libcore.util.ZoneInfo Maven / Gradle / Ivy
Show all versions of android-all Show documentation
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Elements of the WallTime class are a port of Bionic's localtime.c to Java. That code had the
* following header:
*
* This file is in the public domain, so clarified as of
* 1996-06-05 by Arthur David Olson.
*/
package libcore.util;
import java.util.Arrays;
import java.util.Calendar;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.TimeZone;
import libcore.io.BufferIterator;
/**
* Our concrete TimeZone implementation, backed by zoneinfo data.
*
* @hide - used to implement TimeZone
*/
public final class ZoneInfo extends TimeZone {
private static final long MILLISECONDS_PER_DAY = 24 * 60 * 60 * 1000;
private static final long MILLISECONDS_PER_400_YEARS =
MILLISECONDS_PER_DAY * (400 * 365 + 100 - 3);
private static final long UNIX_OFFSET = 62167219200000L;
private static final int[] NORMAL = new int[] {
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
};
private static final int[] LEAP = new int[] {
0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335,
};
private int mRawOffset;
private final int mEarliestRawOffset;
private final boolean mUseDst;
private final int mDstSavings; // Implements TimeZone.getDSTSavings.
private final int[] mTransitions;
private final int[] mOffsets;
private final byte[] mTypes;
private final byte[] mIsDsts;
public static ZoneInfo makeTimeZone(String id, BufferIterator it) {
// Variable names beginning tzh_ correspond to those in "tzfile.h".
// Check tzh_magic.
if (it.readInt() != 0x545a6966) { // "TZif"
return null;
}
// Skip the uninteresting part of the header.
it.skip(28);
// Read the sizes of the arrays we're about to read.
int tzh_timecnt = it.readInt();
int tzh_typecnt = it.readInt();
it.skip(4); // Skip tzh_charcnt.
int[] transitions = new int[tzh_timecnt];
it.readIntArray(transitions, 0, transitions.length);
byte[] type = new byte[tzh_timecnt];
it.readByteArray(type, 0, type.length);
int[] gmtOffsets = new int[tzh_typecnt];
byte[] isDsts = new byte[tzh_typecnt];
for (int i = 0; i < tzh_typecnt; ++i) {
gmtOffsets[i] = it.readInt();
isDsts[i] = it.readByte();
// We skip the abbreviation index. This would let us provide historically-accurate
// time zone abbreviations (such as "AHST", "YST", and "AKST" for standard time in
// America/Anchorage in 1982, 1983, and 1984 respectively). ICU only knows the current
// names, though, so even if we did use this data to provide the correct abbreviations
// for en_US, we wouldn't be able to provide correct abbreviations for other locales,
// nor would we be able to provide correct long forms (such as "Yukon Standard Time")
// for any locale. (The RI doesn't do any better than us here either.)
it.skip(1);
}
return new ZoneInfo(id, transitions, type, gmtOffsets, isDsts);
}
private ZoneInfo(String name, int[] transitions, byte[] types, int[] gmtOffsets, byte[] isDsts) {
mTransitions = transitions;
mTypes = types;
mIsDsts = isDsts;
setID(name);
// Find the latest daylight and standard offsets (if any).
int lastStd = 0;
boolean haveStd = false;
int lastDst = 0;
boolean haveDst = false;
for (int i = mTransitions.length - 1; (!haveStd || !haveDst) && i >= 0; --i) {
int type = mTypes[i] & 0xff;
if (!haveStd && mIsDsts[type] == 0) {
haveStd = true;
lastStd = i;
}
if (!haveDst && mIsDsts[type] != 0) {
haveDst = true;
lastDst = i;
}
}
// Use the latest non-daylight offset (if any) as the raw offset.
if (lastStd >= mTypes.length) {
mRawOffset = gmtOffsets[0];
} else {
mRawOffset = gmtOffsets[mTypes[lastStd] & 0xff];
}
// Use the latest transition's pair of offsets to compute the DST savings.
