android.graphics.Path Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of android-all Show documentation
Show all versions of android-all Show documentation
A library jar that provides APIs for Applications written for the Google Android Platform.
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.graphics;
import android.view.HardwareRenderer;
/**
* The Path class encapsulates compound (multiple contour) geometric paths
* consisting of straight line segments, quadratic curves, and cubic curves.
* It can be drawn with canvas.drawPath(path, paint), either filled or stroked
* (based on the paint's Style), or it can be used for clipping or to draw
* text on a path.
*/
public class Path {
/**
* @hide
*/
public final int mNativePath;
/**
* @hide
*/
public boolean isSimplePath = true;
/**
* @hide
*/
public Region rects;
private boolean mDetectSimplePaths;
private Direction mLastDirection = null;
/**
* Create an empty path
*/
public Path() {
mNativePath = init1();
mDetectSimplePaths = HardwareRenderer.isAvailable();
}
/**
* Create a new path, copying the contents from the src path.
*
* @param src The path to copy from when initializing the new path
*/
public Path(Path src) {
int valNative = 0;
if (src != null) {
valNative = src.mNativePath;
isSimplePath = src.isSimplePath;
if (src.rects != null) {
rects = new Region(src.rects);
}
}
mNativePath = init2(valNative);
mDetectSimplePaths = HardwareRenderer.isAvailable();
}
/**
* Clear any lines and curves from the path, making it empty.
* This does NOT change the fill-type setting.
*/
public void reset() {
isSimplePath = true;
if (mDetectSimplePaths) {
mLastDirection = null;
if (rects != null) rects.setEmpty();
}
// We promised not to change this, so preserve it around the native
// call, which does now reset fill type.
final FillType fillType = getFillType();
native_reset(mNativePath);
setFillType(fillType);
}
/**
* Rewinds the path: clears any lines and curves from the path but
* keeps the internal data structure for faster reuse.
*/
public void rewind() {
isSimplePath = true;
if (mDetectSimplePaths) {
mLastDirection = null;
if (rects != null) rects.setEmpty();
}
native_rewind(mNativePath);
}
/** Replace the contents of this with the contents of src.
*/
public void set(Path src) {
if (this != src) {
isSimplePath = src.isSimplePath;
native_set(mNativePath, src.mNativePath);
}
}
/**
* The logical operations that can be performed when combining two paths.
*
* @see #op(Path, android.graphics.Path.Op)
* @see #op(Path, Path, android.graphics.Path.Op)
*/
public enum Op {
/**
* Subtract the second path from the first path.
*/
DIFFERENCE,
/**
* Intersect the two paths.
*/
INTERSECT,
/**
* Union (inclusive-or) the two paths.
*/
UNION,
/**
* Exclusive-or the two paths.
*/
XOR,
/**
* Subtract the first path from the second path.
*/
REVERSE_DIFFERENCE
}
/**
* Set this path to the result of applying the Op to this path and the specified path.
* The resulting path will be constructed from non-overlapping contours.
* The curve order is reduced where possible so that cubics may be turned
* into quadratics, and quadratics maybe turned into lines.
*
* @param path The second operand (for difference, the subtrahend)
*
* @return True if operation succeeded, false otherwise and this path remains unmodified.
*
* @see Op
* @see #op(Path, Path, android.graphics.Path.Op)
*/
public boolean op(Path path, Op op) {
return op(this, path, op);
}
/**
* Set this path to the result of applying the Op to the two specified paths.
* The resulting path will be constructed from non-overlapping contours.
* The curve order is reduced where possible so that cubics may be turned
* into quadratics, and quadratics maybe turned into lines.
*
* @param path1 The first operand (for difference, the minuend)
* @param path2 The second operand (for difference, the subtrahend)
*
* @return True if operation succeeded, false otherwise and this path remains unmodified.
*
* @see Op
* @see #op(Path, android.graphics.Path.Op)
*/
public boolean op(Path path1, Path path2, Op op) {
if (native_op(path1.mNativePath, path2.mNativePath, op.ordinal(), this.mNativePath)) {
isSimplePath = false;
rects = null;
return true;
}
return false;
}
/**
* Enum for the ways a path may be filled.
