locale l, Appendable a) {
this.a = a;
this.l = l;
this.zero = getZero(l);
}
private Formatter(Charset charset, Locale l, File file)
throws FileNotFoundException
{
this(l,
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
}
/**
* Constructs a new formatter.
*
*
The destination of the formatted output is a {@link StringBuilder}
* which may be retrieved by invoking {@link #out out()} and whose
* current content may be converted into a string by invoking {@link
* #toString toString()}. The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*/
public Formatter() {
this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
}
/**
* Constructs a new formatter with the specified destination.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
* @param a
* Destination for the formatted output. If {@code a} is
* {@code null} then a {@link StringBuilder} will be created.
*/
public Formatter(Appendable a) {
this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
}
/**
* Constructs a new formatter with the specified locale.
*
*
The destination of the formatted output is a {@link StringBuilder}
* which may be retrieved by invoking {@link #out out()} and whose current
* content may be converted into a string by invoking {@link #toString
* toString()}.
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied.
*/
public Formatter(Locale l) {
this(l, new StringBuilder());
}
/**
* Constructs a new formatter with the specified destination and locale.
*
* @param a
* Destination for the formatted output. If {@code a} is
* {@code null} then a {@link StringBuilder} will be created.
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied.
*/
public Formatter(Appendable a, Locale l) {
this(l, nonNullAppendable(a));
}
/**
* Constructs a new formatter with the specified file name.
*
*
The charset used is the {@linkplain
* java.nio.charset.Charset#defaultCharset() default charset} for this
* instance of the Java virtual machine.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
* @param fileName
* The name of the file to use as the destination of this
* formatter. If the file exists then it will be truncated to
* zero size; otherwise, a new file will be created. The output
* will be written to the file and is buffered.
*
* @throws SecurityException
* If a security manager is present and {@link
* SecurityManager#checkWrite checkWrite(fileName)} denies write
* access to the file
*
* @throws FileNotFoundException
* If the given file name does not denote an existing, writable
* regular file and a new regular file of that name cannot be
* created, or if some other error occurs while opening or
* creating the file
*/
public Formatter(String fileName) throws FileNotFoundException {
this(Locale.getDefault(Locale.Category.FORMAT),
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
}
/**
* Constructs a new formatter with the specified file name and charset.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
* @param fileName
* The name of the file to use as the destination of this
* formatter. If the file exists then it will be truncated to
* zero size; otherwise, a new file will be created. The output
* will be written to the file and is buffered.
*
* @param csn
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws FileNotFoundException
* If the given file name does not denote an existing, writable
* regular file and a new regular file of that name cannot be
* created, or if some other error occurs while opening or
* creating the file
*
* @throws SecurityException
* If a security manager is present and {@link
* SecurityManager#checkWrite checkWrite(fileName)} denies write
* access to the file
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*/
public Formatter(String fileName, String csn)
throws FileNotFoundException, UnsupportedEncodingException
{
this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
}
/**
* Constructs a new formatter with the specified file name, charset, and
* locale.
*
* @param fileName
* The name of the file to use as the destination of this
* formatter. If the file exists then it will be truncated to
* zero size; otherwise, a new file will be created. The output
* will be written to the file and is buffered.
*
* @param csn
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied.
*
* @throws FileNotFoundException
* If the given file name does not denote an existing, writable
* regular file and a new regular file of that name cannot be
* created, or if some other error occurs while opening or
* creating the file
*
* @throws SecurityException
* If a security manager is present and {@link
* SecurityManager#checkWrite checkWrite(fileName)} denies write
* access to the file
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*/
public Formatter(String fileName, String csn, Locale l)
throws FileNotFoundException, UnsupportedEncodingException
{
this(toCharset(csn), l, new File(fileName));
}
/**
* Constructs a new formatter with the specified file.
*
*
The charset used is the {@linkplain
* java.nio.charset.Charset#defaultCharset() default charset} for this
* instance of the Java virtual machine.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
* @param file
* The file to use as the destination of this formatter. If the
* file exists then it will be truncated to zero size; otherwise,
* a new file will be created. The output will be written to the
* file and is buffered.
*
* @throws SecurityException
* If a security manager is present and {@link
* SecurityManager#checkWrite checkWrite(file.getPath())} denies
* write access to the file
*
* @throws FileNotFoundException
* If the given file object does not denote an existing, writable
* regular file and a new regular file of that name cannot be
* created, or if some other error occurs while opening or
* creating the file
*/
public Formatter(File file) throws FileNotFoundException {
this(Locale.getDefault(Locale.Category.FORMAT),
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
}
/**
* Constructs a new formatter with the specified file and charset.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
* @param file
* The file to use as the destination of this formatter. If the
* file exists then it will be truncated to zero size; otherwise,
* a new file will be created. The output will be written to the
* file and is buffered.
*
* @param csn
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws FileNotFoundException
* If the given file object does not denote an existing, writable
* regular file and a new regular file of that name cannot be
* created, or if some other error occurs while opening or
* creating the file
*
* @throws SecurityException
* If a security manager is present and {@link
* SecurityManager#checkWrite checkWrite(file.getPath())} denies
* write access to the file
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*/
public Formatter(File file, String csn)
throws FileNotFoundException, UnsupportedEncodingException
{
this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
}
/**
* Constructs a new formatter with the specified file, charset, and
* locale.
*
* @param file
* The file to use as the destination of this formatter. If the
* file exists then it will be truncated to zero size; otherwise,
* a new file will be created. The output will be written to the
* file and is buffered.
*
* @param csn
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied.
*
* @throws FileNotFoundException
* If the given file object does not denote an existing, writable
* regular file and a new regular file of that name cannot be
* created, or if some other error occurs while opening or
* creating the file
*
* @throws SecurityException
* If a security manager is present and {@link
* SecurityManager#checkWrite checkWrite(file.getPath())} denies
* write access to the file
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*/
public Formatter(File file, String csn, Locale l)
throws FileNotFoundException, UnsupportedEncodingException
{
this(toCharset(csn), l, file);
}
/**
* Constructs a new formatter with the specified print stream.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
*
Characters are written to the given {@link java.io.PrintStream
* PrintStream} object and are therefore encoded using that object's
* charset.
*
* @param ps
* The stream to use as the destination of this formatter.
*/
public Formatter(PrintStream ps) {
this(Locale.getDefault(Locale.Category.FORMAT),
(Appendable)Objects.requireNonNull(ps));
}
/**
* Constructs a new formatter with the specified output stream.
*
*
The charset used is the {@linkplain
* java.nio.charset.Charset#defaultCharset() default charset} for this
* instance of the Java virtual machine.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
* @param os
* The output stream to use as the destination of this formatter.
* The output will be buffered.
*/
public Formatter(OutputStream os) {
this(Locale.getDefault(Locale.Category.FORMAT),
new BufferedWriter(new OutputStreamWriter(os)));
}
/**
* Constructs a new formatter with the specified output stream and
* charset.
*
*
The locale used is the {@linkplain
* Locale#getDefault(Locale.Category) default locale} for
* {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
* virtual machine.
*
* @param os
* The output stream to use as the destination of this formatter.
* The output will be buffered.
*
* @param csn
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*/
public Formatter(OutputStream os, String csn)
throws UnsupportedEncodingException
{
this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
}
/**
* Constructs a new formatter with the specified output stream, charset,
* and locale.
*
* @param os
* The output stream to use as the destination of this formatter.
* The output will be buffered.
*
* @param csn
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied.
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*/
public Formatter(OutputStream os, String csn, Locale l)
throws UnsupportedEncodingException
{
this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
}
private static char getZero(Locale l) {
if ((l != null) && !l.equals(Locale.US)) {
// Android-changed: Improve the performance by 10x http://b/197788756
// Unclear if this mapping is needed but inherited from DecimalFormatSymbols
l = LocaleData.mapInvalidAndNullLocales(l);
DecimalFormatData decimalFormatData = DecimalFormatData.getInstance(l);
return decimalFormatData.getZeroDigit();
// DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
// return dfs.getZeroDigit();
} else {
return '0';
}
}
/**
* Returns the locale set by the construction of this formatter.
*
*
The {@link #format(java.util.Locale,String,Object...) format} method
* for this object which has a locale argument does not change this value.
*
* @return {@code null} if no localization is applied, otherwise a
* locale
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*/
public Locale locale() {
ensureOpen();
return l;
}
/**
* Returns the destination for the output.