// This isn't generally useful, but it's exposed by TimeZone.getDSTSavings.
if (lastDst >= mTypes.length) {
mDstSavings = 0;
} else {
mDstSavings = Math.abs(gmtOffsets[mTypes[lastStd] & 0xff] - gmtOffsets[mTypes[lastDst] & 0xff]) * 1000;
}
// Cache the oldest known raw offset, in case we're asked about times that predate our
// transition data.
int firstStd = -1;
for (int i = 0; i < mTransitions.length; ++i) {
if (mIsDsts[mTypes[i] & 0xff] == 0) {
firstStd = i;
break;
}
}
int earliestRawOffset = (firstStd != -1) ? gmtOffsets[mTypes[firstStd] & 0xff] : mRawOffset;
// Rather than keep offsets from UTC, we use offsets from local time, so the raw offset
// can be changed and automatically affect all the offsets.
mOffsets = gmtOffsets;
for (int i = 0; i < mOffsets.length; i++) {
mOffsets[i] -= mRawOffset;
}
// Is this zone observing DST currently or in the future?
// We don't care if they've historically used it: most places have at least once.
// See http://code.google.com/p/android/issues/detail?id=877.
// This test means that for somewhere like Morocco, which tried DST in 2009 but has
// no future plans (and thus no future schedule info) will report "true" from
// useDaylightTime at the start of 2009 but "false" at the end. This seems appropriate.
boolean usesDst = false;
int currentUnixTimeSeconds = (int) (System.currentTimeMillis() / 1000);
int i = mTransitions.length - 1;
while (i >= 0 && mTransitions[i] >= currentUnixTimeSeconds) {
if (mIsDsts[mTypes[i]] > 0) {
usesDst = true;
break;
}
i--;
}
mUseDst = usesDst;
// tzdata uses seconds, but Java uses milliseconds.
mRawOffset *= 1000;
mEarliestRawOffset = earliestRawOffset * 1000;
}
@Override
public int getOffset(int era, int year, int month, int day, int dayOfWeek, int millis) {
// XXX This assumes Gregorian always; Calendar switches from
// Julian to Gregorian in 1582. What calendar system are the
// arguments supposed to come from?
long calc = (year / 400) * MILLISECONDS_PER_400_YEARS;
year %= 400;
calc += year * (365 * MILLISECONDS_PER_DAY);
calc += ((year + 3) / 4) * MILLISECONDS_PER_DAY;
if (year > 0) {
calc -= ((year - 1) / 100) * MILLISECONDS_PER_DAY;
}
boolean isLeap = (year == 0 || (year % 4 == 0 && year % 100 != 0));
int[] mlen = isLeap ? LEAP : NORMAL;
calc += mlen[month] * MILLISECONDS_PER_DAY;
calc += (day - 1) * MILLISECONDS_PER_DAY;
calc += millis;
calc -= mRawOffset;
calc -= UNIX_OFFSET;
return getOffset(calc);
}
@Override
public int getOffset(long when) {
int unix = (int) (when / 1000);
int transition = Arrays.binarySearch(mTransitions, unix);
if (transition < 0) {
transition = ~transition - 1;
if (transition < 0) {
// Assume that all times before our first transition correspond to the
// oldest-known non-daylight offset. The obvious alternative would be to
// use the current raw offset, but that seems like a greater leap of faith.
return mEarliestRawOffset;
}
}
return mRawOffset + mOffsets[mTypes[transition] & 0xff] * 1000;
}
@Override public boolean inDaylightTime(Date time) {
long when = time.getTime();
int unix = (int) (when / 1000);
int transition = Arrays.binarySearch(mTransitions, unix);
if (transition < 0) {
transition = ~transition - 1;
if (transition < 0) {
// Assume that all times before our first transition are non-daylight.
// Transition data tends to start with a transition to daylight, so just
// copying the first transition would assume the opposite.
