java.lang.Integer Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package java.lang;
/**
* The wrapper for the primitive type {@code int}.
*
* Implementation note: The "bit twiddling" methods in this class use techniques
* described in Henry S. Warren,
* Jr.'s Hacker's Delight, (Addison Wesley, 2002) and Sean Anderson's
* Bit Twiddling Hacks.
*
* @see java.lang.Long
* @since 1.0
*/
@FindBugsSuppressWarnings("DM_NUMBER_CTOR")
public final class Integer extends Number implements Comparable {
private static final long serialVersionUID = 1360826667806852920L;
/**
* The int value represented by this Integer
*/
private final int value;
/**
* Constant for the maximum {@code int} value, 231-1.
*/
public static final int MAX_VALUE = 0x7FFFFFFF;
/**
* Constant for the minimum {@code int} value, -231.
*/
public static final int MIN_VALUE = 0x80000000;
/**
* Constant for the number of bits needed to represent an {@code int} in
* two's complement form.
*
* @since 1.5
*/
public static final int SIZE = 32;
/**
* Table for Seal's algorithm for Number of Trailing Zeros. Hacker's Delight
* online, Figure 5-18 (http://www.hackersdelight.org/revisions.pdf)
* The entries whose value is -1 are never referenced.
*/
private static final byte[] NTZ_TABLE = {
32, 0, 1, 12, 2, 6, -1, 13, 3, -1, 7, -1, -1, -1, -1, 14,
10, 4, -1, -1, 8, -1, -1, 25, -1, -1, -1, -1, -1, 21, 27, 15,
31, 11, 5, -1, -1, -1, -1, -1, 9, -1, -1, 24, -1, -1, 20, 26,
30, -1, -1, -1, -1, 23, -1, 19, 29, -1, 22, 18, 28, 17, 16, -1
};
/**
* The {@link Class} object that represents the primitive type {@code int}.
*/
@SuppressWarnings("unchecked")
public static final Class TYPE
= (Class) int[].class.getComponentType();
// Note: Integer.TYPE can't be set to "int.class", since *that* is
// defined to be "java.lang.Integer.TYPE";
/**
* Constructs a new {@code Integer} with the specified primitive integer
* value.
*
* @param value
* the primitive integer value to store in the new instance.
*/
public Integer(int value) {
this.value = value;
}
/**
* Constructs a new {@code Integer} from the specified string.
*
* @param string
* the string representation of an integer value.
* @throws NumberFormatException
* if {@code string} cannot be parsed as an integer value.
* @see #parseInt(String)
*/
public Integer(String string) throws NumberFormatException {
this(parseInt(string));
}
@Override
public byte byteValue() {
return (byte) value;
}
/**
* Compares this object to the specified integer object to determine their
* relative order.
*
* @param object
* the integer object to compare this object to.
* @return a negative value if the value of this integer is less than the
* value of {@code object}; 0 if the value of this integer and the
* value of {@code object} are equal; a positive value if the value
* of this integer is greater than the value of {@code object}.
* @see java.lang.Comparable
* @since 1.2
*/
public int compareTo(Integer object) {
return compare(value, object.value);
}
/**
* Compares two {@code int} values.
* @return 0 if lhs = rhs, less than 0 if lhs < rhs, and greater than 0
* if lhs > rhs.
* @since 1.7
*/
public static int compare(int lhs, int rhs) {
return lhs < rhs ? -1 : (lhs == rhs ? 0 : 1);
}
private static NumberFormatException invalidInt(String s) {
throw new NumberFormatException("Invalid int: \"" + s + "\"");
}
/**
* Parses the specified string and returns a {@code Integer} instance if the
* string can be decoded into an integer value. The string may be an
* optional sign character ("-" or "+") followed by a hexadecimal ("0x..."
* or "#..."), octal ("0..."), or decimal ("...") representation of an
* integer.
*
* @param string
* a string representation of an integer value.
* @return an {@code Integer} containing the value represented by
* {@code string}.
* @throws NumberFormatException
* if {@code string} cannot be parsed as an integer value.
*/
public static Integer decode(String string) throws NumberFormatException {
int length = string.length();
if (length == 0) {
throw invalidInt(string);
}
int i = 0;
char firstDigit = string.charAt(i);
boolean negative = firstDigit == '-';
if (negative || firstDigit == '+') {
if (length == 1) {
throw invalidInt(string);
}
firstDigit = string.charAt(++i);
}
int base = 10;
if (firstDigit == '0') {
if (++i == length) {
return valueOf(0);
}
if ((firstDigit = string.charAt(i)) == 'x' || firstDigit == 'X') {
if (++i == length) {
throw invalidInt(string);
}
base = 16;
} else {
base = 8;
}
} else if (firstDigit == '#') {
if (++i == length) {
throw invalidInt(string);
}
base = 16;
}
int result = parse(string, i, base, negative);
return valueOf(result);
}
@Override
public double doubleValue() {
return value;
}
/**
* Compares this instance with the specified object and indicates if they
* are equal. In order to be equal, {@code o} must be an instance of
* {@code Integer} and have the same integer value as this object.