*/
public enum FillType {
// these must match the values in SkPath.h
/**
* Specifies that "inside" is computed by a non-zero sum of signed
* edge crossings.
*/
WINDING (0),
/**
* Specifies that "inside" is computed by an odd number of edge
* crossings.
*/
EVEN_ODD (1),
/**
* Same as {@link #WINDING}, but draws outside of the path, rather than inside.
*/
INVERSE_WINDING (2),
/**
* Same as {@link #EVEN_ODD}, but draws outside of the path, rather than inside.
*/
INVERSE_EVEN_ODD(3);
FillType(int ni) {
nativeInt = ni;
}
final int nativeInt;
}
// these must be in the same order as their native values
static final FillType[] sFillTypeArray = {
FillType.WINDING,
FillType.EVEN_ODD,
FillType.INVERSE_WINDING,
FillType.INVERSE_EVEN_ODD
};
/**
* Return the path's fill type. This defines how "inside" is
* computed. The default value is WINDING.
*
* @return the path's fill type
*/
public FillType getFillType() {
return sFillTypeArray[native_getFillType(mNativePath)];
}
/**
* Set the path's fill type. This defines how "inside" is computed.
*
* @param ft The new fill type for this path
*/
public void setFillType(FillType ft) {
native_setFillType(mNativePath, ft.nativeInt);
}
/**
* Returns true if the filltype is one of the INVERSE variants
*
* @return true if the filltype is one of the INVERSE variants
*/
public boolean isInverseFillType() {
final int ft = native_getFillType(mNativePath);
return (ft & 2) != 0;
}
/**
* Toggles the INVERSE state of the filltype
*/
public void toggleInverseFillType() {
int ft = native_getFillType(mNativePath);
ft ^= 2;
native_setFillType(mNativePath, ft);
}
/**
* Returns true if the path is empty (contains no lines or curves)
*
* @return true if the path is empty (contains no lines or curves)
*/
public boolean isEmpty() {
return native_isEmpty(mNativePath);
}
/**
* Returns true if the path specifies a rectangle. If so, and if rect is
* not null, set rect to the bounds of the path. If the path does not
* specify a rectangle, return false and ignore rect.
*
* @param rect If not null, returns the bounds of the path if it specifies
* a rectangle
* @return true if the path specifies a rectangle
*/
public boolean isRect(RectF rect) {
return native_isRect(mNativePath, rect);
}
/**
* Compute the bounds of the control points of the path, and write the
* answer into bounds. If the path contains 0 or 1 points, the bounds is
* set to (0,0,0,0)
*
* @param bounds Returns the computed bounds of the path's control points.
* @param exact This parameter is no longer used.
*/
@SuppressWarnings({"UnusedDeclaration"})
public void computeBounds(RectF bounds, boolean exact) {
native_computeBounds(mNativePath, bounds);
}
/**
* Hint to the path to prepare for adding more points. This can allow the
* path to more efficiently allocate its storage.
*
* @param extraPtCount The number of extra points that may be added to this
* path
*/
public void incReserve(int extraPtCount) {
native_incReserve(mNativePath, extraPtCount);
}
/**
* Set the beginning of the next contour to the point (x,y).
*
* @param x The x-coordinate of the start of a new contour
* @param y The y-coordinate of the start of a new contour
*/
public void moveTo(float x, float y) {
native_moveTo(mNativePath, x, y);
}
/**
* Set the beginning of the next contour relative to the last point on the
* previous contour. If there is no previous contour, this is treated the
* same as moveTo().
*
* @param dx The amount to add to the x-coordinate of the end of the
* previous contour, to specify the start of a new contour
* @param dy The amount to add to the y-coordinate of the end of the
* previous contour, to specify the start of a new contour
*/
public void rMoveTo(float dx, float dy) {
native_rMoveTo(mNativePath, dx, dy);
}
/**
* Add a line from the last point to the specified point (x,y).
* If no moveTo() call has been made for this contour, the first point is
* automatically set to (0,0).