*
* @return The destination for the output
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*/
public Appendable out() {
ensureOpen();
return a;
}
/**
* Returns the result of invoking {@code toString()} on the destination
* for the output. For example, the following code formats text into a
* {@link StringBuilder} then retrieves the resultant string:
*
*
* Formatter f = new Formatter();
* f.format("Last reboot at %tc", lastRebootDate);
* String s = f.toString();
* // -> s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
*
*
* An invocation of this method behaves in exactly the same way as the
* invocation
*
*
* out().toString()
*
* Depending on the specification of {@code toString} for the {@link
* Appendable}, the returned string may or may not contain the characters
* written to the destination. For instance, buffers typically return
* their contents in {@code toString()}, but streams cannot since the
* data is discarded.
*
* @return The result of invoking {@code toString()} on the destination
* for the output
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*/
public String toString() {
ensureOpen();
return a.toString();
}
/**
* Flushes this formatter. If the destination implements the {@link
* java.io.Flushable} interface, its {@code flush} method will be invoked.
*
*
Flushing a formatter writes any buffered output in the destination
* to the underlying stream.
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*/
public void flush() {
ensureOpen();
if (a instanceof Flushable) {
try {
((Flushable)a).flush();
} catch (IOException ioe) {
lastException = ioe;
}
}
}
/**
* Closes this formatter. If the destination implements the {@link
* java.io.Closeable} interface, its {@code close} method will be invoked.
*
*
Closing a formatter allows it to release resources it may be holding
* (such as open files). If the formatter is already closed, then invoking
* this method has no effect.
*
*
Attempting to invoke any methods except {@link #ioException()} in
* this formatter after it has been closed will result in a {@link
* FormatterClosedException}.
*/
public void close() {
if (a == null)
return;
try {
if (a instanceof Closeable)
((Closeable)a).close();
} catch (IOException ioe) {
lastException = ioe;
} finally {
a = null;
}
}
private void ensureOpen() {
if (a == null)
throw new FormatterClosedException();
}
/**
* Returns the {@code IOException} last thrown by this formatter's {@link
* Appendable}.
*
*
If the destination's {@code append()} method never throws
* {@code IOException}, then this method will always return {@code null}.
*
* @return The last exception thrown by the Appendable or {@code null} if
* no such exception exists.
*/
public IOException ioException() {
return lastException;
}
/**
* Writes a formatted string to this object's destination using the
* specified format string and arguments. The locale used is the one
* defined during the construction of this formatter.
*
* @param format
* A format string as described in Format string
* syntax.
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details
* section of the formatter class specification.
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*
* @return This formatter
*/
public Formatter format(String format, Object ... args) {
return format(l, format, args);
}
/**
* Writes a formatted string to this object's destination using the
* specified locale, format string, and arguments.
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied. This does not change this object's locale that was
* set during construction.
*
* @param format
* A format string as described in Format string
* syntax
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details
* section of the formatter class specification.
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*
* @return This formatter
*/
public Formatter format(Locale l, String format, Object ... args) {
ensureOpen();
// index of last argument referenced
int last = -1;
// last ordinary index
int lasto = -1;
FormatString[] fsa = parse(format);
for (int i = 0; i < fsa.length; i++) {
FormatString fs = fsa[i];
int index = fs.index();
try {
switch (index) {
case -2: // fixed string, "%n", or "%%"
fs.print(null, l);
break;
case -1: // relative index
if (last < 0 || (args != null && last > args.length - 1))
throw new MissingFormatArgumentException(fs.toString());
fs.print((args == null ? null : args[last]), l);
break;
case 0: // ordinary index
lasto++;
last = lasto;
if (args != null && lasto > args.length - 1)
throw new MissingFormatArgumentException(fs.toString());
fs.print((args == null ? null : args[lasto]), l);
break;
default: // explicit index
last = index - 1;
if (args != null && last > args.length - 1)
throw new MissingFormatArgumentException(fs.toString());
fs.print((args == null ? null : args[last]), l);
break;
}
} catch (IOException x) {
lastException = x;
}
}
return this;
}
// BEGIN Android-changed: changed parse() to manual parsing instead of regex.
/**
* Finds format specifiers in the format string.
*/
private FormatString[] parse(String s) {
ArrayList al = new ArrayList<>();
for (int i = 0, len = s.length(); i < len; ) {
int nextPercent = s.indexOf('%', i);
if (s.charAt(i) != '%') {
// This is plain-text part, find the maximal plain-text
// sequence and store it.
int plainTextStart = i;
int plainTextEnd = (nextPercent == -1) ? len: nextPercent;
al.add(new FixedString(s.substring(plainTextStart,
plainTextEnd)));
i = plainTextEnd;
} else {
// We have a format specifier
FormatSpecifierParser fsp = new FormatSpecifierParser(s, i + 1);
al.add(fsp.getFormatSpecifier());
i = fsp.getEndIdx();
}
}
return al.toArray(new FormatString[al.size()]);
}
/**
* Parses the format specifier.
* %[argument_index$][flags][width][.precision][t]conversion
*/
private class FormatSpecifierParser {
private final String format;
private int cursor;
private FormatSpecifier fs;
private String index;
private String flags;
private String width;
private String precision;
private String tT;
private String conv;
private static final String FLAGS = ",-(+# 0<";
public FormatSpecifierParser(String format, int startIdx) {
this.format = format;
cursor = startIdx;
// Index
if (nextIsInt()) {
String nint = nextInt();
if (peek() == '$') {
index = nint;
advance();
} else if (nint.charAt(0) == '0') {
// This is a flag, skip to parsing flags.
back(nint.length());
} else {
// This is the width, skip to parsing precision.
width = nint;
}
}
// Flags
flags = "";
while (width == null && FLAGS.indexOf(peek()) >= 0) {
flags += advance();
}
// Width
if (width == null && nextIsInt()) {
width = nextInt();
}
// Precision
if (peek() == '.') {
advance();
if (!nextIsInt()) {
throw new IllegalFormatPrecisionException(peek());
}
precision = nextInt();
}
// tT
if (peek() == 't' || peek() == 'T') {
tT = String.valueOf(advance());
}
// Conversion
conv = String.valueOf(advance());
fs = new FormatSpecifier(index, flags, width, precision, tT, conv);
}
private String nextInt() {
int strBegin = cursor;
while (nextIsInt()) {
advance();
}
return format.substring(strBegin, cursor);
}
private boolean nextIsInt() {
return !isEnd() && Character.isDigit(peek());
}
private char peek() {
if (isEnd()) {
throw new UnknownFormatConversionException("End of String");
}
return format.charAt(cursor);
}
private char advance() {
if (isEnd()) {
throw new UnknownFormatConversionException("End of String");
}
return format.charAt(cursor++);
}
private void back(int len) {
cursor -= len;
}
private boolean isEnd() {
return cursor == format.length();
}
public FormatSpecifier getFormatSpecifier() {
return fs;
}
public int getEndIdx() {
return cursor;
}
}
// END Android-changed: changed parse() to manual parsing instead of regex.
private interface FormatString {
int index();
void print(Object arg, Locale l) throws IOException;
String toString();
}
private class FixedString implements FormatString {
private String s;
FixedString(String s) { this.s = s; }
public int index() { return -2; }
public void print(Object arg, Locale l)
throws IOException { a.append(s); }
public String toString() { return s; }
}
/**
* Enum for {@code BigDecimal} formatting.
*/
public enum BigDecimalLayoutForm {
/**
* Format the {@code BigDecimal} in computerized scientific notation.
*/
SCIENTIFIC,
/**
* Format the {@code BigDecimal} as a decimal number.
*/
DECIMAL_FLOAT
};
private class FormatSpecifier implements FormatString {
private int index = -1;
private Flags f = Flags.NONE;
private int width;
private int precision;
private boolean dt = false;
private char c;
private int index(String s) {
if (s != null) {
try {
// Android-changed: FormatSpecifierParser passes in correct String.
// index = Integer.parseInt(s.substring(0, s.length() - 1));
index = Integer.parseInt(s);
} catch (NumberFormatException x) {
assert(false);
}
} else {
index = 0;
}
return index;
}
public int index() {
return index;
}
private Flags flags(String s) {
f = Flags.parse(s);
if (f.contains(Flags.PREVIOUS))
index = -1;
return f;
}
Flags flags() {
return f;
}
private int width(String s) {
width = -1;
if (s != null) {
try {
width = Integer.parseInt(s);
if (width < 0)
throw new IllegalFormatWidthException(width);
} catch (NumberFormatException x) {
assert(false);
}
}
return width;
}
int width() {
return width;
}
private int precision(String s) {
precision = -1;
if (s != null) {
try {
// Android-changed: FormatSpecifierParser passes in correct String.