// http://code.google.com/p/android/issues/detail?id=14395
return false;
}
}
return mIsDsts[mTypes[transition] & 0xff] == 1;
}
@Override public int getRawOffset() {
return mRawOffset;
}
@Override public void setRawOffset(int off) {
mRawOffset = off;
}
@Override public int getDSTSavings() {
return mUseDst ? mDstSavings: 0;
}
@Override public boolean useDaylightTime() {
return mUseDst;
}
@Override public boolean hasSameRules(TimeZone timeZone) {
if (!(timeZone instanceof ZoneInfo)) {
return false;
}
ZoneInfo other = (ZoneInfo) timeZone;
if (mUseDst != other.mUseDst) {
return false;
}
if (!mUseDst) {
return mRawOffset == other.mRawOffset;
}
return mRawOffset == other.mRawOffset
// Arrays.equals returns true if both arrays are null
&& Arrays.equals(mOffsets, other.mOffsets)
&& Arrays.equals(mIsDsts, other.mIsDsts)
&& Arrays.equals(mTypes, other.mTypes)
&& Arrays.equals(mTransitions, other.mTransitions);
}
@Override public boolean equals(Object obj) {
if (!(obj instanceof ZoneInfo)) {
return false;
}
ZoneInfo other = (ZoneInfo) obj;
return getID().equals(other.getID()) && hasSameRules(other);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + getID().hashCode();
result = prime * result + Arrays.hashCode(mOffsets);
result = prime * result + Arrays.hashCode(mIsDsts);
result = prime * result + mRawOffset;
result = prime * result + Arrays.hashCode(mTransitions);
result = prime * result + Arrays.hashCode(mTypes);
result = prime * result + (mUseDst ? 1231 : 1237);
return result;
}
@Override
public String toString() {
return getClass().getName() + "[id=\"" + getID() + "\"" +
",mRawOffset=" + mRawOffset +
",mEarliestRawOffset=" + mEarliestRawOffset +
",mUseDst=" + mUseDst +
",mDstSavings=" + mDstSavings +
",transitions=" + mTransitions.length +
"]";
}
@Override
public Object clone() {
// Overridden for documentation. The default clone() behavior is exactly what we want.
// Though mutable, the arrays of offset data are treated as immutable. Only ID and
// mRawOffset are mutable in this class, and those are an immutable object and a primitive
// respectively.
return super.clone();
}
/**
* A class that represents a "wall time". This class is modeled on the C tm struct and
* is used to support android.text.format.Time behavior. Unlike the tm struct the year is
* represented as the full year, not the years since 1900.
*
* This class contains a rewrite of various native functions that android.text.format.Time
* once relied on such as mktime_tz and localtime_tz. This replacement does not support leap
* seconds but does try to preserve behavior around ambiguous date/times found in the BSD
* version of mktime that was previously used.
*
*
The original native code used a 32-bit value for time_t on 32-bit Android, which
* was the only variant of Android available at the time. To preserve old behavior this code
* deliberately uses {@code int} rather than {@code long} for most things and performs
* calculations in seconds. This creates deliberate truncation issues for date / times before
* 1901 and after 2038. This is intentional but might be fixed in future if all the knock-ons
* can be resolved: Application code may have come to rely on the range so previously values
* like zero for year could indicate an invalid date but if we move to long the year zero would
* be valid.
*
*
All offsets are considered to be safe for addition / subtraction / multiplication without
* worrying about overflow. All absolute time arithmetic is checked for overflow / underflow.
*/
public static class WallTime {
// We use a GregorianCalendar (set to UTC) to handle all the date/time normalization logic
// and to convert from a broken-down date/time to a millis value.
// Unfortunately, it cannot represent an initial state with a zero day and would
// automatically normalize it, so we must copy values into and out of it as needed.
private final GregorianCalendar calendar;
private int year;
private int month;
private int monthDay;
private int hour;
private int minute;
private int second;
private int weekDay;
private int yearDay;
private int isDst;
private int gmtOffsetSeconds;
public WallTime() {
this.calendar = createGregorianCalendar();
calendar.setTimeZone(TimeZone.getTimeZone("UTC"));
}
// LayoutLib replaces this method via bytecode manipulation, since the
// minimum-cost constructor is not available on host machines.
private static GregorianCalendar createGregorianCalendar() {
return new GregorianCalendar(false);
}
/**
* Sets the wall time to a point in time using the time zone information provided. This
* is a replacement for the old native localtime_tz() function.
*
*
When going from an instant to a wall time it is always unambiguous because there
* is only one offset rule acting at any given instant. We do not consider leap seconds.