*
* @param x The x-coordinate of the end of a line
* @param y The y-coordinate of the end of a line
*/
public void lineTo(float x, float y) {
isSimplePath = false;
native_lineTo(mNativePath, x, y);
}
/**
* Same as lineTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx The amount to add to the x-coordinate of the previous point on
* this contour, to specify a line
* @param dy The amount to add to the y-coordinate of the previous point on
* this contour, to specify a line
*/
public void rLineTo(float dx, float dy) {
isSimplePath = false;
native_rLineTo(mNativePath, dx, dy);
}
/**
* Add a quadratic bezier from the last point, approaching control point
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
* this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the control point on a quadratic curve
* @param y1 The y-coordinate of the control point on a quadratic curve
* @param x2 The x-coordinate of the end point on a quadratic curve
* @param y2 The y-coordinate of the end point on a quadratic curve
*/
public void quadTo(float x1, float y1, float x2, float y2) {
isSimplePath = false;
native_quadTo(mNativePath, x1, y1, x2, y2);
}
/**
* Same as quadTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx1 The amount to add to the x-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dy1 The amount to add to the y-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dx2 The amount to add to the x-coordinate of the last point on
* this contour, for the end point of a quadratic curve
* @param dy2 The amount to add to the y-coordinate of the last point on
* this contour, for the end point of a quadratic curve
*/
public void rQuadTo(float dx1, float dy1, float dx2, float dy2) {
isSimplePath = false;
native_rQuadTo(mNativePath, dx1, dy1, dx2, dy2);
}
/**
* Add a cubic bezier from the last point, approaching control points
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
* made for this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the 1st control point on a cubic curve
* @param y1 The y-coordinate of the 1st control point on a cubic curve
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
* @param x3 The x-coordinate of the end point on a cubic curve
* @param y3 The y-coordinate of the end point on a cubic curve
*/
public void cubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
isSimplePath = false;
native_cubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
}
/**
* Same as cubicTo, but the coordinates are considered relative to the
* current point on this contour. If there is no previous point, then a
* moveTo(0,0) is inserted automatically.
*/
public void rCubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
isSimplePath = false;
native_rCubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc. The sweep angle is tread mod 360.
*
* @param oval The bounds of oval defining shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise, treated
* mod 360.
* @param forceMoveTo If true, always begin a new contour with the arc
*/
public void arcTo(RectF oval, float startAngle, float sweepAngle,
boolean forceMoveTo) {
isSimplePath = false;
native_arcTo(mNativePath, oval, startAngle, sweepAngle, forceMoveTo);
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc.
*
* @param oval The bounds of oval defining shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise
*/
public void arcTo(RectF oval, float startAngle, float sweepAngle) {
isSimplePath = false;
native_arcTo(mNativePath, oval, startAngle, sweepAngle, false);
}
/**
* Close the current contour. If the current point is not equal to the
* first point of the contour, a line segment is automatically added.
*/
public void close() {
isSimplePath = false;
native_close(mNativePath);
}
/**
* Specifies how closed shapes (e.g. rects, ovals) are oriented when they
* are added to a path.
