All Downloads are FREE. Search and download functionalities are using the official Maven repository.

android.net.dhcp.DhcpPacket Maven / Gradle / Ivy

Go to download

A library jar that provides APIs for Applications written for the Google Android Platform.

There is a newer version: 14-robolectric-10818077
Show newest version
package android.net.dhcp;

import java.net.InetAddress;
import java.net.UnknownHostException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.StandardCharsets;
import java.nio.ShortBuffer;

import java.util.ArrayList;
import java.util.List;

/**
 * Defines basic data and operations needed to build and use packets for the
 * DHCP protocol.  Subclasses create the specific packets used at each
 * stage of the negotiation.
 */
abstract class DhcpPacket {
    protected static final String TAG = "DhcpPacket";

    /**
     * Packet encapsulations.
     */
    public static final int ENCAP_L2 = 0;    // EthernetII header included
    public static final int ENCAP_L3 = 1;    // IP/UDP header included
    public static final int ENCAP_BOOTP = 2; // BOOTP contents only

    /**
     * IP layer definitions.
     */
    private static final byte IP_TYPE_UDP = (byte) 0x11;

    /**
     * IP: Version 4, Header Length 20 bytes
     */
    private static final byte IP_VERSION_HEADER_LEN = (byte) 0x45;

    /**
     * IP: Flags 0, Fragment Offset 0, Don't Fragment
     */
    private static final short IP_FLAGS_OFFSET = (short) 0x4000;

    /**
     * IP: TOS
     */
    private static final byte IP_TOS_LOWDELAY = (byte) 0x10;

    /**
     * IP: TTL -- use default 64 from RFC1340
     */
    private static final byte IP_TTL = (byte) 0x40;

    /**
     * The client DHCP port.
     */
    static final short DHCP_CLIENT = (short) 68;

    /**
     * The server DHCP port.
     */
    static final short DHCP_SERVER = (short) 67;

    /**
     * The message op code indicating a request from a client.
     */
    protected static final byte DHCP_BOOTREQUEST = (byte) 1;

    /**
     * The message op code indicating a response from the server.
     */
    protected static final byte DHCP_BOOTREPLY = (byte) 2;

    /**
     * The code type used to identify an Ethernet MAC address in the
     * Client-ID field.
     */
    protected static final byte CLIENT_ID_ETHER = (byte) 1;

    /**
     * The maximum length of a packet that can be constructed.
     */
    protected static final int MAX_LENGTH = 1500;

    /**
     * DHCP Optional Type: DHCP Subnet Mask
     */
    protected static final byte DHCP_SUBNET_MASK = 1;
    protected InetAddress mSubnetMask;

    /**
     * DHCP Optional Type: DHCP Router
     */
    protected static final byte DHCP_ROUTER = 3;
    protected InetAddress mGateway;

    /**
     * DHCP Optional Type: DHCP DNS Server
     */
    protected static final byte DHCP_DNS_SERVER = 6;
    protected List mDnsServers;

    /**
     * DHCP Optional Type: DHCP Host Name
     */
    protected static final byte DHCP_HOST_NAME = 12;
    protected String mHostName;

    /**
     * DHCP Optional Type: DHCP DOMAIN NAME
     */
    protected static final byte DHCP_DOMAIN_NAME = 15;
    protected String mDomainName;

    /**
     * DHCP Optional Type: DHCP BROADCAST ADDRESS
     */
    protected static final byte DHCP_BROADCAST_ADDRESS = 28;
    protected InetAddress mBroadcastAddress;

    /**
     * DHCP Optional Type: DHCP Requested IP Address
     */
    protected static final byte DHCP_REQUESTED_IP = 50;
    protected InetAddress mRequestedIp;

    /**
     * DHCP Optional Type: DHCP Lease Time
     */
    protected static final byte DHCP_LEASE_TIME = 51;
    protected Integer mLeaseTime;