*/
public void localtime(int timeSeconds, ZoneInfo zoneInfo) {
try {
int offsetSeconds = zoneInfo.mRawOffset / 1000;
// Find out the timezone DST state and adjustment.
byte isDst;
if (zoneInfo.mTransitions.length == 0) {
isDst = 0;
} else {
// transitionIndex can be in the range -1..zoneInfo.mTransitions.length - 1
int transitionIndex = findTransitionIndex(zoneInfo, timeSeconds);
if (transitionIndex < 0) {
// -1 means timeSeconds is "before the first recorded transition". The first
// recorded transition is treated as a transition from non-DST and the raw
// offset.
isDst = 0;
} else {
byte transitionType = zoneInfo.mTypes[transitionIndex];
offsetSeconds += zoneInfo.mOffsets[transitionType];
isDst = zoneInfo.mIsDsts[transitionType];
}
}
// Perform arithmetic that might underflow before setting fields.
int wallTimeSeconds = checkedAdd(timeSeconds, offsetSeconds);
// Set fields.
calendar.setTimeInMillis(wallTimeSeconds * 1000L);
copyFieldsFromCalendar();
this.isDst = isDst;
this.gmtOffsetSeconds = offsetSeconds;
} catch (CheckedArithmeticException e) {
// Just stop, leaving fields untouched.
}
}
/**
* Returns the time in seconds since beginning of the Unix epoch for the wall time using the
* time zone information provided. This is a replacement for an old native mktime_tz() C
* function.
*
*
When going from a wall time to an instant the answer can be ambiguous. A wall
* time can map to zero, one or two instants given sane date/time transitions. Sane
* in this case means that transitions occur less frequently than the offset
* differences between them (which could cause all sorts of craziness like the
* skipping out of transitions).
*
*
For example, this is not fully supported:
*
* - t1 { time = 1, offset = 0 }
*
- t2 { time = 2, offset = -1 }
*
- t3 { time = 3, offset = -2 }
*
* A wall time in this case might map to t1, t2 or t3.
*
* We do not handle leap seconds.
*
We assume that no timezone offset transition has an absolute offset > 24 hours.
*
We do not assume that adjacent transitions modify the DST state; adjustments can
* occur for other reasons such as when a zone changes its raw offset.
*/
public int mktime(ZoneInfo zoneInfo) {
// Normalize isDst to -1, 0 or 1 to simplify isDst equality checks below.
this.isDst = this.isDst > 0 ? this.isDst = 1 : this.isDst < 0 ? this.isDst = -1 : 0;
copyFieldsToCalendar();
final long longWallTimeSeconds = calendar.getTimeInMillis() / 1000;
if (Integer.MIN_VALUE > longWallTimeSeconds
|| longWallTimeSeconds > Integer.MAX_VALUE) {
// For compatibility with the old native 32-bit implementation we must treat
// this as an error. Note: -1 could be confused with a real time.
return -1;
}
try {
final int wallTimeSeconds = (int) longWallTimeSeconds;
final int rawOffsetSeconds = zoneInfo.mRawOffset / 1000;
final int rawTimeSeconds = checkedSubtract(wallTimeSeconds, rawOffsetSeconds);
if (zoneInfo.mTransitions.length == 0) {
// There is no transition information. There is just a raw offset for all time.
if (this.isDst > 0) {
// Caller has asserted DST, but there is no DST information available.
return -1;
}
copyFieldsFromCalendar();
this.isDst = 0;
this.gmtOffsetSeconds = rawOffsetSeconds;
return rawTimeSeconds;
}
// We cannot know for sure what instant the wall time will map to. Unfortunately, in
// order to know for sure we need the timezone information, but to get the timezone
// information we need an instant. To resolve this we use the raw offset to find an
// OffsetInterval; this will get us the OffsetInterval we need or very close.
// The initialTransition can be between -1 and (zoneInfo.mTransitions - 1). -1
// indicates the rawTime is before the first transition and is handled gracefully by
// createOffsetInterval().
final int initialTransitionIndex = findTransitionIndex(zoneInfo, rawTimeSeconds);
if (isDst < 0) {
// This is treated as a special case to get it out of the way:
// When a caller has set isDst == -1 it means we can return the first match for
// the wall time we find. If the caller has specified a wall time that cannot
// exist this always returns -1.
Integer result = doWallTimeSearch(zoneInfo, initialTransitionIndex,
wallTimeSeconds, true /* mustMatchDst */);
return result == null ? -1 : result;
}
// If the wall time asserts a DST (isDst == 0 or 1) the search is performed twice:
// 1) The first attempts to find a DST offset that matches isDst exactly.
// 2) If it fails, isDst is assumed to be incorrect and adjustments are made to see
// if a valid wall time can be created. The result can be somewhat arbitrary.