*/
public enum Direction {
/** clockwise */
CW (1), // must match enum in SkPath.h
/** counter-clockwise */
CCW (2); // must match enum in SkPath.h
Direction(int ni) {
nativeInt = ni;
}
final int nativeInt;
}
private void detectSimplePath(float left, float top, float right, float bottom, Direction dir) {
if (mDetectSimplePaths) {
if (mLastDirection == null) {
mLastDirection = dir;
}
if (mLastDirection != dir) {
isSimplePath = false;
} else {
if (rects == null) rects = new Region();
rects.op((int) left, (int) top, (int) right, (int) bottom, Region.Op.UNION);
}
}
}
/**
* Add a closed rectangle contour to the path
*
* @param rect The rectangle to add as a closed contour to the path
* @param dir The direction to wind the rectangle's contour
*/
public void addRect(RectF rect, Direction dir) {
if (rect == null) {
throw new NullPointerException("need rect parameter");
}
detectSimplePath(rect.left, rect.top, rect.right, rect.bottom, dir);
native_addRect(mNativePath, rect, dir.nativeInt);
}
/**
* Add a closed rectangle contour to the path
*
* @param left The left side of a rectangle to add to the path
* @param top The top of a rectangle to add to the path
* @param right The right side of a rectangle to add to the path
* @param bottom The bottom of a rectangle to add to the path
* @param dir The direction to wind the rectangle's contour
*/
public void addRect(float left, float top, float right, float bottom, Direction dir) {
detectSimplePath(left, top, right, bottom, dir);
native_addRect(mNativePath, left, top, right, bottom, dir.nativeInt);
}
/**
* Add a closed oval contour to the path
*
* @param oval The bounds of the oval to add as a closed contour to the path
* @param dir The direction to wind the oval's contour
*/
public void addOval(RectF oval, Direction dir) {
if (oval == null) {
throw new NullPointerException("need oval parameter");
}
isSimplePath = false;
native_addOval(mNativePath, oval, dir.nativeInt);
}
/**
* Add a closed circle contour to the path
*
* @param x The x-coordinate of the center of a circle to add to the path
* @param y The y-coordinate of the center of a circle to add to the path
* @param radius The radius of a circle to add to the path
* @param dir The direction to wind the circle's contour
*/
public void addCircle(float x, float y, float radius, Direction dir) {
isSimplePath = false;
native_addCircle(mNativePath, x, y, radius, dir.nativeInt);
}
/**
* Add the specified arc to the path as a new contour.
*
* @param oval The bounds of oval defining the shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise
*/
public void addArc(RectF oval, float startAngle, float sweepAngle) {
if (oval == null) {
throw new NullPointerException("need oval parameter");
}
isSimplePath = false;
native_addArc(mNativePath, oval, startAngle, sweepAngle);
}
/**
* Add a closed round-rectangle contour to the path
*
* @param rect The bounds of a round-rectangle to add to the path
* @param rx The x-radius of the rounded corners on the round-rectangle
* @param ry The y-radius of the rounded corners on the round-rectangle
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(RectF rect, float rx, float ry, Direction dir) {
if (rect == null) {
throw new NullPointerException("need rect parameter");
}
isSimplePath = false;
native_addRoundRect(mNativePath, rect, rx, ry, dir.nativeInt);
}
/**
* Add a closed round-rectangle contour to the path. Each corner receives
* two radius values [X, Y]. The corners are ordered top-left, top-right,
* bottom-right, bottom-left
*
* @param rect The bounds of a round-rectangle to add to the path
* @param radii Array of 8 values, 4 pairs of [X,Y] radii
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(RectF rect, float[] radii, Direction dir) {
if (rect == null) {
throw new NullPointerException("need rect parameter");
}
if (radii.length < 8) {
throw new ArrayIndexOutOfBoundsException("radii[] needs 8 values");
}
isSimplePath = false;
native_addRoundRect(mNativePath, rect, radii, dir.nativeInt);
}
/**
* Add a copy of src to the path, offset by (dx,dy)
*
* @param src The path to add as a new contour
* @param dx The amount to translate the path in X as it is added
*/
public void addPath(Path src, float dx, float dy) {
isSimplePath = false;
native_addPath(mNativePath, src.mNativePath, dx, dy);
}
/**
* Add a copy of src to the path
*
* @param src The path that is appended to the current path
*/
public void addPath(Path src) {
isSimplePath = false;
native_addPath(mNativePath, src.mNativePath);
}
/**
* Add a copy of src to the path, transformed by matrix
*
* @param src The path to add as a new contour
*/
public void addPath(Path src, Matrix matrix) {
if (!src.isSimplePath) isSimplePath = false;
native_addPath(mNativePath, src.mNativePath, matrix.native_instance);
}
/**
* Offset the path by (dx,dy), returning true on success
*
* @param dx The amount in the X direction to offset the entire path
* @param dy The amount in the Y direction to offset the entire path
* @param dst The translated path is written here. If this is null, then
* the original path is modified.
*/
public void offset(float dx, float dy, Path dst) {
int dstNative = 0;
if (dst != null) {
dstNative = dst.mNativePath;
dst.isSimplePath = false;
}
native_offset(mNativePath, dx, dy, dstNative);
}
/**
* Offset the path by (dx,dy), returning true on success
*
* @param dx The amount in the X direction to offset the entire path
* @param dy The amount in the Y direction to offset the entire path
*/
public void offset(float dx, float dy) {
isSimplePath = false;
native_offset(mNativePath, dx, dy);
}
/**
* Sets the last point of the path.
*
* @param dx The new X coordinate for the last point
* @param dy The new Y coordinate for the last point
*/
public void setLastPoint(float dx, float dy) {
isSimplePath = false;
native_setLastPoint(mNativePath, dx, dy);
}
/**
* Transform the points in this path by matrix, and write the answer
* into dst. If dst is null, then the the original path is modified.
*
* @param matrix The matrix to apply to the path
* @param dst The transformed path is written here. If dst is null,
* then the the original path is modified
*/
public void transform(Matrix matrix, Path dst) {
int dstNative = 0;
if (dst != null) {
dst.isSimplePath = false;
dstNative = dst.mNativePath;
}
native_transform(mNativePath, matrix.native_instance, dstNative);
}
/**
* Transform the points in this path by matrix.
*
* @param matrix The matrix to apply to the path
*/
public void transform(Matrix matrix) {
isSimplePath = false;
native_transform(mNativePath, matrix.native_instance);
}
protected void finalize() throws Throwable {
try {
finalizer(mNativePath);
} finally {
super.finalize();
}
}
final int ni() {
return mNativePath;
}
private static native int init1();
private static native int init2(int nPath);
private static native void native_reset(int nPath);
private static native void native_rewind(int nPath);
private static native void native_set(int native_dst, int native_src);
private static native int native_getFillType(int nPath);
private static native void native_setFillType(int nPath, int ft);
private static native boolean native_isEmpty(int nPath);
private static native boolean native_isRect(int nPath, RectF rect);
private static native void native_computeBounds(int nPath, RectF bounds);
private static native void native_incReserve(int nPath, int extraPtCount);
private static native void native_moveTo(int nPath, float x, float y);
private static native void native_rMoveTo(int nPath, float dx, float dy);
private static native void native_lineTo(int nPath, float x, float y);
private static native void native_rLineTo(int nPath, float dx, float dy);
private static native void native_quadTo(int nPath, float x1, float y1,
float x2, float y2);
private static native void native_rQuadTo(int nPath, float dx1, float dy1,
float dx2, float dy2);
private static native void native_cubicTo(int nPath, float x1, float y1,
float x2, float y2, float x3, float y3);
private static native void native_rCubicTo(int nPath, float x1, float y1,
float x2, float y2, float x3, float y3);
private static native void native_arcTo(int nPath, RectF oval,
float startAngle, float sweepAngle, boolean forceMoveTo);
private static native void native_close(int nPath);
private static native void native_addRect(int nPath, RectF rect, int dir);
private static native void native_addRect(int nPath, float left, float top,
float right, float bottom, int dir);
private static native void native_addOval(int nPath, RectF oval, int dir);
private static native void native_addCircle(int nPath, float x, float y, float radius, int dir);
private static native void native_addArc(int nPath, RectF oval,
float startAngle, float sweepAngle);
private static native void native_addRoundRect(int nPath, RectF rect,
float rx, float ry, int dir);
private static native void native_addRoundRect(int nPath, RectF r, float[] radii, int dir);
private static native void native_addPath(int nPath, int src, float dx, float dy);
private static native void native_addPath(int nPath, int src);
private static native void native_addPath(int nPath, int src, int matrix);
private static native void native_offset(int nPath, float dx, float dy, int dst_path);
private static native void native_offset(int nPath, float dx, float dy);
private static native void native_setLastPoint(int nPath, float dx, float dy);
private static native void native_transform(int nPath, int matrix, int dst_path);
private static native void native_transform(int nPath, int matrix);
private static native boolean native_op(int path1, int path2, int op, int result);
private static native void finalizer(int nPath);
}