*
* @param o
* the object to compare this integer with.
* @return {@code true} if the specified object is equal to this
* {@code Integer}; {@code false} otherwise.
*/
@Override
public boolean equals(Object o) {
return (o instanceof Integer) && (((Integer) o).value == value);
}
@Override
public float floatValue() {
return value;
}
/**
* Returns the {@code Integer} value of the system property identified by
* {@code string}. Returns {@code null} if {@code string} is {@code null}
* or empty, if the property can not be found or if its value can not be
* parsed as an integer.
*
* @param string
* the name of the requested system property.
* @return the requested property's value as an {@code Integer} or
* {@code null}.
*/
public static Integer getInteger(String string) {
if (string == null || string.length() == 0) {
return null;
}
String prop = System.getProperty(string);
if (prop == null) {
return null;
}
try {
return decode(prop);
} catch (NumberFormatException ex) {
return null;
}
}
/**
* Returns the {@code Integer} value of the system property identified by
* {@code string}. Returns the specified default value if {@code string} is
* {@code null} or empty, if the property can not be found or if its value
* can not be parsed as an integer.
*
* @param string
* the name of the requested system property.
* @param defaultValue
* the default value that is returned if there is no integer
* system property with the requested name.
* @return the requested property's value as an {@code Integer} or the
* default value.
*/
public static Integer getInteger(String string, int defaultValue) {
if (string == null || string.length() == 0) {
return valueOf(defaultValue);
}
String prop = System.getProperty(string);
if (prop == null) {
return valueOf(defaultValue);
}
try {
return decode(prop);
} catch (NumberFormatException ex) {
return valueOf(defaultValue);
}
}
/**
* Returns the {@code Integer} value of the system property identified by
* {@code string}. Returns the specified default value if {@code string} is
* {@code null} or empty, if the property can not be found or if its value
* can not be parsed as an integer.
*
* @param string
* the name of the requested system property.
* @param defaultValue
* the default value that is returned if there is no integer
* system property with the requested name.
* @return the requested property's value as an {@code Integer} or the
* default value.
*/
public static Integer getInteger(String string, Integer defaultValue) {
if (string == null || string.length() == 0) {
return defaultValue;
}
String prop = System.getProperty(string);
if (prop == null) {
return defaultValue;
}
try {
return decode(prop);
} catch (NumberFormatException ex) {
return defaultValue;
}
}
@Override
public int hashCode() {
return value;
}
/**
* Gets the primitive value of this int.
*
* @return this object's primitive value.
*/
@Override
public int intValue() {
return value;
}
@Override
public long longValue() {
return value;
}
/**
* Parses the specified string as a signed decimal integer value. The ASCII
* characters \u002d ('-') and \u002b ('+') are recognized as the minus and
* plus signs.
* @param string
* the string representation of an integer value.
* @return the primitive integer value represented by {@code string}.
* @throws NumberFormatException
* if {@code string} cannot be parsed as an integer value.
*/
public static int parseInt(String string) throws NumberFormatException {
return parseInt(string, 10);
}
/**
* Parses the specified string as a signed integer value using the specified
* radix. The ASCII characters \u002d ('-') and \u002b ('+') are recognized
* as the minus and plus signs.
*
* @param string
* the string representation of an integer value.
* @param radix
* the radix to use when parsing.
* @return the primitive integer value represented by {@code string} using
* {@code radix}.
* @throws NumberFormatException
* if {@code string} cannot be parsed as an integer value,
* or {@code radix < Character.MIN_RADIX ||
* radix > Character.MAX_RADIX}.
*/
public static int parseInt(String string, int radix) throws NumberFormatException {
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
throw new NumberFormatException("Invalid radix: " + radix);
}
if (string == null || string.isEmpty()) {
throw invalidInt(string);
}
char firstChar = string.charAt(0);
int firstDigitIndex = (firstChar == '-' || firstChar == '+') ? 1 : 0;
if (firstDigitIndex == string.length()) {
throw invalidInt(string);
}
return parse(string, firstDigitIndex, radix, firstChar == '-');
}
/**
* Equivalent to {@code parsePositiveInt(string, 10)}.
*
* @see #parsePositiveInt(String, int)
*
* @hide
*/
public static int parsePositiveInt(String string) throws NumberFormatException {
return parsePositiveInt(string, 10);
}
/**
* Parses the specified string as a positive integer value using the
* specified radix. 0 is considered a positive integer.