Integer result = doWallTimeSearch(zoneInfo, initialTransitionIndex, wallTimeSeconds,
true /* mustMatchDst */);
if (result == null) {
result = doWallTimeSearch(zoneInfo, initialTransitionIndex, wallTimeSeconds,
false /* mustMatchDst */);
}
if (result == null) {
result = -1;
}
return result;
} catch (CheckedArithmeticException e) {
return -1;
}
}
/**
* Attempt to apply DST adjustments to {@code oldWallTimeSeconds} to create a wall time in
* {@code targetInterval}.
*
*
This is used when a caller has made an assertion about standard time / DST that cannot
* be matched to any offset interval that exists. We must therefore assume that the isDst
* assertion is incorrect and the invalid wall time is the result of some modification the
* caller made to a valid wall time that pushed them outside of the offset interval they
* were in. We must correct for any DST change that should have been applied when they did
* so.
*
*
Unfortunately, we have no information about what adjustment they made and so cannot
* know which offset interval they were previously in. For example, they may have added a
* second or a year to a valid time to arrive at what they have.
*
*
We try all offset types that are not the same as the isDst the caller asserted. For
* each possible offset we work out the offset difference between that and
* {@code targetInterval}, apply it, and see if we are still in {@code targetInterval}. If
* we are, then we have found an adjustment.
*/
private Integer tryOffsetAdjustments(ZoneInfo zoneInfo, int oldWallTimeSeconds,
OffsetInterval targetInterval, int transitionIndex, int isDstToFind)
throws CheckedArithmeticException {
int[] offsetsToTry = getOffsetsOfType(zoneInfo, transitionIndex, isDstToFind);
for (int j = 0; j < offsetsToTry.length; j++) {
int rawOffsetSeconds = zoneInfo.mRawOffset / 1000;
int jOffsetSeconds = rawOffsetSeconds + offsetsToTry[j];
int targetIntervalOffsetSeconds = targetInterval.getTotalOffsetSeconds();
int adjustmentSeconds = targetIntervalOffsetSeconds - jOffsetSeconds;
int adjustedWallTimeSeconds = checkedAdd(oldWallTimeSeconds, adjustmentSeconds);
if (targetInterval.containsWallTime(adjustedWallTimeSeconds)) {
// Perform any arithmetic that might overflow.
int returnValue = checkedSubtract(adjustedWallTimeSeconds,
targetIntervalOffsetSeconds);
// Modify field state and return the result.
calendar.setTimeInMillis(adjustedWallTimeSeconds * 1000L);
copyFieldsFromCalendar();
this.isDst = targetInterval.getIsDst();
this.gmtOffsetSeconds = targetIntervalOffsetSeconds;
return returnValue;
}
}
return null;
}
/**
* Return an array of offsets that have the requested {@code isDst} value.
* The {@code startIndex} is used as a starting point so transitions nearest
* to that index are returned first.
*/
private static int[] getOffsetsOfType(ZoneInfo zoneInfo, int startIndex, int isDst) {
// +1 to account for the synthetic transition we invent before the first recorded one.
int[] offsets = new int[zoneInfo.mOffsets.length + 1];
boolean[] seen = new boolean[zoneInfo.mOffsets.length];
int numFound = 0;
int delta = 0;
boolean clampTop = false;
boolean clampBottom = false;
do {
// delta = { 1, -1, 2, -2, 3, -3...}
delta *= -1;
if (delta >= 0) {
delta++;
}
int transitionIndex = startIndex + delta;
if (delta < 0 && transitionIndex < -1) {
clampBottom = true;
continue;
} else if (delta > 0 && transitionIndex >= zoneInfo.mTypes.length) {
clampTop = true;
continue;
}
if (transitionIndex == -1) {
if (isDst == 0) {
// Synthesize a non-DST transition before the first transition we have
// data for.
offsets[numFound++] = 0; // offset of 0 from raw offset
}
continue;
}
byte type = zoneInfo.mTypes[transitionIndex];
if (!seen[type]) {
if (zoneInfo.mIsDsts[type] == isDst) {
offsets[numFound++] = zoneInfo.mOffsets[type];
}
seen[type] = true;
}
} while (!(clampTop && clampBottom));
int[] toReturn = new int[numFound];
System.arraycopy(offsets, 0, toReturn, 0, numFound);
return toReturn;
}
/**
* Find a time in seconds the same or close to {@code wallTimeSeconds} that
* satisfies {@code mustMatchDst}. The search begins around the timezone offset transition
* with {@code initialTransitionIndex}.