// precision = Integer.parseInt(s.substring(1));
precision = Integer.parseInt(s);
if (precision < 0)
throw new IllegalFormatPrecisionException(precision);
} catch (NumberFormatException x) {
assert(false);
}
}
return precision;
}
int precision() {
return precision;
}
private char conversion(String s) {
c = s.charAt(0);
if (!dt) {
if (!Conversion.isValid(c))
throw new UnknownFormatConversionException(String.valueOf(c));
if (Character.isUpperCase(c))
f.add(Flags.UPPERCASE);
c = Character.toLowerCase(c);
if (Conversion.isText(c))
index = -2;
}
return c;
}
private char conversion() {
return c;
}
// BEGIN Android-changed: FormatSpecifierParser passes in the values instead of a Matcher.
FormatSpecifier(String indexStr, String flagsStr, String widthStr,
String precisionStr, String tTStr, String convStr) {
int idx = 1;
index(indexStr);
flags(flagsStr);
width(widthStr);
precision(precisionStr);
if (tTStr != null) {
dt = true;
if (tTStr.equals("T"))
f.add(Flags.UPPERCASE);
}
conversion(convStr);
// END Android-changed: FormatSpecifierParser passes in the values instead of a Matcher.
if (dt)
checkDateTime();
else if (Conversion.isGeneral(c))
checkGeneral();
else if (Conversion.isCharacter(c))
checkCharacter();
else if (Conversion.isInteger(c))
checkInteger();
else if (Conversion.isFloat(c))
checkFloat();
else if (Conversion.isText(c))
checkText();
else
throw new UnknownFormatConversionException(String.valueOf(c));
}
public void print(Object arg, Locale l) throws IOException {
if (dt) {
printDateTime(arg, l);
return;
}
switch(c) {
case Conversion.DECIMAL_INTEGER:
case Conversion.OCTAL_INTEGER:
case Conversion.HEXADECIMAL_INTEGER:
printInteger(arg, l);
break;
case Conversion.SCIENTIFIC:
case Conversion.GENERAL:
case Conversion.DECIMAL_FLOAT:
case Conversion.HEXADECIMAL_FLOAT:
printFloat(arg, l);
break;
case Conversion.CHARACTER:
case Conversion.CHARACTER_UPPER:
printCharacter(arg);
break;
case Conversion.BOOLEAN:
printBoolean(arg);
break;
case Conversion.STRING:
printString(arg, l);
break;
case Conversion.HASHCODE:
printHashCode(arg);
break;
case Conversion.LINE_SEPARATOR:
a.append(System.lineSeparator());
break;
case Conversion.PERCENT_SIGN:
a.append('%');
break;
default:
assert false;
}
}
private void printInteger(Object arg, Locale l) throws IOException {
if (arg == null)
print("null");
else if (arg instanceof Byte)
print(((Byte)arg).byteValue(), l);
else if (arg instanceof Short)
print(((Short)arg).shortValue(), l);
else if (arg instanceof Integer)
print(((Integer)arg).intValue(), l);
else if (arg instanceof Long)
print(((Long)arg).longValue(), l);
else if (arg instanceof BigInteger)
print(((BigInteger)arg), l);
else
failConversion(c, arg);
}
private void printFloat(Object arg, Locale l) throws IOException {
if (arg == null)
print("null");
else if (arg instanceof Float)
print(((Float)arg).floatValue(), l);
else if (arg instanceof Double)
print(((Double)arg).doubleValue(), l);
else if (arg instanceof BigDecimal)
print(((BigDecimal)arg), l);
else
failConversion(c, arg);
}
private void printDateTime(Object arg, Locale l) throws IOException {
if (arg == null) {
print("null");
return;
}
Calendar cal = null;
// Instead of Calendar.setLenient(true), perhaps we should
// wrap the IllegalArgumentException that might be thrown?
if (arg instanceof Long) {
// Note that the following method uses an instance of the
// default time zone (TimeZone.getDefaultRef().
cal = Calendar.getInstance(l == null ? Locale.US : l);
cal.setTimeInMillis((Long)arg);
} else if (arg instanceof Date) {
// Note that the following method uses an instance of the
// default time zone (TimeZone.getDefaultRef().
cal = Calendar.getInstance(l == null ? Locale.US : l);
cal.setTime((Date)arg);
} else if (arg instanceof Calendar) {
cal = (Calendar) ((Calendar) arg).clone();
cal.setLenient(true);
} else if (arg instanceof TemporalAccessor) {
print((TemporalAccessor) arg, c, l);
return;
} else {
failConversion(c, arg);
}
// Use the provided locale so that invocations of
// localizedMagnitude() use optimizations for null.
print(cal, c, l);
}
private void printCharacter(Object arg) throws IOException {
if (arg == null) {
print("null");
return;
}
String s = null;
if (arg instanceof Character) {
s = ((Character)arg).toString();
} else if (arg instanceof Byte) {
byte i = ((Byte)arg).byteValue();
if (Character.isValidCodePoint(i))
s = new String(Character.toChars(i));
else
throw new IllegalFormatCodePointException(i);
} else if (arg instanceof Short) {
short i = ((Short)arg).shortValue();
if (Character.isValidCodePoint(i))
s = new String(Character.toChars(i));
else
throw new IllegalFormatCodePointException(i);
} else if (arg instanceof Integer) {
int i = ((Integer)arg).intValue();
if (Character.isValidCodePoint(i))
s = new String(Character.toChars(i));
else
throw new IllegalFormatCodePointException(i);
} else {
failConversion(c, arg);
}
print(s);
}
private void printString(Object arg, Locale l) throws IOException {
if (arg instanceof Formattable) {
Formatter fmt = Formatter.this;
if (fmt.locale() != l)
fmt = new Formatter(fmt.out(), l);
((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
} else {
if (f.contains(Flags.ALTERNATE))
failMismatch(Flags.ALTERNATE, 's');
if (arg == null)
print("null");
else
print(arg.toString());
}
}
private void printBoolean(Object arg) throws IOException {
String s;
if (arg != null)
s = ((arg instanceof Boolean)
? ((Boolean)arg).toString()
: Boolean.toString(true));
else
s = Boolean.toString(false);
print(s);
}
private void printHashCode(Object arg) throws IOException {
String s = (arg == null
? "null"
: Integer.toHexString(arg.hashCode()));
print(s);
}
private void print(String s) throws IOException {
if (precision != -1 && precision < s.length())
s = s.substring(0, precision);
if (f.contains(Flags.UPPERCASE)) {
// Android-changed: Use provided locale instead of default, if it is non-null.
// s = s.toUpperCase();
s = s.toUpperCase(l != null ? l : Locale.getDefault());
}
a.append(justify(s));
}
private String justify(String s) {
if (width == -1)
return s;
StringBuilder sb = new StringBuilder();
boolean pad = f.contains(Flags.LEFT_JUSTIFY);
int sp = width - s.length();
if (!pad)
for (int i = 0; i < sp; i++) sb.append(' ');
sb.append(s);
if (pad)
for (int i = 0; i < sp; i++) sb.append(' ');
return sb.toString();
}
public String toString() {
StringBuilder sb = new StringBuilder("%");
// Flags.UPPERCASE is set internally for legal conversions.