*
* This method behaves the same as {@link #parseInt(String, int)} except
* that it disallows leading '+' and '-' characters. See that method for
* error conditions.
*
* @see #parseInt(String, int)
*
* @hide
*/
public static int parsePositiveInt(String string, int radix) throws NumberFormatException {
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
throw new NumberFormatException("Invalid radix: " + radix);
}
if (string == null || string.length() == 0) {
throw invalidInt(string);
}
return parse(string, 0, radix, false);
}
private static int parse(String string, int offset, int radix, boolean negative) throws NumberFormatException {
int max = Integer.MIN_VALUE / radix;
int result = 0;
int length = string.length();
while (offset < length) {
int digit = Character.digit(string.charAt(offset++), radix);
if (digit == -1) {
throw invalidInt(string);
}
if (max > result) {
throw invalidInt(string);
}
int next = result * radix - digit;
if (next > result) {
throw invalidInt(string);
}
result = next;
}
if (!negative) {
result = -result;
if (result < 0) {
throw invalidInt(string);
}
}
return result;
}
@Override
public short shortValue() {
return (short) value;
}
/**
* Converts the specified integer into its binary string representation. The
* returned string is a concatenation of '0' and '1' characters.
*
* @param i
* the integer to convert.
* @return the binary string representation of {@code i}.
*/
public static String toBinaryString(int i) {
return IntegralToString.intToBinaryString(i);
}
/**
* Converts the specified integer into its hexadecimal string
* representation. The returned string is a concatenation of characters from
* '0' to '9' and 'a' to 'f'.
*
* @param i
* the integer to convert.
* @return the hexadecimal string representation of {@code i}.
*/
public static String toHexString(int i) {
return IntegralToString.intToHexString(i, false, 0);
}
/**
* Converts the specified integer into its octal string representation. The
* returned string is a concatenation of characters from '0' to '7'.
*
* @param i
* the integer to convert.
* @return the octal string representation of {@code i}.
*/
public static String toOctalString(int i) {
return IntegralToString.intToOctalString(i);
}
@Override
public String toString() {
return Integer.toString(value);
}
/**
* Converts the specified integer into its decimal string representation.
* The returned string is a concatenation of a minus sign if the number is
* negative and characters from '0' to '9'.
*
* @param i
* the integer to convert.
* @return the decimal string representation of {@code i}.
*/
public static String toString(int i) {
return IntegralToString.intToString(i);
}
/**
* Converts the specified signed integer into a string representation based on the
* specified radix. The returned string is a concatenation of a minus sign
* if the number is negative and characters from '0' to '9' and 'a' to 'z',
* depending on the radix. If {@code radix} is not in the interval defined
* by {@code Character.MIN_RADIX} and {@code Character.MAX_RADIX} then 10 is
* used as the base for the conversion.
*
*
This method treats its argument as signed. If you want to convert an
* unsigned value to one of the common non-decimal bases, you may find
* {@link #toBinaryString}, {@code #toHexString}, or {@link #toOctalString}
* more convenient.
*
* @param i
* the signed integer to convert.
* @param radix
* the base to use for the conversion.
* @return the string representation of {@code i}.
*/
public static String toString(int i, int radix) {
return IntegralToString.intToString(i, radix);
}
/**
* Parses the specified string as a signed decimal integer value.
*
* @param string
* the string representation of an integer value.
* @return an {@code Integer} instance containing the integer value
* represented by {@code string}.
* @throws NumberFormatException
* if {@code string} cannot be parsed as an integer value.
* @see #parseInt(String)
*/
public static Integer valueOf(String string) throws NumberFormatException {
return valueOf(parseInt(string));
}
/**
* Parses the specified string as a signed integer value using the specified
* radix.
*
* @param string
* the string representation of an integer value.
* @param radix
* the radix to use when parsing.
* @return an {@code Integer} instance containing the integer value
* represented by {@code string} using {@code radix}.
* @throws NumberFormatException
* if {@code string} cannot be parsed as an integer value, or
* {@code radix < Character.MIN_RADIX ||
* radix > Character.MAX_RADIX}.
* @see #parseInt(String, int)
*/
public static Integer valueOf(String string, int radix) throws NumberFormatException {
return valueOf(parseInt(string, radix));
}
/**
* Determines the highest (leftmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred to as
* the Most Significant 1 Bit. Returns zero if the specified integer is
* zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the highest 1 bit in {@code i}.
* @since 1.5
*/
public static int highestOneBit(int i) {
// Hacker's Delight, Figure 3-1
i |= (i >> 1);
i |= (i >> 2);
i |= (i >> 4);
i |= (i >> 8);
i |= (i >> 16);
return i - (i >>> 1);
}
/**
* Determines the lowest (rightmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred
* to as the Least Significant 1 Bit. Returns zero if the specified integer
* is zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the lowest 1 bit in {@code i}.