*
*
If {@code mustMatchDst} is {@code true} the method can only return times that
* use timezone offsets that satisfy the {@code this.isDst} requirements.
* If {@code this.isDst == -1} it means that any offset can be used.
*
*
If {@code mustMatchDst} is {@code false} any offset that covers the
* currently set time is acceptable. That is: if {@code this.isDst} == -1, any offset
* transition can be used, if it is 0 or 1 the offset used must match {@code this.isDst}.
*
*
Note: This method both uses and can modify field state. It returns the matching time
* in seconds if a match has been found and modifies fields, or it returns {@code null} and
* leaves the field state unmodified.
*/
private Integer doWallTimeSearch(ZoneInfo zoneInfo, int initialTransitionIndex,
int wallTimeSeconds, boolean mustMatchDst) throws CheckedArithmeticException {
// The loop below starts at the initialTransitionIndex and radiates out from that point
// up to 24 hours in either direction by applying transitionIndexDelta to inspect
// adjacent transitions (0, -1, +1, -2, +2). 24 hours is used because we assume that no
// total offset from UTC is ever > 24 hours. clampTop and clampBottom are used to
// indicate whether the search has either searched > 24 hours or exhausted the
// transition data in that direction. The search stops when a match is found or if
// clampTop and clampBottom are both true.
// The match logic employed is determined by the mustMatchDst parameter.
final int MAX_SEARCH_SECONDS = 24 * 60 * 60;
boolean clampTop = false, clampBottom = false;
int loop = 0;
do {
// transitionIndexDelta = { 0, -1, 1, -2, 2,..}
int transitionIndexDelta = (loop + 1) / 2;
if (loop % 2 == 1) {
transitionIndexDelta *= -1;
}
loop++;
// Only do any work in this iteration if we need to.
if (transitionIndexDelta > 0 && clampTop
|| transitionIndexDelta < 0 && clampBottom) {
continue;
}
// Obtain the OffsetInterval to use.
int currentTransitionIndex = initialTransitionIndex + transitionIndexDelta;
OffsetInterval offsetInterval =
OffsetInterval.create(zoneInfo, currentTransitionIndex);
if (offsetInterval == null) {
// No transition exists with the index we tried: Stop searching in the
// current direction.
clampTop |= (transitionIndexDelta > 0);
clampBottom |= (transitionIndexDelta < 0);
continue;
}
// Match the wallTimeSeconds against the OffsetInterval.
if (mustMatchDst) {
// Work out if the interval contains the wall time the caller specified and
// matches their isDst value.
if (offsetInterval.containsWallTime(wallTimeSeconds)) {
if (this.isDst == -1 || offsetInterval.getIsDst() == this.isDst) {
// This always returns the first OffsetInterval it finds that matches
// the wall time and isDst requirements. If this.isDst == -1 this means
// the result might be a DST or a non-DST answer for wall times that can
// exist in two OffsetIntervals.
int totalOffsetSeconds = offsetInterval.getTotalOffsetSeconds();
int returnValue = checkedSubtract(wallTimeSeconds,
totalOffsetSeconds);
copyFieldsFromCalendar();
this.isDst = offsetInterval.getIsDst();
this.gmtOffsetSeconds = totalOffsetSeconds;
return returnValue;
}
}
} else {
// To retain similar behavior to the old native implementation: if the caller is
// asserting the same isDst value as the OffsetInterval we are looking at we do
// not try to find an adjustment from another OffsetInterval of the same isDst
// type. If you remove this you get different results in situations like a
// DST -> DST transition or STD -> STD transition that results in an interval of
// "skipped" wall time. For example: if 01:30 (DST) is invalid and between two
// DST intervals, and the caller has passed isDst == 1, this results in a -1
// being returned.
if (isDst != offsetInterval.getIsDst()) {
final int isDstToFind = isDst;
Integer returnValue = tryOffsetAdjustments(zoneInfo, wallTimeSeconds,
offsetInterval, currentTransitionIndex, isDstToFind);
if (returnValue != null) {
return returnValue;
}
}
}
// See if we can avoid another loop in the current direction.