Flags dupf = f.dup().remove(Flags.UPPERCASE);
sb.append(dupf.toString());
if (index > 0)
sb.append(index).append('$');
if (width != -1)
sb.append(width);
if (precision != -1)
sb.append('.').append(precision);
if (dt)
sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
sb.append(f.contains(Flags.UPPERCASE)
? Character.toUpperCase(c) : c);
return sb.toString();
}
private void checkGeneral() {
if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
&& f.contains(Flags.ALTERNATE))
failMismatch(Flags.ALTERNATE, c);
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
Flags.GROUP, Flags.PARENTHESES);
}
private void checkDateTime() {
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
if (!DateTime.isValid(c))
throw new UnknownFormatConversionException("t" + c);
checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
}
private void checkCharacter() {
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
}
private void checkInteger() {
checkNumeric();
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
if (c == Conversion.DECIMAL_INTEGER)
checkBadFlags(Flags.ALTERNATE);
else if (c == Conversion.OCTAL_INTEGER)
checkBadFlags(Flags.GROUP);
else
checkBadFlags(Flags.GROUP);
}
private void checkBadFlags(Flags ... badFlags) {
for (int i = 0; i < badFlags.length; i++)
if (f.contains(badFlags[i]))
failMismatch(badFlags[i], c);
}
private void checkFloat() {
checkNumeric();
if (c == Conversion.DECIMAL_FLOAT) {
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
} else if (c == Conversion.SCIENTIFIC) {
checkBadFlags(Flags.GROUP);
} else if (c == Conversion.GENERAL) {
checkBadFlags(Flags.ALTERNATE);
}
}
private void checkNumeric() {
if (width != -1 && width < 0)
throw new IllegalFormatWidthException(width);
if (precision != -1 && precision < 0)
throw new IllegalFormatPrecisionException(precision);
// '-' and '0' require a width
if (width == -1
&& (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
throw new MissingFormatWidthException(toString());
// bad combination
if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
|| (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
throw new IllegalFormatFlagsException(f.toString());
}
private void checkText() {
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
switch (c) {
case Conversion.PERCENT_SIGN:
if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
&& f.valueOf() != Flags.NONE.valueOf())
throw new IllegalFormatFlagsException(f.toString());
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
break;
case Conversion.LINE_SEPARATOR:
if (width != -1)
throw new IllegalFormatWidthException(width);
if (f.valueOf() != Flags.NONE.valueOf())
throw new IllegalFormatFlagsException(f.toString());
break;
default:
assert false;
}
}
private void print(byte value, Locale l) throws IOException {
long v = value;
if (value < 0
&& (c == Conversion.OCTAL_INTEGER
|| c == Conversion.HEXADECIMAL_INTEGER)) {
v += (1L << 8);
assert v >= 0 : v;
}
print(v, l);
}
private void print(short value, Locale l) throws IOException {
long v = value;
if (value < 0
&& (c == Conversion.OCTAL_INTEGER
|| c == Conversion.HEXADECIMAL_INTEGER)) {
v += (1L << 16);
assert v >= 0 : v;
}
print(v, l);
}
private void print(int value, Locale l) throws IOException {
long v = value;
if (value < 0
&& (c == Conversion.OCTAL_INTEGER
|| c == Conversion.HEXADECIMAL_INTEGER)) {
v += (1L << 32);
assert v >= 0 : v;
}
print(v, l);
}
private void print(long value, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
if (c == Conversion.DECIMAL_INTEGER) {
boolean neg = value < 0;
char[] va;
if (value < 0)
va = Long.toString(value, 10).substring(1).toCharArray();
else
va = Long.toString(value, 10).toCharArray();
// leading sign indicator
leadingSign(sb, neg);
// the value
localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
// trailing sign indicator
trailingSign(sb, neg);
} else if (c == Conversion.OCTAL_INTEGER) {
checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
Flags.PLUS);
String s = Long.toOctalString(value);
int len = (f.contains(Flags.ALTERNATE)
? s.length() + 1
: s.length());
// apply ALTERNATE (radix indicator for octal) before ZERO_PAD
if (f.contains(Flags.ALTERNATE))
sb.append('0');
if (f.contains(Flags.ZERO_PAD))
for (int i = 0; i < width - len; i++) sb.append('0');
sb.append(s);
} else if (c == Conversion.HEXADECIMAL_INTEGER) {
checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
Flags.PLUS);
String s = Long.toHexString(value);
int len = (f.contains(Flags.ALTERNATE)
? s.length() + 2
: s.length());
// apply ALTERNATE (radix indicator for hex) before ZERO_PAD
if (f.contains(Flags.ALTERNATE))
sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
if (f.contains(Flags.ZERO_PAD))
for (int i = 0; i < width - len; i++) sb.append('0');
if (f.contains(Flags.UPPERCASE))
s = s.toUpperCase();
sb.append(s);
}
// justify based on width
a.append(justify(sb.toString()));
}
// neg := val < 0
private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
if (!neg) {
if (f.contains(Flags.PLUS)) {
sb.append('+');
} else if (f.contains(Flags.LEADING_SPACE)) {
sb.append(' ');
}
} else {
if (f.contains(Flags.PARENTHESES))
sb.append('(');
else
sb.append('-');
}
return sb;
}
// neg := val < 0
private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
if (neg && f.contains(Flags.PARENTHESES))
sb.append(')');
return sb;
}
private void print(BigInteger value, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
boolean neg = value.signum() == -1;
BigInteger v = value.abs();
// leading sign indicator
leadingSign(sb, neg);
// the value
if (c == Conversion.DECIMAL_INTEGER) {
char[] va = v.toString().toCharArray();
localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
} else if (c == Conversion.OCTAL_INTEGER) {
String s = v.toString(8);
int len = s.length() + sb.length();
if (neg && f.contains(Flags.PARENTHESES))
len++;
// apply ALTERNATE (radix indicator for octal) before ZERO_PAD
if (f.contains(Flags.ALTERNATE)) {
len++;
sb.append('0');
}
if (f.contains(Flags.ZERO_PAD)) {
for (int i = 0; i < width - len; i++)
sb.append('0');
}
sb.append(s);
} else if (c == Conversion.HEXADECIMAL_INTEGER) {
String s = v.toString(16);
int len = s.length() + sb.length();
if (neg && f.contains(Flags.PARENTHESES))
len++;
// apply ALTERNATE (radix indicator for hex) before ZERO_PAD
if (f.contains(Flags.ALTERNATE)) {
len += 2;
sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
}
if (f.contains(Flags.ZERO_PAD))
for (int i = 0; i < width - len; i++)
sb.append('0');
if (f.contains(Flags.UPPERCASE))
s = s.toUpperCase();
sb.append(s);
}
// trailing sign indicator
trailingSign(sb, (value.signum() == -1));
// justify based on width
a.append(justify(sb.toString()));
}
private void print(float value, Locale l) throws IOException {
print((double) value, l);
}
private void print(double value, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
boolean neg = Double.compare(value, 0.0) == -1;
if (!Double.isNaN(value)) {
double v = Math.abs(value);
// leading sign indicator
leadingSign(sb, neg);
// the value
if (!Double.isInfinite(v))
print(sb, v, l, f, c, precision, neg);
else
sb.append(f.contains(Flags.UPPERCASE)
? "INFINITY" : "Infinity");
// trailing sign indicator
trailingSign(sb, neg);
} else {
sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
}
// justify based on width
a.append(justify(sb.toString()));
}
// !Double.isInfinite(value) && !Double.isNaN(value)
private void print(StringBuilder sb, double value, Locale l,
Flags f, char c, int precision, boolean neg)
throws IOException
{
if (c == Conversion.SCIENTIFIC) {
// Create a new FormattedFloatingDecimal with the desired
// precision.
int prec = (precision == -1 ? 6 : precision);
FormattedFloatingDecimal fd
= FormattedFloatingDecimal.valueOf(value, prec,
FormattedFloatingDecimal.Form.SCIENTIFIC);
char[] mant = addZeros(fd.getMantissa(), prec);
// If the precision is zero and the '#' flag is set, add the
// requested decimal point.
if (f.contains(Flags.ALTERNATE) && (prec == 0))
mant = addDot(mant);
char[] exp = (value == 0.0)
? new char[] {'+','0','0'} : fd.getExponent();
int newW = width;
if (width != -1)
newW = adjustWidth(width - exp.length - 1, f, neg);
localizedMagnitude(sb, mant, f, newW, l);
// BEGIN Android-changed: Use localized exponent separator for %e.
Locale separatorLocale = (l != null) ? l : Locale.getDefault();
DecimalFormatData formatData = DecimalFormatData.getInstance(separatorLocale);
sb.append(f.contains(Flags.UPPERCASE) ?
formatData.getExponentSeparator().toUpperCase(separatorLocale) :
formatData.getExponentSeparator().toLowerCase(separatorLocale));
// END Android-changed: Use localized exponent separator for %e.
Flags flags = f.dup().remove(Flags.GROUP);
char sign = exp[0];
assert(sign == '+' || sign == '-');
sb.append(sign);
char[] tmp = new char[exp.length - 1];
System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
sb.append(localizedMagnitude(null, tmp, flags, -1, l));
} else if (c == Conversion.DECIMAL_FLOAT) {
// Create a new FormattedFloatingDecimal with the desired
// precision.
int prec = (precision == -1 ? 6 : precision);
FormattedFloatingDecimal fd
= FormattedFloatingDecimal.valueOf(value, prec,
FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
char[] mant = addZeros(fd.getMantissa(), prec);
// If the precision is zero and the '#' flag is set, add the
// requested decimal point.
if (f.contains(Flags.ALTERNATE) && (prec == 0))
mant = addDot(mant);
int newW = width;
if (width != -1)
newW = adjustWidth(width, f, neg);
localizedMagnitude(sb, mant, f, newW, l);
} else if (c == Conversion.GENERAL) {
int prec = precision;
if (precision == -1)
prec = 6;
else if (precision == 0)
prec = 1;
char[] exp;
char[] mant;
int expRounded;
if (value == 0.0) {
exp = null;
mant = new char[] {'0'};
expRounded = 0;
} else {
FormattedFloatingDecimal fd
= FormattedFloatingDecimal.valueOf(value, prec,
FormattedFloatingDecimal.Form.GENERAL);
exp = fd.getExponent();
mant = fd.getMantissa();
expRounded = fd.getExponentRounded();
}
if (exp != null) {
prec -= 1;
} else {
prec -= expRounded + 1;
}
mant = addZeros(mant, prec);
// If the precision is zero and the '#' flag is set, add the
// requested decimal point.