    /**
     * DHCP Optional Type: DHCP Message Type
     */
    protected static final byte DHCP_MESSAGE_TYPE = 53;
    // the actual type values
    protected static final byte DHCP_MESSAGE_TYPE_DISCOVER = 1;
    protected static final byte DHCP_MESSAGE_TYPE_OFFER = 2;
    protected static final byte DHCP_MESSAGE_TYPE_REQUEST = 3;
    protected static final byte DHCP_MESSAGE_TYPE_DECLINE = 4;
    protected static final byte DHCP_MESSAGE_TYPE_ACK = 5;
    protected static final byte DHCP_MESSAGE_TYPE_NAK = 6;
    protected static final byte DHCP_MESSAGE_TYPE_INFORM = 8;

    /**
     * DHCP Optional Type: DHCP Server Identifier
     */
    protected static final byte DHCP_SERVER_IDENTIFIER = 54;
    protected InetAddress mServerIdentifier;

    /**
     * DHCP Optional Type: DHCP Parameter List
     */
    protected static final byte DHCP_PARAMETER_LIST = 55;
    protected byte[] mRequestedParams;

    /**
     * DHCP Optional Type: DHCP MESSAGE
     */
    protected static final byte DHCP_MESSAGE = 56;
    protected String mMessage;

    /**
     * DHCP Optional Type: DHCP Renewal Time Value
     */
    protected static final byte DHCP_RENEWAL_TIME = 58;

    /**
     * DHCP Optional Type: Vendor Class Identifier
     */
    protected static final byte DHCP_VENDOR_CLASS_ID = 60;

    /**
     * DHCP Optional Type: DHCP Client Identifier
     */
    protected static final byte DHCP_CLIENT_IDENTIFIER = 61;

    /**
     * The transaction identifier used in this particular DHCP negotiation
     */
    protected final int mTransId;

    /**
     * The IP address of the client host.  This address is typically
     * proposed by the client (from an earlier DHCP negotiation) or
     * supplied by the server.
     */
    protected final InetAddress mClientIp;
    protected final InetAddress mYourIp;
    private final InetAddress mNextIp;
    private final InetAddress mRelayIp;

    /**
     * Does the client request a broadcast response?
     */
    protected boolean mBroadcast;

    /**
     * The six-octet MAC of the client.
     */
    protected final byte[] mClientMac;

    /**
     * Asks the packet object to signal the next operation in the DHCP
     * protocol.  The available actions are methods defined in the
     * DhcpStateMachine interface.
     */
    public abstract void doNextOp(DhcpStateMachine stateMachine);

    /**
     * Asks the packet object to create a ByteBuffer serialization of
     * the packet for transmission.
     */
    public abstract ByteBuffer buildPacket(int encap, short destUdp,
        short srcUdp);

    /**
     * Allows the concrete class to fill in packet-type-specific details,
     * typically optional parameters at the end of the packet.
     */
    abstract void finishPacket(ByteBuffer buffer);

    protected DhcpPacket(int transId, InetAddress clientIp, InetAddress yourIp,
                         InetAddress nextIp, InetAddress relayIp,
                         byte[] clientMac, boolean broadcast) {
        mTransId = transId;
        mClientIp = clientIp;
        mYourIp = yourIp;
        mNextIp = nextIp;
        mRelayIp = relayIp;
        mClientMac = clientMac;
        mBroadcast = broadcast;
    }

    /**
     * Returns the transaction ID.
     */
    public int getTransactionId() {
        return mTransId;
    }

    /**
     * Creates a new L3 packet (including IP header) containing the
     * DHCP udp packet.  This method relies upon the delegated method
     * finishPacket() to insert the per-packet contents.
     */
    protected void fillInPacket(int encap, InetAddress destIp,
        InetAddress srcIp, short destUdp, short srcUdp, ByteBuffer buf,
        byte requestCode, boolean broadcast) {
        byte[] destIpArray = destIp.getAddress();
        byte[] srcIpArray = srcIp.getAddress();
        int ipLengthOffset = 0;
        int ipChecksumOffset = 0;
        int endIpHeader = 0;
        int udpHeaderOffset = 0;
        int udpLengthOffset = 0;
        int udpChecksumOffset = 0;

        buf.clear();
        buf.order(ByteOrder.BIG_ENDIAN);