if (transitionIndexDelta > 0) {
// If we are searching forward and the OffsetInterval we have ends
// > MAX_SEARCH_SECONDS after the wall time, we don't need to look any further
// forward.
boolean endSearch = offsetInterval.getEndWallTimeSeconds() - wallTimeSeconds
> MAX_SEARCH_SECONDS;
if (endSearch) {
clampTop = true;
}
} else if (transitionIndexDelta < 0) {
boolean endSearch = wallTimeSeconds - offsetInterval.getStartWallTimeSeconds()
>= MAX_SEARCH_SECONDS;
if (endSearch) {
// If we are searching backward and the OffsetInterval starts
// > MAX_SEARCH_SECONDS before the wall time, we don't need to look any
// further backwards.
clampBottom = true;
}
}
} while (!(clampTop && clampBottom));
return null;
}
public void setYear(int year) {
this.year = year;
}
public void setMonth(int month) {
this.month = month;
}
public void setMonthDay(int monthDay) {
this.monthDay = monthDay;
}
public void setHour(int hour) {
this.hour = hour;
}
public void setMinute(int minute) {
this.minute = minute;
}
public void setSecond(int second) {
this.second = second;
}
public void setWeekDay(int weekDay) {
this.weekDay = weekDay;
}
public void setYearDay(int yearDay) {
this.yearDay = yearDay;
}
public void setIsDst(int isDst) {
this.isDst = isDst;
}
public void setGmtOffset(int gmtoff) {
this.gmtOffsetSeconds = gmtoff;
}
public int getYear() {
return year;
}
public int getMonth() {
return month;
}
public int getMonthDay() {
return monthDay;
}
public int getHour() {
return hour;
}
public int getMinute() {
return minute;
}
public int getSecond() {
return second;
}
public int getWeekDay() {
return weekDay;
}
public int getYearDay() {
return yearDay;
}
public int getGmtOffset() {
return gmtOffsetSeconds;
}
public int getIsDst() {
return isDst;
}
private void copyFieldsToCalendar() {
calendar.set(Calendar.YEAR, year);
calendar.set(Calendar.MONTH, month);
calendar.set(Calendar.DAY_OF_MONTH, monthDay);
calendar.set(Calendar.HOUR_OF_DAY, hour);
calendar.set(Calendar.MINUTE, minute);
calendar.set(Calendar.SECOND, second);
}
private void copyFieldsFromCalendar() {
year = calendar.get(Calendar.YEAR);
month = calendar.get(Calendar.MONTH);
monthDay = calendar.get(Calendar.DAY_OF_MONTH);
hour = calendar.get(Calendar.HOUR_OF_DAY);
minute = calendar.get(Calendar.MINUTE);
second = calendar.get(Calendar.SECOND);
// Calendar uses Sunday == 1. Android Time uses Sunday = 0.
weekDay = calendar.get(Calendar.DAY_OF_WEEK) - 1;
// Calendar enumerates from 1, Android Time enumerates from 0.
yearDay = calendar.get(Calendar.DAY_OF_YEAR) - 1;
}
/**
* Find the transition in the {@code timezone} in effect at {@code timeSeconds}.
*
*
Returns an index in the range -1..timeZone.mTransitions.length - 1. -1 is used to
* indicate the time is before the first transition. Other values are an index into
* timeZone.mTransitions.
*/
private static int findTransitionIndex(ZoneInfo timeZone, int timeSeconds) {
int matchingRawTransition = Arrays.binarySearch(timeZone.mTransitions, timeSeconds);
if (matchingRawTransition < 0) {
matchingRawTransition = ~matchingRawTransition - 1;
}
return matchingRawTransition;
}
}
/**
* A wall-time representation of a timezone offset interval.
*
*
Wall-time means "as it would appear locally in the timezone in which it applies".
* For example in 2007:
* PST was a -8:00 offset that ran until Mar 11, 2:00 AM.
* PDT was a -7:00 offset and ran from Mar 11, 3:00 AM to Nov 4, 2:00 AM.
* PST was a -8:00 offset and ran from Nov 4, 1:00 AM.
* Crucially this means that there was a "gap" after PST when PDT started, and an overlap when
* PDT ended and PST began.