if (f.contains(Flags.ALTERNATE) && (prec == 0))
mant = addDot(mant);
int newW = width;
if (width != -1) {
if (exp != null)
newW = adjustWidth(width - exp.length - 1, f, neg);
else
newW = adjustWidth(width, f, neg);
}
localizedMagnitude(sb, mant, f, newW, l);
if (exp != null) {
sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
Flags flags = f.dup().remove(Flags.GROUP);
char sign = exp[0];
assert(sign == '+' || sign == '-');
sb.append(sign);
char[] tmp = new char[exp.length - 1];
System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
sb.append(localizedMagnitude(null, tmp, flags, -1, l));
}
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
int prec = precision;
if (precision == -1)
// assume that we want all of the digits
prec = 0;
else if (precision == 0)
prec = 1;
String s = hexDouble(value, prec);
char[] va;
boolean upper = f.contains(Flags.UPPERCASE);
sb.append(upper ? "0X" : "0x");
if (f.contains(Flags.ZERO_PAD))
for (int i = 0; i < width - s.length() - 2; i++)
sb.append('0');
int idx = s.indexOf('p');
va = s.substring(0, idx).toCharArray();
if (upper) {
String tmp = new String(va);
// don't localize hex
tmp = tmp.toUpperCase(Locale.US);
va = tmp.toCharArray();
}
sb.append(prec != 0 ? addZeros(va, prec) : va);
sb.append(upper ? 'P' : 'p');
sb.append(s.substring(idx+1));
}
}
// Add zeros to the requested precision.
private char[] addZeros(char[] v, int prec) {
// Look for the dot. If we don't find one, the we'll need to add
// it before we add the zeros.
int i;
for (i = 0; i < v.length; i++) {
if (v[i] == '.')
break;
}
boolean needDot = false;
if (i == v.length) {
needDot = true;
}
// Determine existing precision.
int outPrec = v.length - i - (needDot ? 0 : 1);
assert (outPrec <= prec);
if (outPrec == prec)
return v;
// Create new array with existing contents.
char[] tmp
= new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
System.arraycopy(v, 0, tmp, 0, v.length);
// Add dot if previously determined to be necessary.
int start = v.length;
if (needDot) {
tmp[v.length] = '.';
start++;
}
// Add zeros.
for (int j = start; j < tmp.length; j++)
tmp[j] = '0';
return tmp;
}
// Method assumes that d > 0.
private String hexDouble(double d, int prec) {
// Let Double.toHexString handle simple cases
if(!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
// remove "0x"
return Double.toHexString(d).substring(2);
else {
assert(prec >= 1 && prec <= 12);
int exponent = Math.getExponent(d);
boolean subnormal
= (exponent == DoubleConsts.MIN_EXPONENT - 1);
// If this is subnormal input so normalize (could be faster to
// do as integer operation).
if (subnormal) {
scaleUp = Math.scalb(1.0, 54);
d *= scaleUp;
// Calculate the exponent. This is not just exponent + 54
// since the former is not the normalized exponent.
exponent = Math.getExponent(d);
assert exponent >= DoubleConsts.MIN_EXPONENT &&
exponent <= DoubleConsts.MAX_EXPONENT: exponent;
}
int precision = 1 + prec*4;
int shiftDistance
= DoubleConsts.SIGNIFICAND_WIDTH - precision;
assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
long doppel = Double.doubleToLongBits(d);
// Deterime the number of bits to keep.
long newSignif
= (doppel & (DoubleConsts.EXP_BIT_MASK
| DoubleConsts.SIGNIF_BIT_MASK))
>> shiftDistance;
// Bits to round away.
long roundingBits = doppel & ~(~0L << shiftDistance);
// To decide how to round, look at the low-order bit of the
// working significand, the highest order discarded bit (the
// round bit) and whether any of the lower order discarded bits
// are nonzero (the sticky bit).
boolean leastZero = (newSignif & 0x1L) == 0L;
boolean round
= ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
boolean sticky = shiftDistance > 1 &&
(~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
if((leastZero && round && sticky) || (!leastZero && round)) {
newSignif++;
}
long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
newSignif = signBit | (newSignif << shiftDistance);
double result = Double.longBitsToDouble(newSignif);
if (Double.isInfinite(result) ) {
// Infinite result generated by rounding
return "1.0p1024";
} else {
String res = Double.toHexString(result).substring(2);
if (!subnormal)
return res;
else {
// Create a normalized subnormal string.
int idx = res.indexOf('p');
if (idx == -1) {
// No 'p' character in hex string.
assert false;
return null;
} else {
// Get exponent and append at the end.
String exp = res.substring(idx + 1);
int iexp = Integer.parseInt(exp) -54;
return res.substring(0, idx) + "p"
+ Integer.toString(iexp);
}
}
}
}
}
private void print(BigDecimal value, Locale l) throws IOException {
if (c == Conversion.HEXADECIMAL_FLOAT)
failConversion(c, value);
StringBuilder sb = new StringBuilder();
boolean neg = value.signum() == -1;
BigDecimal v = value.abs();
// leading sign indicator
leadingSign(sb, neg);
// the value
print(sb, v, l, f, c, precision, neg);
// trailing sign indicator
trailingSign(sb, neg);
// justify based on width
a.append(justify(sb.toString()));
}
// value > 0
private void print(StringBuilder sb, BigDecimal value, Locale l,
Flags f, char c, int precision, boolean neg)
throws IOException
{
if (c == Conversion.SCIENTIFIC) {
// Create a new BigDecimal with the desired precision.
int prec = (precision == -1 ? 6 : precision);
int scale = value.scale();
int origPrec = value.precision();
int nzeros = 0;
int compPrec;
if (prec > origPrec - 1) {
compPrec = origPrec;
nzeros = prec - (origPrec - 1);
} else {
compPrec = prec + 1;
}
MathContext mc = new MathContext(compPrec);
BigDecimal v
= new BigDecimal(value.unscaledValue(), scale, mc);
BigDecimalLayout bdl
= new BigDecimalLayout(v.unscaledValue(), v.scale(),
BigDecimalLayoutForm.SCIENTIFIC);
char[] mant = bdl.mantissa();
// Add a decimal point if necessary. The mantissa may not
// contain a decimal point if the scale is zero (the internal
// representation has no fractional part) or the original
// precision is one. Append a decimal point if '#' is set or if
// we require zero padding to get to the requested precision.
if ((origPrec == 1 || !bdl.hasDot())
&& (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
mant = addDot(mant);
// Add trailing zeros in the case precision is greater than
// the number of available digits after the decimal separator.
mant = trailingZeros(mant, nzeros);
char[] exp = bdl.exponent();
int newW = width;
if (width != -1)
newW = adjustWidth(width - exp.length - 1, f, neg);
localizedMagnitude(sb, mant, f, newW, l);
sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
Flags flags = f.dup().remove(Flags.GROUP);
char sign = exp[0];
assert(sign == '+' || sign == '-');
sb.append(exp[0]);
char[] tmp = new char[exp.length - 1];
System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
sb.append(localizedMagnitude(null, tmp, flags, -1, l));
} else if (c == Conversion.DECIMAL_FLOAT) {
// Create a new BigDecimal with the desired precision.
int prec = (precision == -1 ? 6 : precision);
int scale = value.scale();
if (scale > prec) {
// more "scale" digits than the requested "precision"
int compPrec = value.precision();
if (compPrec <= scale) {
// case of 0.xxxxxx
value = value.setScale(prec, RoundingMode.HALF_UP);
} else {
compPrec -= (scale - prec);
value = new BigDecimal(value.unscaledValue(),
scale,
new MathContext(compPrec));
}
}
BigDecimalLayout bdl = new BigDecimalLayout(
value.unscaledValue(),
value.scale(),
BigDecimalLayoutForm.DECIMAL_FLOAT);
char mant[] = bdl.mantissa();
int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
// Add a decimal point if necessary. The mantissa may not
// contain a decimal point if the scale is zero (the internal
// representation has no fractional part). Append a decimal
// point if '#' is set or we require zero padding to get to the
// requested precision.
if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
mant = addDot(bdl.mantissa());
// Add trailing zeros if the precision is greater than the
// number of available digits after the decimal separator.