        // if a full IP packet needs to be generated, put the IP & UDP
        // headers in place, and pre-populate with artificial values
        // needed to seed the IP checksum.
        if (encap == ENCAP_L3) {
            // fake IP header, used in the IP-header checksum
            buf.put(IP_VERSION_HEADER_LEN);
            buf.put(IP_TOS_LOWDELAY);    // tos: IPTOS_LOWDELAY
            ipLengthOffset = buf.position();
            buf.putShort((short)0);  // length
            buf.putShort((short)0);  // id
            buf.putShort(IP_FLAGS_OFFSET); // ip offset: don't fragment
            buf.put(IP_TTL);    // TTL: use default 64 from RFC1340
            buf.put(IP_TYPE_UDP);
            ipChecksumOffset = buf.position();
            buf.putShort((short) 0); // checksum

            buf.put(srcIpArray);
            buf.put(destIpArray);
            endIpHeader = buf.position();

            // UDP header
            udpHeaderOffset = buf.position();
            buf.putShort(srcUdp);
            buf.putShort(destUdp);
            udpLengthOffset = buf.position();
            buf.putShort((short) 0); // length
            udpChecksumOffset = buf.position();
            buf.putShort((short) 0); // UDP checksum -- initially zero
        }

        // DHCP payload
        buf.put(requestCode);
        buf.put((byte) 1); // Hardware Type: Ethernet
        buf.put((byte) mClientMac.length); // Hardware Address Length
        buf.put((byte) 0); // Hop Count
        buf.putInt(mTransId);  // Transaction ID
        buf.putShort((short) 0); // Elapsed Seconds

        if (broadcast) {
            buf.putShort((short) 0x8000); // Flags
        } else {
            buf.putShort((short) 0x0000); // Flags
        }

        buf.put(mClientIp.getAddress());
        buf.put(mYourIp.getAddress());
        buf.put(mNextIp.getAddress());
        buf.put(mRelayIp.getAddress());
        buf.put(mClientMac);
        buf.position(buf.position() +
                     (16 - mClientMac.length) // pad addr to 16 bytes
                     + 64     // empty server host name (64 bytes)
                     + 128);  // empty boot file name (128 bytes)
        buf.putInt(0x63825363); // magic number
        finishPacket(buf);

        // round up to an even number of octets
        if ((buf.position() & 1) == 1) {
            buf.put((byte) 0);
        }

        // If an IP packet is being built, the IP & UDP checksums must be
        // computed.
        if (encap == ENCAP_L3) {
            // fix UDP header: insert length
            short udpLen = (short)(buf.position() - udpHeaderOffset);
            buf.putShort(udpLengthOffset, udpLen);
            // fix UDP header: checksum
            // checksum for UDP at udpChecksumOffset
            int udpSeed = 0;

            // apply IPv4 pseudo-header.  Read IP address src and destination
            // values from the IP header and accumulate checksum.
            udpSeed += intAbs(buf.getShort(ipChecksumOffset + 2));
            udpSeed += intAbs(buf.getShort(ipChecksumOffset + 4));
            udpSeed += intAbs(buf.getShort(ipChecksumOffset + 6));
            udpSeed += intAbs(buf.getShort(ipChecksumOffset + 8));

            // accumulate extra data for the pseudo-header
            udpSeed += IP_TYPE_UDP;
            udpSeed += udpLen;
            // and compute UDP checksum
            buf.putShort(udpChecksumOffset, (short) checksum(buf, udpSeed,
                                                             udpHeaderOffset,
                                                             buf.position()));
            // fix IP header: insert length
            buf.putShort(ipLengthOffset, (short)buf.position());
            // fixup IP-header checksum
            buf.putShort(ipChecksumOffset,
                         (short) checksum(buf, 0, 0, endIpHeader));
        }
    }

    /**
     * Converts a signed short value to an unsigned int value.  Needed
     * because Java does not have unsigned types.
     */
    private int intAbs(short v) {
        if (v < 0) {
            int r = v + 65536;
            return r;
        } else {
            return(v);
        }
    }