* @since 1.5
*/
public static int lowestOneBit(int i) {
return i & -i;
}
/**
* Determines the number of leading zeros in the specified integer prior to
* the {@link #highestOneBit(int) highest one bit}.
*
* @param i
* the integer to examine.
* @return the number of leading zeros in {@code i}.
* @since 1.5
*/
public static int numberOfLeadingZeros(int i) {
// Hacker's Delight, Figure 5-6
if (i <= 0) {
return (~i >> 26) & 32;
}
int n = 1;
if (i >> 16 == 0) {
n += 16;
i <<= 16;
}
if (i >> 24 == 0) {
n += 8;
i <<= 8;
}
if (i >> 28 == 0) {
n += 4;
i <<= 4;
}
if (i >> 30 == 0) {
n += 2;
i <<= 2;
}
return n - (i >>> 31);
}
/**
* Determines the number of trailing zeros in the specified integer after
* the {@link #lowestOneBit(int) lowest one bit}.
*
* @param i
* the integer to examine.
* @return the number of trailing zeros in {@code i}.
* @since 1.5
*/
public static int numberOfTrailingZeros(int i) {
return NTZ_TABLE[((i & -i) * 0x0450FBAF) >>> 26];
}
/**
* Counts the number of 1 bits in the specified integer; this is also
* referred to as population count.
*
* @param i
* the integer to examine.
* @return the number of 1 bits in {@code i}.
* @since 1.5
*/
public static int bitCount(int i) {
// Hacker's Delight, Figure 5-2
i -= (i >> 1) & 0x55555555;
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = ((i >> 4) + i) & 0x0F0F0F0F;
i += i >> 8;
i += i >> 16;
return i & 0x0000003F;
}
/**
* Rotates the bits of the specified integer to the left by the specified
* number of bits.
*
* @param i
* the integer value to rotate left.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateLeft(int i, int distance) {
// Shift distances are mod 32 (JLS3 15.19), so we needn't mask -distance
return (i << distance) | (i >>> -distance);
}
/**
* Rotates the bits of the specified integer to the right by the specified
* number of bits.
*
* @param i
* the integer value to rotate right.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateRight(int i, int distance) {
// Shift distances are mod 32 (JLS3 15.19), so we needn't mask -distance
return (i >>> distance) | (i << -distance);
}
/**
* Reverses the order of the bytes of the specified integer.
*
* @param i
* the integer value for which to reverse the byte order.
* @return the reversed value.
* @since 1.5
*/
public static int reverseBytes(int i) {
// Hacker's Delight 7-1, with minor tweak from Veldmeijer
// http://graphics.stanford.edu/~seander/bithacks.html
i = ((i >>> 8) & 0x00FF00FF) | ((i & 0x00FF00FF) << 8);
return ( i >>> 16 ) | ( i << 16);
}
/**
* Reverses the order of the bits of the specified integer.
*
* @param i
* the integer value for which to reverse the bit order.
* @return the reversed value.
* @since 1.5
*/
public static int reverse(int i) {
// Hacker's Delight 7-1, with minor tweak from Veldmeijer
// http://graphics.stanford.edu/~seander/bithacks.html
i = ((i >>> 1) & 0x55555555) | ((i & 0x55555555) << 1);
i = ((i >>> 2) & 0x33333333) | ((i & 0x33333333) << 2);
i = ((i >>> 4) & 0x0F0F0F0F) | ((i & 0x0F0F0F0F) << 4);
i = ((i >>> 8) & 0x00FF00FF) | ((i & 0x00FF00FF) << 8);
return ((i >>> 16) ) | ((i ) << 16);
}
/**
* Returns the value of the {@code signum} function for the specified
* integer.
*
* @param i
* the integer value to check.
* @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if
* {@code i} is zero.
* @since 1.5
*/
public static int signum(int i) {
return (i >> 31) | (-i >>> 31); // Hacker's delight 2-7
}
/**
* Returns a {@code Integer} instance for the specified integer value.
*
* If it is not necessary to get a new {@code Integer} instance, it is
* recommended to use this method instead of the constructor, since it
* maintains a cache of instances which may result in better performance.
*
* @param i
* the integer value to store in the instance.
* @return a {@code Integer} instance containing {@code i}.
* @since 1.5
*/
public static Integer valueOf(int i) {
return i >= 128 || i < -128 ? new Integer(i) : SMALL_VALUES[i + 128];
}
/**
* A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing
*/
private static final Integer[] SMALL_VALUES = new Integer[256];
static {
for (int i = -128; i < 128; i++) {
SMALL_VALUES[i + 128] = new Integer(i);
}
}
}