*
*
For convenience all wall-time values are represented as the number of seconds since the
* beginning of the Unix epoch in UTC. To convert from a wall-time to the actual time
* in the offset it is necessary to subtract the {@code totalOffsetSeconds}.
* For example: If the offset in PST is -07:00 hours, then:
* timeInPstSeconds = wallTimeUtcSeconds - offsetSeconds
* i.e. 13:00 UTC - (-07:00) = 20:00 UTC = 13:00 PST
*/
static class OffsetInterval {
private final int startWallTimeSeconds;
private final int endWallTimeSeconds;
private final int isDst;
private final int totalOffsetSeconds;
/**
* Creates an {@link OffsetInterval}.
*
*
If {@code transitionIndex} is -1, the transition is synthesized to be a non-DST offset
* that runs from the beginning of time until the first transition in {@code timeZone} and
* has an offset of {@code timezone.mRawOffset}. If {@code transitionIndex} is the last
* transition that transition is considered to run until the end of representable time.
* Otherwise, the information is extracted from {@code timeZone.mTransitions},
* {@code timeZone.mOffsets} an {@code timeZone.mIsDsts}.
*/
public static OffsetInterval create(ZoneInfo timeZone, int transitionIndex)
throws CheckedArithmeticException {
if (transitionIndex < -1 || transitionIndex >= timeZone.mTransitions.length) {
return null;
}
int rawOffsetSeconds = timeZone.mRawOffset / 1000;
if (transitionIndex == -1) {
int endWallTimeSeconds = checkedAdd(timeZone.mTransitions[0], rawOffsetSeconds);
return new OffsetInterval(Integer.MIN_VALUE, endWallTimeSeconds, 0 /* isDst */,
rawOffsetSeconds);
}
byte type = timeZone.mTypes[transitionIndex];
int totalOffsetSeconds = timeZone.mOffsets[type] + rawOffsetSeconds;
int endWallTimeSeconds;
if (transitionIndex == timeZone.mTransitions.length - 1) {
// If this is the last transition, make up the end time.
endWallTimeSeconds = Integer.MAX_VALUE;
} else {
endWallTimeSeconds = checkedAdd(timeZone.mTransitions[transitionIndex + 1],
totalOffsetSeconds);
}
int isDst = timeZone.mIsDsts[type];
int startWallTimeSeconds =
checkedAdd(timeZone.mTransitions[transitionIndex], totalOffsetSeconds);
return new OffsetInterval(
startWallTimeSeconds, endWallTimeSeconds, isDst, totalOffsetSeconds);
}
private OffsetInterval(int startWallTimeSeconds, int endWallTimeSeconds, int isDst,
int totalOffsetSeconds) {
this.startWallTimeSeconds = startWallTimeSeconds;
this.endWallTimeSeconds = endWallTimeSeconds;
this.isDst = isDst;
this.totalOffsetSeconds = totalOffsetSeconds;
}
public boolean containsWallTime(long wallTimeSeconds) {
return wallTimeSeconds >= startWallTimeSeconds && wallTimeSeconds < endWallTimeSeconds;
}
public int getIsDst() {
return isDst;
}
public int getTotalOffsetSeconds() {
return totalOffsetSeconds;
}
public long getEndWallTimeSeconds() {
return endWallTimeSeconds;
}
public long getStartWallTimeSeconds() {
return startWallTimeSeconds;
}
}
/**
* An exception used to indicate an arithmetic overflow or underflow.
*/
private static class CheckedArithmeticException extends Exception {
}
/**
* Calculate (a + b).
*
* @throws CheckedArithmeticException if overflow or underflow occurs
*/
private static int checkedAdd(int a, int b) throws CheckedArithmeticException {
// Adapted from Guava IntMath.checkedAdd();
long result = (long) a + b;
if (result != (int) result) {
throw new CheckedArithmeticException();
}
return (int) result;
}
/**
* Calculate (a - b).
*
* @throws CheckedArithmeticException if overflow or underflow occurs
*/
private static int checkedSubtract(int a, int b) throws CheckedArithmeticException {
// Adapted from Guava IntMath.checkedSubtract();
long result = (long) a - b;
if (result != (int) result) {
throw new CheckedArithmeticException();
}
return (int) result;
}
}