    /**
     * Performs an IP checksum (used in IP header and across UDP
     * payload) on the specified portion of a ByteBuffer.  The seed
     * allows the checksum to commence with a specified value.
     */
    private int checksum(ByteBuffer buf, int seed, int start, int end) {
        int sum = seed;
        int bufPosition = buf.position();

        // set position of original ByteBuffer, so that the ShortBuffer
        // will be correctly initialized
        buf.position(start);
        ShortBuffer shortBuf = buf.asShortBuffer();

        // re-set ByteBuffer position
        buf.position(bufPosition);

        short[] shortArray = new short[(end - start) / 2];
        shortBuf.get(shortArray);

        for (short s : shortArray) {
            sum += intAbs(s);
        }

        start += shortArray.length * 2;

        // see if a singleton byte remains
        if (end != start) {
            short b = buf.get(start);

            // make it unsigned
            if (b < 0) {
                b += 256;
            }

            sum += b * 256;
        }

        sum = ((sum >> 16) & 0xFFFF) + (sum & 0xFFFF);
        sum = ((sum + ((sum >> 16) & 0xFFFF)) & 0xFFFF);
        int negated = ~sum;
        return intAbs((short) negated);
    }

    /**
     * Adds an optional parameter containing a single byte value.
     */
    protected void addTlv(ByteBuffer buf, byte type, byte value) {
        buf.put(type);
        buf.put((byte) 1);
        buf.put(value);
    }

    /**
     * Adds an optional parameter containing an array of bytes.
     */
    protected void addTlv(ByteBuffer buf, byte type, byte[] payload) {
        if (payload != null) {
            buf.put(type);
            buf.put((byte) payload.length);
            buf.put(payload);
        }
    }

    /**
     * Adds an optional parameter containing an IP address.
     */
    protected void addTlv(ByteBuffer buf, byte type, InetAddress addr) {
        if (addr != null) {
            addTlv(buf, type, addr.getAddress());
        }
    }

    /**
     * Adds an optional parameter containing a list of IP addresses.
     */
    protected void addTlv(ByteBuffer buf, byte type, List addrs) {
        if (addrs != null && addrs.size() > 0) {
            buf.put(type);
            buf.put((byte)(4 * addrs.size()));

            for (InetAddress addr : addrs) {
                buf.put(addr.getAddress());
            }
        }
    }

    /**
     * Adds an optional parameter containing a simple integer
     */
    protected void addTlv(ByteBuffer buf, byte type, Integer value) {
        if (value != null) {
            buf.put(type);
            buf.put((byte) 4);
            buf.putInt(value.intValue());
        }
    }

    /**
     * Adds an optional parameter containing and ASCII string.
     */
    protected void addTlv(ByteBuffer buf, byte type, String str) {
        if (str != null) {
            buf.put(type);
            buf.put((byte) str.length());

            for (int i = 0; i < str.length(); i++) {
                buf.put((byte) str.charAt(i));
            }
        }
    }

    /**
     * Adds the special end-of-optional-parameters indicator.
     */
    protected void addTlvEnd(ByteBuffer buf) {
        buf.put((byte) 0xFF);
    }

    /**
     * Converts a MAC from an array of octets to an ASCII string.
     */
    public static String macToString(byte[] mac) {
        String macAddr = "";

        for (int i = 0; i < mac.length; i++) {
            String hexString = "0" + Integer.toHexString(mac[i]);