mant = trailingZeros(mant, nzeros);
localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
} else if (c == Conversion.GENERAL) {
int prec = precision;
if (precision == -1)
prec = 6;
else if (precision == 0)
prec = 1;
BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
if ((value.equals(BigDecimal.ZERO))
|| ((value.compareTo(tenToTheNegFour) != -1)
&& (value.compareTo(tenToThePrec) == -1))) {
int e = - value.scale()
+ (value.unscaledValue().toString().length() - 1);
// xxx.yyy
// g precision (# sig digits) = #x + #y
// f precision = #y
// exponent = #x - 1
// => f precision = g precision - exponent - 1
// 0.000zzz
// g precision (# sig digits) = #z
// f precision = #0 (after '.') + #z
// exponent = - #0 (after '.') - 1
// => f precision = g precision - exponent - 1
prec = prec - e - 1;
print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
neg);
} else {
print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
}
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
// This conversion isn't supported. The error should be
// reported earlier.
assert false;
}
}
private class BigDecimalLayout {
private StringBuilder mant;
private StringBuilder exp;
private boolean dot = false;
private int scale;
public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
layout(intVal, scale, form);
}
public boolean hasDot() {
return dot;
}
public int scale() {
return scale;
}
// char[] with canonical string representation
public char[] layoutChars() {
StringBuilder sb = new StringBuilder(mant);
if (exp != null) {
sb.append('E');
sb.append(exp);
}
return toCharArray(sb);
}
public char[] mantissa() {
return toCharArray(mant);
}
// The exponent will be formatted as a sign ('+' or '-') followed
// by the exponent zero-padded to include at least two digits.
public char[] exponent() {
return toCharArray(exp);
}
private char[] toCharArray(StringBuilder sb) {
if (sb == null)
return null;
char[] result = new char[sb.length()];
sb.getChars(0, result.length, result, 0);
return result;
}
private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
char coeff[] = intVal.toString().toCharArray();
this.scale = scale;
// Construct a buffer, with sufficient capacity for all cases.
// If E-notation is needed, length will be: +1 if negative, +1
// if '.' needed, +2 for "E+", + up to 10 for adjusted
// exponent. Otherwise it could have +1 if negative, plus
// leading "0.00000"
mant = new StringBuilder(coeff.length + 14);
if (scale == 0) {
int len = coeff.length;
if (len > 1) {
mant.append(coeff[0]);
if (form == BigDecimalLayoutForm.SCIENTIFIC) {
mant.append('.');
dot = true;
mant.append(coeff, 1, len - 1);
exp = new StringBuilder("+");
if (len < 10)
exp.append("0").append(len - 1);
else
exp.append(len - 1);
} else {
mant.append(coeff, 1, len - 1);
}
} else {
mant.append(coeff);
if (form == BigDecimalLayoutForm.SCIENTIFIC)
exp = new StringBuilder("+00");
}
return;
}
long adjusted = -(long) scale + (coeff.length - 1);
if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
// count of padding zeros
int pad = scale - coeff.length;
if (pad >= 0) {
// 0.xxx form
mant.append("0.");
dot = true;
for (; pad > 0 ; pad--) mant.append('0');
mant.append(coeff);
} else {
if (-pad < coeff.length) {
// xx.xx form
mant.append(coeff, 0, -pad);
mant.append('.');
dot = true;
mant.append(coeff, -pad, scale);
} else {
// xx form
mant.append(coeff, 0, coeff.length);
for (int i = 0; i < -scale; i++)
mant.append('0');
this.scale = 0;
}
}
} else {
// x.xxx form
mant.append(coeff[0]);
if (coeff.length > 1) {
mant.append('.');
dot = true;
mant.append(coeff, 1, coeff.length-1);
}
exp = new StringBuilder();
if (adjusted != 0) {
long abs = Math.abs(adjusted);
// require sign
exp.append(adjusted < 0 ? '-' : '+');
if (abs < 10)
exp.append('0');
exp.append(abs);
} else {
exp.append("+00");
}
}
}
}
private int adjustWidth(int width, Flags f, boolean neg) {
int newW = width;
if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
newW--;
return newW;
}
// Add a '.' to th mantissa if required
private char[] addDot(char[] mant) {
char[] tmp = mant;
tmp = new char[mant.length + 1];
System.arraycopy(mant, 0, tmp, 0, mant.length);
tmp[tmp.length - 1] = '.';
return tmp;
}
// Add trailing zeros in the case precision is greater than the number
// of available digits after the decimal separator.
private char[] trailingZeros(char[] mant, int nzeros) {
char[] tmp = mant;
if (nzeros > 0) {
tmp = new char[mant.length + nzeros];
System.arraycopy(mant, 0, tmp, 0, mant.length);
for (int i = mant.length; i < tmp.length; i++)
tmp[i] = '0';
}
return tmp;
}
private void print(Calendar t, char c, Locale l) throws IOException
{
StringBuilder sb = new StringBuilder();
print(sb, t, c, l);
// justify based on width
String s = justify(sb.toString());
if (f.contains(Flags.UPPERCASE))
s = s.toUpperCase();
a.append(s);
}
private Appendable print(StringBuilder sb, Calendar t, char c,
Locale l)
throws IOException
{
if (sb == null)
sb = new StringBuilder();
switch (c) {
case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
case DateTime.HOUR_0: // 'I' (01 - 12)
case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H
case DateTime.HOUR: { // 'l' (1 - 12) -- like I
int i = t.get(Calendar.HOUR_OF_DAY);
if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
i = (i == 0 || i == 12 ? 12 : i % 12);
Flags flags = (c == DateTime.HOUR_OF_DAY_0
|| c == DateTime.HOUR_0
? Flags.ZERO_PAD
: Flags.NONE);
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.MINUTE: { // 'M' (00 - 59)
int i = t.get(Calendar.MINUTE);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
int i = t.get(Calendar.MILLISECOND) * 1000000;
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 9, l));
break;
}
case DateTime.MILLISECOND: { // 'L' (000 - 999)
int i = t.get(Calendar.MILLISECOND);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
long i = t.getTimeInMillis();
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.AM_PM: { // 'p' (am or pm)
// Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
String[] ampm = { "AM", "PM" };
if (l != null && l != Locale.US) {
DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
ampm = dfs.getAmPmStrings();
}
String s = ampm[t.get(Calendar.AM_PM)];
sb.append(s.toLowerCase(l != null ? l : Locale.US));
break;
}
case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
long i = t.getTimeInMillis() / 1000;
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
int i = t.get(Calendar.SECOND);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
boolean neg = i < 0;
sb.append(neg ? '-' : '+');
if (neg)
i = -i;
int min = i / 60000;
// combine minute and hour into a single integer
int offset = (min / 60) * 100 + (min % 60);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, offset, flags, 4, l));
break;
}
case DateTime.ZONE: { // 'Z' (symbol)
TimeZone tz = t.getTimeZone();
sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
TimeZone.SHORT,
(l == null) ? Locale.US : l));
break;
}
// Date
case DateTime.NAME_OF_DAY_ABBREV: // 'a'
case DateTime.NAME_OF_DAY: { // 'A'
int i = t.get(Calendar.DAY_OF_WEEK);
Locale lt = ((l == null) ? Locale.US : l);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_DAY)
sb.append(dfs.getWeekdays()[i]);
else
sb.append(dfs.getShortWeekdays()[i]);
break;
}
case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
case DateTime.NAME_OF_MONTH: { // 'B'
int i = t.get(Calendar.MONTH);
Locale lt = ((l == null) ? Locale.US : l);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_MONTH)
sb.append(dfs.getMonths()[i]);
else
sb.append(dfs.getShortMonths()[i]);
break;
}
case DateTime.CENTURY: // 'C' (00 - 99)
case DateTime.YEAR_2: // 'y' (00 - 99)
case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
int i = t.get(Calendar.YEAR);
int size = 2;
switch (c) {
case DateTime.CENTURY:
i /= 100;
break;
case DateTime.YEAR_2:
i %= 100;
break;
case DateTime.YEAR_4:
size = 4;
break;
}
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, size, l));
break;
}
case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
int i = t.get(Calendar.DATE);
Flags flags = (c == DateTime.DAY_OF_MONTH_0
? Flags.ZERO_PAD
: Flags.NONE);
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
int i = t.get(Calendar.DAY_OF_YEAR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MONTH: { // 'm' (01 - 12)
int i = t.get(Calendar.MONTH) + 1;
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
// Composites
case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
char sep = ':';
print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l);
if (c == DateTime.TIME) {
sb.append(sep);
print(sb, t, DateTime.SECOND, l);
}
break;
}
case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
char sep = ':';
print(sb, t, DateTime.HOUR_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l).append(sep);
print(sb, t, DateTime.SECOND, l).append(' ');
// this may be in wrong place for some locales
StringBuilder tsb = new StringBuilder();
print(tsb, t, DateTime.AM_PM, l);
sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
break;
}
case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
char sep = ' ';
print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.TIME, l).append(sep);
print(sb, t, DateTime.ZONE, l).append(sep);
print(sb, t, DateTime.YEAR_4, l);
break;
}
case DateTime.DATE: { // 'D' (mm/dd/yy)
char sep = '/';
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.YEAR_2, l);
break;
}
case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
char sep = '-';
print(sb, t, DateTime.YEAR_4, l).append(sep);
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l);
break;
}
default:
assert false;
}
return sb;
}
private void print(TemporalAccessor t, char c, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
print(sb, t, c, l);
// justify based on width
String s = justify(sb.toString());
if (f.contains(Flags.UPPERCASE))
s = s.toUpperCase();
a.append(s);
}
private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
Locale l) throws IOException {
if (sb == null)
sb = new StringBuilder();
try {
switch (c) {
case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23)
int i = t.get(ChronoField.HOUR_OF_DAY);
sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
break;
}
case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H
int i = t.get(ChronoField.HOUR_OF_DAY);
sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
break;
}
case DateTime.HOUR_0: { // 'I' (01 - 12)
int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
break;
}
case DateTime.HOUR: { // 'l' (1 - 12) -- like I
int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
break;
}
case DateTime.MINUTE: { // 'M' (00 - 59)
int i = t.get(ChronoField.MINUTE_OF_HOUR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 9, l));
break;
}
case DateTime.MILLISECOND: { // 'L' (000 - 999)
int i = t.get(ChronoField.MILLI_OF_SECOND);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
t.getLong(ChronoField.MILLI_OF_SECOND);
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.AM_PM: { // 'p' (am or pm)
// Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
String[] ampm = { "AM", "PM" };
if (l != null && l != Locale.US) {
DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
ampm = dfs.getAmPmStrings();
}
String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
sb.append(s.toLowerCase(l != null ? l : Locale.US));
break;
}
case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
long i = t.getLong(ChronoField.INSTANT_SECONDS);
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
int i = t.get(ChronoField.SECOND_OF_MINUTE);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
int i = t.get(ChronoField.OFFSET_SECONDS);
boolean neg = i < 0;
sb.append(neg ? '-' : '+');
if (neg)
i = -i;
int min = i / 60;
// combine minute and hour into a single integer
int offset = (min / 60) * 100 + (min % 60);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, offset, flags, 4, l));
break;
}
case DateTime.ZONE: { // 'Z' (symbol)
ZoneId zid = t.query(TemporalQueries.zone());
if (zid == null) {
throw new IllegalFormatConversionException(c, t.getClass());
}
if (!(zid instanceof ZoneOffset) &&
t.isSupported(ChronoField.INSTANT_SECONDS)) {
Instant instant = Instant.from(t);
sb.append(TimeZone.getTimeZone(zid.getId())
.getDisplayName(zid.getRules().isDaylightSavings(instant),
TimeZone.SHORT,
(l == null) ? Locale.US : l));
break;
}
sb.append(zid.getId());
break;
}
// Date
case DateTime.NAME_OF_DAY_ABBREV: // 'a'
case DateTime.NAME_OF_DAY: { // 'A'
int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
Locale lt = ((l == null) ? Locale.US : l);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_DAY)
sb.append(dfs.getWeekdays()[i]);
else
sb.append(dfs.getShortWeekdays()[i]);
break;
}
case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
case DateTime.NAME_OF_MONTH: { // 'B'
int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
Locale lt = ((l == null) ? Locale.US : l);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_MONTH)
sb.append(dfs.getMonths()[i]);
else
sb.append(dfs.getShortMonths()[i]);
break;
}
case DateTime.CENTURY: // 'C' (00 - 99)
case DateTime.YEAR_2: // 'y' (00 - 99)
case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
int i = t.get(ChronoField.YEAR_OF_ERA);
int size = 2;
switch (c) {
case DateTime.CENTURY:
i /= 100;
break;
case DateTime.YEAR_2:
i %= 100;
break;
case DateTime.YEAR_4:
size = 4;
break;
}
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, size, l));
break;
}
case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
int i = t.get(ChronoField.DAY_OF_MONTH);
Flags flags = (c == DateTime.DAY_OF_MONTH_0
? Flags.ZERO_PAD
: Flags.NONE);
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
int i = t.get(ChronoField.DAY_OF_YEAR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MONTH: { // 'm' (01 - 12)
int i = t.get(ChronoField.MONTH_OF_YEAR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
// Composites
case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
char sep = ':';
print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l);
if (c == DateTime.TIME) {
sb.append(sep);
print(sb, t, DateTime.SECOND, l);
}
break;
}
case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
char sep = ':';
print(sb, t, DateTime.HOUR_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l).append(sep);
print(sb, t, DateTime.SECOND, l).append(' ');
// this may be in wrong place for some locales
StringBuilder tsb = new StringBuilder();
print(tsb, t, DateTime.AM_PM, l);
sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
break;
}
case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
char sep = ' ';
print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.TIME, l).append(sep);
print(sb, t, DateTime.ZONE, l).append(sep);
print(sb, t, DateTime.YEAR_4, l);
break;
}
case DateTime.DATE: { // 'D' (mm/dd/yy)
char sep = '/';
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.YEAR_2, l);
break;
}
case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
char sep = '-';
print(sb, t, DateTime.YEAR_4, l).append(sep);
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l);
break;
}
default:
assert false;
}
} catch (DateTimeException x) {
throw new IllegalFormatConversionException(c, t.getClass());
}
return sb;
}
// -- Methods to support throwing exceptions --
private void failMismatch(Flags f, char c) {
String fs = f.toString();
throw new FormatFlagsConversionMismatchException(fs, c);
}
private void failConversion(char c, Object arg) {
throw new IllegalFormatConversionException(c, arg.getClass());
}
private char getZero(Locale l) {
if ((l != null) && !l.equals(locale())) {
// Android-changed: Improve the performance by 10x http://b/197788756
// Unclear if this mapping is needed but inherited from DecimalFormatSymbols
l = LocaleData.mapInvalidAndNullLocales(l);
DecimalFormatData decimalFormatData = DecimalFormatData.getInstance(l);
return decimalFormatData.getZeroDigit();
// DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
// return dfs.getZeroDigit();
}
return zero;
}
private StringBuilder
localizedMagnitude(StringBuilder sb, long value, Flags f,
int width, Locale l)
{
char[] va = Long.toString(value, 10).toCharArray();
return localizedMagnitude(sb, va, f, width, l);
}
private StringBuilder
localizedMagnitude(StringBuilder sb, char[] value, Flags f,
int width, Locale l)
{
if (sb == null)
sb = new StringBuilder();
int begin = sb.length();
char zero = getZero(l);
// determine localized grouping separator and size
char grpSep = '\0';
int grpSize = -1;
char decSep = '\0';
int len = value.length;
int dot = len;
for (int j = 0; j < len; j++) {
if (value[j] == '.') {
dot = j;
break;
}
}
if (dot < len) {
if (l == null || l.equals(Locale.US)) {
decSep = '.';
} else {
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
decSep = dfs.getDecimalSeparator();
}
}
if (f.contains(Flags.GROUP)) {
if (l == null || l.equals(Locale.US)) {
grpSep = ',';
grpSize = 3;
} else {
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
grpSep = dfs.getGroupingSeparator();
DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
grpSize = df.getGroupingSize();
// BEGIN Android-changed: Fix division by zero if group separator is not clear.
// http://b/33245708
// Some locales have a group separator but also patterns without groups.
// If we do not clear the group separator in these cases a divide by zero
// is thrown when determining where to place the separators.
if (!df.isGroupingUsed() || df.getGroupingSize() == 0) {
grpSep = '\0';
}
// END Android-changed: Fix division by zero if group separator is not clear.
}
}
// localize the digits inserting group separators as necessary
for (int j = 0; j < len; j++) {
if (j == dot) {
sb.append(decSep);
// no more group separators after the decimal separator
grpSep = '\0';
continue;
}
char c = value[j];
sb.append((char) ((c - '0') + zero));
if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
sb.append(grpSep);
}
// apply zero padding
len = sb.length();
if (width != -1 && f.contains(Flags.ZERO_PAD))
for (int k = 0; k < width - len; k++)
sb.insert(begin, zero);
return sb;
}
}
private static class Flags {
private int flags;
static final Flags NONE = new Flags(0); // ''
// duplicate declarations from Formattable.java
static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-'
static final Flags UPPERCASE = new Flags(1<<1); // '^'
static final Flags ALTERNATE = new Flags(1<<2); // '#'
// numerics
static final Flags PLUS = new Flags(1<<3); // '+'
static final Flags LEADING_SPACE = new Flags(1<<4); // ' '
static final Flags ZERO_PAD = new Flags(1<<5); // '0'
static final Flags GROUP = new Flags(1<<6); // ','
static final Flags PARENTHESES = new Flags(1<<7); // '('
// indexing
static final Flags PREVIOUS = new Flags(1<<8); // '<'
private Flags(int f) {
flags = f;
}
public int valueOf() {
return flags;
}
public boolean contains(Flags f) {
return (flags & f.valueOf()) == f.valueOf();
}
public Flags dup() {
return new Flags(flags);
}
private Flags add(Flags f) {
flags |= f.valueOf();
return this;
}
public Flags remove(Flags f) {
flags &= ~f.valueOf();
return this;
}
public static Flags parse(String s) {
char[] ca = s.toCharArray();
Flags f = new Flags(0);
for (int i = 0; i < ca.length; i++) {
Flags v = parse(ca[i]);
if (f.contains(v))
throw new DuplicateFormatFlagsException(v.toString());
f.add(v);
}
return f;
}
// parse those flags which may be provided by users
private static Flags parse(char c) {
switch (c) {
case '-': return LEFT_JUSTIFY;
case '#': return ALTERNATE;
case '+': return PLUS;
case ' ': return LEADING_SPACE;
case '0': return ZERO_PAD;
case ',': return GROUP;
case '(': return PARENTHESES;
case '<': return PREVIOUS;
default:
throw new UnknownFormatFlagsException(String.valueOf(c));
}
}
// Returns a string representation of the current {@code Flags}.
public static String toString(Flags f) {
return f.toString();
}
public String toString() {
StringBuilder sb = new StringBuilder();
if (contains(LEFT_JUSTIFY)) sb.append('-');
if (contains(UPPERCASE)) sb.append('^');
if (contains(ALTERNATE)) sb.append('#');
if (contains(PLUS)) sb.append('+');
if (contains(LEADING_SPACE)) sb.append(' ');
if (contains(ZERO_PAD)) sb.append('0');
if (contains(GROUP)) sb.append(',');
if (contains(PARENTHESES)) sb.append('(');
if (contains(PREVIOUS)) sb.append('<');
return sb.toString();
}
}
private static class Conversion {
// Byte, Short, Integer, Long, BigInteger
// (and associated primitives due to autoboxing)
static final char DECIMAL_INTEGER = 'd';
static final char OCTAL_INTEGER = 'o';
static final char HEXADECIMAL_INTEGER = 'x';
static final char HEXADECIMAL_INTEGER_UPPER = 'X';
// Float, Double, BigDecimal
// (and associated primitives due to autoboxing)
static final char SCIENTIFIC = 'e';
static final char SCIENTIFIC_UPPER = 'E';
static final char GENERAL = 'g';
static final char GENERAL_UPPER = 'G';
static final char DECIMAL_FLOAT = 'f';
static final char HEXADECIMAL_FLOAT = 'a';
static final char HEXADECIMAL_FLOAT_UPPER = 'A';
// Character, Byte, Short, Integer
// (and associated primitives due to autoboxing)
static final char CHARACTER = 'c';
static final char CHARACTER_UPPER = 'C';
// java.util.Date, java.util.Calendar, long
static final char DATE_TIME = 't';
static final char DATE_TIME_UPPER = 'T';
// if (arg.TYPE != boolean) return boolean
// if (arg != null) return true; else return false;
static final char BOOLEAN = 'b';
static final char BOOLEAN_UPPER = 'B';
// if (arg instanceof Formattable) arg.formatTo()
// else arg.toString();
static final char STRING = 's';
static final char STRING_UPPER = 'S';
// arg.hashCode()
static final char HASHCODE = 'h';
static final char HASHCODE_UPPER = 'H';
static final char LINE_SEPARATOR = 'n';
static final char PERCENT_SIGN = '%';
static boolean isValid(char c) {
return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
|| c == 't' || isCharacter(c));
}
// Returns true iff the Conversion is applicable to all objects.
static boolean isGeneral(char c) {
switch (c) {
case BOOLEAN:
case BOOLEAN_UPPER:
case STRING:
case STRING_UPPER:
case HASHCODE:
case HASHCODE_UPPER:
return true;
default:
return false;
}
}
// Returns true iff the Conversion is applicable to character.
static boolean isCharacter(char c) {
switch (c) {
case CHARACTER:
case CHARACTER_UPPER:
return true;
default:
return false;
}
}
// Returns true iff the Conversion is an integer type.
static boolean isInteger(char c) {
switch (c) {
case DECIMAL_INTEGER:
case OCTAL_INTEGER:
case HEXADECIMAL_INTEGER:
case HEXADECIMAL_INTEGER_UPPER:
return true;
default:
return false;
}
}
// Returns true iff the Conversion is a floating-point type.
static boolean isFloat(char c) {
switch (c) {
case SCIENTIFIC:
case SCIENTIFIC_UPPER:
case GENERAL:
case GENERAL_UPPER:
case DECIMAL_FLOAT:
case HEXADECIMAL_FLOAT:
case HEXADECIMAL_FLOAT_UPPER:
return true;
default:
return false;
}
}
// Returns true iff the Conversion does not require an argument
static boolean isText(char c) {
switch (c) {
case LINE_SEPARATOR:
case PERCENT_SIGN:
return true;
default:
return false;
}
}
}
private static class DateTime {
static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
static final char HOUR_0 = 'I'; // (01 - 12)
static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H
static final char HOUR = 'l'; // (1 - 12) -- like I
static final char MINUTE = 'M'; // (00 - 59)
static final char NANOSECOND = 'N'; // (000000000 - 999999999)
static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999)
static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
static final char AM_PM = 'p'; // (am or pm)
static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
static final char SECOND = 'S'; // (00 - 60 - leap second)
static final char TIME = 'T'; // (24 hour hh:mm:ss)
static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus?
static final char ZONE = 'Z'; // (symbol)
// Date
static final char NAME_OF_DAY_ABBREV = 'a'; // 'a'
static final char NAME_OF_DAY = 'A'; // 'A'
static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b'
static final char NAME_OF_MONTH = 'B'; // 'B'
static final char CENTURY = 'C'; // (00 - 99)
static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31)
static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d
// * static final char ISO_WEEK_OF_YEAR_2 = 'g'; // cross %y %V
// * static final char ISO_WEEK_OF_YEAR_4 = 'G'; // cross %Y %V
static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b
static final char DAY_OF_YEAR = 'j'; // (001 - 366)
static final char MONTH = 'm'; // (01 - 12)
// * static final char DAY_OF_WEEK_1 = 'u'; // (1 - 7) Monday
// * static final char WEEK_OF_YEAR_SUNDAY = 'U'; // (0 - 53) Sunday+
// * static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
// * static final char DAY_OF_WEEK_0 = 'w'; // (0 - 6) Sunday
// * static final char WEEK_OF_YEAR_MONDAY = 'W'; // (00 - 53) Monday
static final char YEAR_2 = 'y'; // (00 - 99)
static final char YEAR_4 = 'Y'; // (0000 - 9999)
// Composites
static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M)
static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M)
// * static final char LOCALE_TIME = 'X'; // (%H:%M:%S) - parse format?
static final char DATE_TIME = 'c';
// (Sat Nov 04 12:02:33 EST 1999)
static final char DATE = 'D'; // (mm/dd/yy)
static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d)
// * static final char LOCALE_DATE = 'x'; // (mm/dd/yy)
static boolean isValid(char c) {
switch (c) {
case HOUR_OF_DAY_0:
case HOUR_0:
case HOUR_OF_DAY:
case HOUR:
case MINUTE:
case NANOSECOND:
case MILLISECOND:
case MILLISECOND_SINCE_EPOCH:
case AM_PM:
case SECONDS_SINCE_EPOCH:
case SECOND:
case TIME:
case ZONE_NUMERIC:
case ZONE:
// Date
case NAME_OF_DAY_ABBREV:
case NAME_OF_DAY:
case NAME_OF_MONTH_ABBREV:
case NAME_OF_MONTH:
case CENTURY:
case DAY_OF_MONTH_0:
case DAY_OF_MONTH:
// * case ISO_WEEK_OF_YEAR_2:
// * case ISO_WEEK_OF_YEAR_4:
case NAME_OF_MONTH_ABBREV_X:
case DAY_OF_YEAR:
case MONTH:
// * case DAY_OF_WEEK_1:
// * case WEEK_OF_YEAR_SUNDAY:
// * case WEEK_OF_YEAR_MONDAY_01:
// * case DAY_OF_WEEK_0:
// * case WEEK_OF_YEAR_MONDAY:
case YEAR_2:
case YEAR_4:
// Composites
case TIME_12_HOUR:
case TIME_24_HOUR:
// * case LOCALE_TIME:
case DATE_TIME:
case DATE:
case ISO_STANDARD_DATE:
// * case LOCALE_DATE:
return true;
default:
return false;
}
}
}
}