            // substring operation grabs the last 2 digits: this
            // allows signed bytes to be converted correctly.
            macAddr += hexString.substring(hexString.length() - 2);

            if (i != (mac.length - 1)) {
                macAddr += ":";
            }
        }

        return macAddr;
    }

    public String toString() {
        String macAddr = macToString(mClientMac);

        return macAddr;
    }

    /**
     * Reads a four-octet value from a ByteBuffer and construct
     * an IPv4 address from that value.
     */
    private static InetAddress readIpAddress(ByteBuffer packet) {
        InetAddress result = null;
        byte[] ipAddr = new byte[4];
        packet.get(ipAddr);

        try {
            result = InetAddress.getByAddress(ipAddr);
        } catch (UnknownHostException ex) {
            // ipAddr is numeric, so this should not be
            // triggered.  However, if it is, just nullify
            result = null;
        }

        return result;
    }

    /**
     * Reads a string of specified length from the buffer.
     */
    private static String readAsciiString(ByteBuffer buf, int byteCount) {
        byte[] bytes = new byte[byteCount];
        buf.get(bytes);
        return new String(bytes, 0, bytes.length, StandardCharsets.US_ASCII);
    }

    /**
     * Creates a concrete DhcpPacket from the supplied ByteBuffer.  The
     * buffer may have an L2 encapsulation (which is the full EthernetII
     * format starting with the source-address MAC) or an L3 encapsulation
     * (which starts with the IP header).
     * 
* A subset of the optional parameters are parsed and are stored * in object fields. */ public static DhcpPacket decodeFullPacket(ByteBuffer packet, int pktType) { // bootp parameters int transactionId; InetAddress clientIp; InetAddress yourIp; InetAddress nextIp; InetAddress relayIp; byte[] clientMac; List dnsServers = new ArrayList(); InetAddress gateway = null; // aka router Integer leaseTime = null; InetAddress serverIdentifier = null; InetAddress netMask = null; String message = null; String vendorId = null; byte[] expectedParams = null; String hostName = null; String domainName = null; InetAddress ipSrc = null; InetAddress ipDst = null; InetAddress bcAddr = null; InetAddress requestedIp = null; // dhcp options byte dhcpType = (byte) 0xFF; packet.order(ByteOrder.BIG_ENDIAN); // check to see if we need to parse L2, IP, and UDP encaps if (pktType == ENCAP_L2) { // System.out.println("buffer len " + packet.limit()); byte[] l2dst = new byte[6]; byte[] l2src = new byte[6]; packet.get(l2dst); packet.get(l2src); short l2type = packet.getShort(); if (l2type != 0x0800) return null; } if ((pktType == ENCAP_L2) || (pktType == ENCAP_L3)) { // assume l2type is 0x0800, i.e. IP byte ipType = packet.get(); // System.out.println("ipType is " + ipType); byte ipDiffServicesField = packet.get(); short ipTotalLength = packet.getShort(); short ipIdentification = packet.getShort(); byte ipFlags = packet.get(); byte ipFragOffset = packet.get(); byte ipTTL = packet.get(); byte ipProto = packet.get(); short ipChksm = packet.getShort(); ipSrc = readIpAddress(packet); ipDst = readIpAddress(packet); if (ipProto != IP_TYPE_UDP) // UDP return null; // assume UDP short udpSrcPort = packet.getShort(); short udpDstPort = packet.getShort(); short udpLen = packet.getShort(); short udpChkSum = packet.getShort(); if ((udpSrcPort != DHCP_SERVER) && (udpSrcPort != DHCP_CLIENT)) return null; } // assume bootp byte type = packet.get(); byte hwType = packet.get(); byte addrLen = packet.get(); byte hops = packet.get(); transactionId = packet.getInt(); short elapsed = packet.getShort(); short bootpFlags = packet.getShort(); boolean broadcast = (bootpFlags & 0x8000) != 0; byte[] ipv4addr = new byte[4]; try { packet.get(ipv4addr); clientIp = InetAddress.getByAddress(ipv4addr); packet.get(ipv4addr); yourIp = InetAddress.getByAddress(ipv4addr); packet.get(ipv4addr); nextIp = InetAddress.getByAddress(ipv4addr); packet.get(ipv4addr); relayIp = InetAddress.getByAddress(ipv4addr); } catch (UnknownHostException ex) { return null; } clientMac = new byte[addrLen]; packet.get(clientMac); // skip over address padding (16 octets allocated) packet.position(packet.position() + (16 - addrLen) + 64 // skip server host name (64 chars) + 128); // skip boot file name (128 chars) int dhcpMagicCookie = packet.getInt(); if (dhcpMagicCookie != 0x63825363) return null; // parse options boolean notFinishedOptions = true; while ((packet.position() < packet.limit()) && notFinishedOptions) { byte optionType = packet.get(); if (optionType == (byte) 0xFF) { notFinishedOptions = false; } else { byte optionLen = packet.get(); int expectedLen = 0; switch(optionType) { case DHCP_SUBNET_MASK: netMask = readIpAddress(packet); expectedLen = 4; break; case DHCP_ROUTER: gateway = readIpAddress(packet); expectedLen = 4; break; case DHCP_DNS_SERVER: expectedLen = 0; for (expectedLen = 0; expectedLen < optionLen; expectedLen += 4) { dnsServers.add(readIpAddress(packet)); } break; case DHCP_HOST_NAME: expectedLen = optionLen; hostName = readAsciiString(packet, optionLen); break; case DHCP_DOMAIN_NAME: expectedLen = optionLen; domainName = readAsciiString(packet, optionLen); break; case DHCP_BROADCAST_ADDRESS: bcAddr = readIpAddress(packet); expectedLen = 4; break; case DHCP_REQUESTED_IP: requestedIp = readIpAddress(packet); expectedLen = 4; break; case DHCP_LEASE_TIME: leaseTime = Integer.valueOf(packet.getInt()); expectedLen = 4; break; case DHCP_MESSAGE_TYPE: dhcpType = packet.get(); expectedLen = 1; break; case DHCP_SERVER_IDENTIFIER: serverIdentifier = readIpAddress(packet); expectedLen = 4; break; case DHCP_PARAMETER_LIST: expectedParams = new byte[optionLen]; packet.get(expectedParams); expectedLen = optionLen; break; case DHCP_MESSAGE: expectedLen = optionLen; message = readAsciiString(packet, optionLen); break; case DHCP_VENDOR_CLASS_ID: expectedLen = optionLen; vendorId = readAsciiString(packet, optionLen); break; case DHCP_CLIENT_IDENTIFIER: { // Client identifier byte[] id = new byte[optionLen]; packet.get(id); expectedLen = optionLen; } break; default: // ignore any other parameters for (int i = 0; i < optionLen; i++) { expectedLen++; byte throwaway = packet.get(); } } if (expectedLen != optionLen) { return null; } } } DhcpPacket newPacket; switch(dhcpType) { case -1: return null; case DHCP_MESSAGE_TYPE_DISCOVER: newPacket = new DhcpDiscoverPacket( transactionId, clientMac, broadcast); break; case DHCP_MESSAGE_TYPE_OFFER: newPacket = new DhcpOfferPacket( transactionId, broadcast, ipSrc, yourIp, clientMac); break; case DHCP_MESSAGE_TYPE_REQUEST: newPacket = new DhcpRequestPacket( transactionId, clientIp, clientMac, broadcast); break; case DHCP_MESSAGE_TYPE_DECLINE: newPacket = new DhcpDeclinePacket( transactionId, clientIp, yourIp, nextIp, relayIp, clientMac); break; case DHCP_MESSAGE_TYPE_ACK: newPacket = new DhcpAckPacket( transactionId, broadcast, ipSrc, yourIp, clientMac); break; case DHCP_MESSAGE_TYPE_NAK: newPacket = new DhcpNakPacket( transactionId, clientIp, yourIp, nextIp, relayIp, clientMac); break; case DHCP_MESSAGE_TYPE_INFORM: newPacket = new DhcpInformPacket( transactionId, clientIp, yourIp, nextIp, relayIp, clientMac); break; default: System.out.println("Unimplemented type: " + dhcpType); return null; } newPacket.mBroadcastAddress = bcAddr; newPacket.mDnsServers = dnsServers; newPacket.mDomainName = domainName; newPacket.mGateway = gateway; newPacket.mHostName = hostName; newPacket.mLeaseTime = leaseTime; newPacket.mMessage = message; newPacket.mRequestedIp = requestedIp; newPacket.mRequestedParams = expectedParams; newPacket.mServerIdentifier = serverIdentifier; newPacket.mSubnetMask = netMask; return newPacket; } /** * Parse a packet from an array of bytes. */ public static DhcpPacket decodeFullPacket(byte[] packet, int pktType) { ByteBuffer buffer = ByteBuffer.wrap(packet).order(ByteOrder.BIG_ENDIAN); return decodeFullPacket(buffer, pktType); } /** * Builds a DHCP-DISCOVER packet from the required specified * parameters. */ public static ByteBuffer buildDiscoverPacket(int encap, int transactionId, byte[] clientMac, boolean broadcast, byte[] expectedParams) { DhcpPacket pkt = new DhcpDiscoverPacket( transactionId, clientMac, broadcast); pkt.mRequestedParams = expectedParams; return pkt.buildPacket(encap, DHCP_SERVER, DHCP_CLIENT); } /** * Builds a DHCP-OFFER packet from the required specified * parameters. */ public static ByteBuffer buildOfferPacket(int encap, int transactionId, boolean broadcast, InetAddress serverIpAddr, InetAddress clientIpAddr, byte[] mac, Integer timeout, InetAddress netMask, InetAddress bcAddr, InetAddress gateway, List dnsServers, InetAddress dhcpServerIdentifier, String domainName) { DhcpPacket pkt = new DhcpOfferPacket( transactionId, broadcast, serverIpAddr, clientIpAddr, mac); pkt.mGateway = gateway; pkt.mDnsServers = dnsServers; pkt.mLeaseTime = timeout; pkt.mDomainName = domainName; pkt.mServerIdentifier = dhcpServerIdentifier; pkt.mSubnetMask = netMask; pkt.mBroadcastAddress = bcAddr; return pkt.buildPacket(encap, DHCP_CLIENT, DHCP_SERVER); } /** * Builds a DHCP-ACK packet from the required specified parameters. */ public static ByteBuffer buildAckPacket(int encap, int transactionId, boolean broadcast, InetAddress serverIpAddr, InetAddress clientIpAddr, byte[] mac, Integer timeout, InetAddress netMask, InetAddress bcAddr, InetAddress gateway, List dnsServers, InetAddress dhcpServerIdentifier, String domainName) { DhcpPacket pkt = new DhcpAckPacket( transactionId, broadcast, serverIpAddr, clientIpAddr, mac); pkt.mGateway = gateway; pkt.mDnsServers = dnsServers; pkt.mLeaseTime = timeout; pkt.mDomainName = domainName; pkt.mSubnetMask = netMask; pkt.mServerIdentifier = dhcpServerIdentifier; pkt.mBroadcastAddress = bcAddr; return pkt.buildPacket(encap, DHCP_CLIENT, DHCP_SERVER); } /** * Builds a DHCP-NAK packet from the required specified parameters. */ public static ByteBuffer buildNakPacket(int encap, int transactionId, InetAddress serverIpAddr, InetAddress clientIpAddr, byte[] mac) { DhcpPacket pkt = new DhcpNakPacket(transactionId, clientIpAddr, serverIpAddr, serverIpAddr, serverIpAddr, mac); pkt.mMessage = "requested address not available"; pkt.mRequestedIp = clientIpAddr; return pkt.buildPacket(encap, DHCP_CLIENT, DHCP_SERVER); } /** * Builds a DHCP-REQUEST packet from the required specified parameters. */ public static ByteBuffer buildRequestPacket(int encap, int transactionId, InetAddress clientIp, boolean broadcast, byte[] clientMac, InetAddress requestedIpAddress, InetAddress serverIdentifier, byte[] requestedParams, String hostName) { DhcpPacket pkt = new DhcpRequestPacket(transactionId, clientIp, clientMac, broadcast); pkt.mRequestedIp = requestedIpAddress; pkt.mServerIdentifier = serverIdentifier; pkt.mHostName = hostName; pkt.mRequestedParams = requestedParams; ByteBuffer result = pkt.buildPacket(encap, DHCP_SERVER, DHCP_CLIENT); return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy