android.util.Rational Maven / Gradle / Ivy
Show all versions of android-all Show documentation
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.util;
import static com.android.internal.util.Preconditions.*;
import java.io.IOException;
import java.io.InvalidObjectException;
/**
* An immutable data type representation a rational number.
*
* Contains a pair of {@code int}s representing the numerator and denominator of a
* Rational number.
*/
public final class Rational extends Number implements Comparable {
/**
* Constant for the Not-a-Number (NaN) value of the {@code Rational} type.
*
* A {@code NaN} value is considered to be equal to itself (that is {@code NaN.equals(NaN)}
* will return {@code true}; it is always greater than any non-{@code NaN} value (that is
* {@code NaN.compareTo(notNaN)} will return a number greater than {@code 0}).
*
* Equivalent to constructing a new rational with both the numerator and denominator
* equal to {@code 0}.
*/
public static final Rational NaN = new Rational(0, 0);
/**
* Constant for the positive infinity value of the {@code Rational} type.
*
* Equivalent to constructing a new rational with a positive numerator and a denominator
* equal to {@code 0}.
*/
public static final Rational POSITIVE_INFINITY = new Rational(1, 0);
/**
* Constant for the negative infinity value of the {@code Rational} type.
*
* Equivalent to constructing a new rational with a negative numerator and a denominator
* equal to {@code 0}.
*/
public static final Rational NEGATIVE_INFINITY = new Rational(-1, 0);
/**
* Constant for the zero value of the {@code Rational} type.
*
* Equivalent to constructing a new rational with a numerator equal to {@code 0} and
* any non-zero denominator.
*/
public static final Rational ZERO = new Rational(0, 1);
/**
* Unique version number per class to be compliant with {@link java.io.Serializable}.
*
* Increment each time the fields change in any way.
*/
private static final long serialVersionUID = 1L;
/*
* Do not change the order of these fields or add new instance fields to maintain the
* Serializable compatibility across API revisions.
*/
private final int mNumerator;
private final int mDenominator;
/**
* Create a {@code Rational} with a given numerator and denominator.
*
* The signs of the numerator and the denominator may be flipped such that the denominator
* is always positive. Both the numerator and denominator will be converted to their reduced
* forms (see {@link #equals} for more details).
*
* For example,
*
* - a rational of {@code 2/4} will be reduced to {@code 1/2}.
*
- a rational of {@code 1/-1} will be flipped to {@code -1/1}
*
- a rational of {@code 5/0} will be reduced to {@code 1/0}
*
- a rational of {@code 0/5} will be reduced to {@code 0/1}
*
*
*
* @param numerator the numerator of the rational
* @param denominator the denominator of the rational
*
* @see #equals
*/
public Rational(int numerator, int denominator) {
if (denominator < 0) {
numerator = -numerator;
denominator = -denominator;
}
// Convert to reduced form
if (denominator == 0 && numerator > 0) {
mNumerator = 1; // +Inf
mDenominator = 0;
} else if (denominator == 0 && numerator < 0) {
mNumerator = -1; // -Inf
mDenominator = 0;
} else if (denominator == 0 && numerator == 0) {
mNumerator = 0; // NaN
mDenominator = 0;
} else if (numerator == 0) {
mNumerator = 0;
mDenominator = 1;
} else {
int gcd = gcd(numerator, denominator);
mNumerator = numerator / gcd;
mDenominator = denominator / gcd;
}
}
/**
* Gets the numerator of the rational.
*
* The numerator will always return {@code 1} if this rational represents
* infinity (that is, the denominator is {@code 0}).
*/
public int getNumerator() {
return mNumerator;
}
/**
* Gets the denominator of the rational
*
* The denominator may return {@code 0}, in which case the rational may represent
* positive infinity (if the numerator was positive), negative infinity (if the numerator
* was negative), or {@code NaN} (if the numerator was {@code 0}).
*
* The denominator will always return {@code 1} if the numerator is {@code 0}.
*/
public int getDenominator() {
return mDenominator;
}
/**
* Indicates whether this rational is a Not-a-Number (NaN) value.
*
*
A {@code NaN} value occurs when both the numerator and the denominator are {@code 0}.
*
* @return {@code true} if this rational is a Not-a-Number (NaN) value;
* {@code false} if this is a (potentially infinite) number value
*/
public boolean isNaN() {
return mDenominator == 0 && mNumerator == 0;
}
/**
* Indicates whether this rational represents an infinite value.
*
* An infinite value occurs when the denominator is {@code 0} (but the numerator is not).
*
* @return {@code true} if this rational is a (positive or negative) infinite value;
* {@code false} if this is a finite number value (or {@code NaN})
*/
public boolean isInfinite() {
return mNumerator != 0 && mDenominator == 0;
}
/**
* Indicates whether this rational represents a finite value.
*
* A finite value occurs when the denominator is not {@code 0}; in other words
* the rational is neither infinity or {@code NaN}.
*
* @return {@code true} if this rational is a (positive or negative) infinite value;
* {@code false} if this is a finite number value (or {@code NaN})
*/
public boolean isFinite() {
return mDenominator != 0;
}
/**
* Indicates whether this rational represents a zero value.
*
* A zero value is a {@link #isFinite finite} rational with a numerator of {@code 0}.
*
* @return {@code true} if this rational is finite zero value;
* {@code false} otherwise
*/
public boolean isZero() {
return isFinite() && mNumerator == 0;
}
private boolean isPosInf() {
return mDenominator == 0 && mNumerator > 0;
}
private boolean isNegInf() {
return mDenominator == 0 && mNumerator < 0;
}
/**
* Compare this Rational to another object and see if they are equal.
*
* A Rational object can only be equal to another Rational object (comparing against any
* other type will return {@code false}).
*
* A Rational object is considered equal to another Rational object if and only if one of
* the following holds:
* - Both are {@code NaN}
* - Both are infinities of the same sign
* - Both have the same numerator and denominator in their reduced form
*
*
* A reduced form of a Rational is calculated by dividing both the numerator and the
* denominator by their greatest common divisor.
*
* {@code
* (new Rational(1, 2)).equals(new Rational(1, 2)) == true // trivially true
* (new Rational(2, 3)).equals(new Rational(1, 2)) == false // trivially false
* (new Rational(1, 2)).equals(new Rational(2, 4)) == true // true after reduction
* (new Rational(0, 0)).equals(new Rational(0, 0)) == true // NaN.equals(NaN)
* (new Rational(1, 0)).equals(new Rational(5, 0)) == true // both are +infinity
* (new Rational(1, 0)).equals(new Rational(-1, 0)) == false // +infinity != -infinity
* }
*
* @param obj a reference to another object
*
* @return A boolean that determines whether or not the two Rational objects are equal.
*/
@Override
public boolean equals(Object obj) {
return obj instanceof Rational && equals((Rational) obj);
}
private boolean equals(Rational other) {
return (mNumerator == other.mNumerator && mDenominator == other.mDenominator);
}
/**
* Return a string representation of this rational, e.g. {@code "1/2"}.
*
* The following rules of conversion apply:
*
* - {@code NaN} values will return {@code "NaN"}
*
- Positive infinity values will return {@code "Infinity"}
*
- Negative infinity values will return {@code "-Infinity"}
*
- All other values will return {@code "numerator/denominator"} where {@code numerator}
* and {@code denominator} are substituted with the appropriate numerator and denominator
* values.
*
*/
@Override
public String toString() {
if (isNaN()) {
return "NaN";
} else if (isPosInf()) {
return "Infinity";
} else if (isNegInf()) {
return "-Infinity";
} else {
return mNumerator + "/" + mDenominator;
}
}
/**
* Convert to a floating point representation.
*
* @return The floating point representation of this rational number.
* @hide
*/
public float toFloat() {
// TODO: remove this duplicate function (used in CTS and the shim)
return floatValue();
}
/**
* {@inheritDoc}
*/
@Override
public int hashCode() {
// Bias the hash code for the first (2^16) values for both numerator and denominator
int numeratorFlipped = mNumerator << 16 | mNumerator >>> 16;
return mDenominator ^ numeratorFlipped;
}
/**
* Calculates the greatest common divisor using Euclid's algorithm.
*
* Visible for testing only.
*
* @param numerator the numerator in a fraction
* @param denominator the denominator in a fraction
*
* @return An int value representing the gcd. Always positive.
* @hide
*/
public static int gcd(int numerator, int denominator) {
/*
* Non-recursive implementation of Euclid's algorithm:
*
* gcd(a, 0) := a
* gcd(a, b) := gcd(b, a mod b)
*
*/
int a = numerator;
int b = denominator;
while (b != 0) {
int oldB = b;
b = a % b;
a = oldB;
}
return Math.abs(a);
}
/**
* Returns the value of the specified number as a {@code double}.
*
* The {@code double} is calculated by converting both the numerator and denominator
* to a {@code double}; then returning the result of dividing the numerator by the
* denominator.
*
* @return the divided value of the numerator and denominator as a {@code double}.
*/
@Override
public double doubleValue() {
double num = mNumerator;
double den = mDenominator;
return num / den;
}
/**
* Returns the value of the specified number as a {@code float}.
*
* The {@code float} is calculated by converting both the numerator and denominator
* to a {@code float}; then returning the result of dividing the numerator by the
* denominator.
*
* @return the divided value of the numerator and denominator as a {@code float}.
*/
@Override
public float floatValue() {
float num = mNumerator;
float den = mDenominator;
return num / den;
}
/**
* Returns the value of the specified number as a {@code int}.
*
* {@link #isInfinite Finite} rationals are converted to an {@code int} value
* by dividing the numerator by the denominator; conversion for non-finite values happens
* identically to casting a floating point value to an {@code int}, in particular:
*
*
*
* - Positive infinity saturates to the largest maximum integer
* {@link Integer#MAX_VALUE}
* - Negative infinity saturates to the smallest maximum integer
* {@link Integer#MIN_VALUE}
* - Not-A-Number (NaN) returns {@code 0}.
*
*
*
* @return the divided value of the numerator and denominator as a {@code int}.
*/
@Override
public int intValue() {
// Mimic float to int conversion rules from JLS 5.1.3
if (isPosInf()) {
return Integer.MAX_VALUE;
} else if (isNegInf()) {
return Integer.MIN_VALUE;
} else if (isNaN()) {
return 0;
} else { // finite
return mNumerator / mDenominator;
}
}
/**
* Returns the value of the specified number as a {@code long}.
*
* {@link #isInfinite Finite} rationals are converted to an {@code long} value
* by dividing the numerator by the denominator; conversion for non-finite values happens
* identically to casting a floating point value to a {@code long}, in particular:
*
*
*
* - Positive infinity saturates to the largest maximum long
* {@link Long#MAX_VALUE}
* - Negative infinity saturates to the smallest maximum long
* {@link Long#MIN_VALUE}
* - Not-A-Number (NaN) returns {@code 0}.
*
*
*
* @return the divided value of the numerator and denominator as a {@code long}.
*/
@Override
public long longValue() {
// Mimic float to long conversion rules from JLS 5.1.3
if (isPosInf()) {
return Long.MAX_VALUE;
} else if (isNegInf()) {
return Long.MIN_VALUE;
} else if (isNaN()) {
return 0;
} else { // finite
return mNumerator / mDenominator;
}
}
/**
* Returns the value of the specified number as a {@code short}.
*
* {@link #isInfinite Finite} rationals are converted to a {@code short} value
* identically to {@link #intValue}; the {@code int} result is then truncated to a
* {@code short} before returning the value.
*
* @return the divided value of the numerator and denominator as a {@code short}.
*/
@Override
public short shortValue() {
return (short) intValue();
}
/**
* Compare this rational to the specified rational to determine their natural order.
*
* {@link #NaN} is considered to be equal to itself and greater than all other
* {@code Rational} values. Otherwise, if the objects are not {@link #equals equal}, then
* the following rules apply:
*
*
* - Positive infinity is greater than any other finite number (or negative infinity)
*
- Negative infinity is less than any other finite number (or positive infinity)
*
- The finite number represented by this rational is checked numerically
* against the other finite number by converting both rationals to a common denominator multiple
* and comparing their numerators.
*
*
* @param another the rational to be compared
*
* @return a negative integer, zero, or a positive integer as this object is less than,
* equal to, or greater than the specified rational.
*
* @throws NullPointerException if {@code another} was {@code null}
*/
@Override
public int compareTo(Rational another) {
checkNotNull(another, "another must not be null");
if (equals(another)) {
return 0;
} else if (isNaN()) { // NaN is greater than the other non-NaN value
return 1;
} else if (another.isNaN()) { // the other NaN is greater than this non-NaN value
return -1;
} else if (isPosInf() || another.isNegInf()) {
return 1; // positive infinity is greater than any non-NaN/non-posInf value
} else if (isNegInf() || another.isPosInf()) {
return -1; // negative infinity is less than any non-NaN/non-negInf value
}
// else both this and another are finite numbers
// make the denominators the same, then compare numerators
long thisNumerator = ((long)mNumerator) * another.mDenominator; // long to avoid overflow
long otherNumerator = ((long)another.mNumerator) * mDenominator; // long to avoid overflow
// avoid underflow from subtraction by doing comparisons
if (thisNumerator < otherNumerator) {
return -1;
} else if (thisNumerator > otherNumerator) {
return 1;
} else {
// This should be covered by #equals, but have this code path just in case
return 0;
}
}
/*
* Serializable implementation.
*
* The following methods are omitted:
* >> writeObject - the default is sufficient (field by field serialization)
* >> readObjectNoData - the default is sufficient (0s for both fields is a NaN)
*/
/**
* writeObject with default serialized form - guards against
* deserializing non-reduced forms of the rational.
*
* @throws InvalidObjectException if the invariants were violated
*/
private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException {
in.defaultReadObject();
/*
* Guard against trying to deserialize illegal values (in this case, ones
* that don't have a standard reduced form).
*
* - Non-finite values must be one of [0, 1], [0, 0], [0, 1], [0, -1]
* - Finite values must always have their greatest common divisor as 1
*/
if (mNumerator == 0) { // either zero or NaN
if (mDenominator == 1 || mDenominator == 0) {
return;
}
throw new InvalidObjectException(
"Rational must be deserialized from a reduced form for zero values");
} else if (mDenominator == 0) { // either positive or negative infinity
if (mNumerator == 1 || mNumerator == -1) {
return;
}
throw new InvalidObjectException(
"Rational must be deserialized from a reduced form for infinity values");
} else { // finite value
if (gcd(mNumerator, mDenominator) > 1) {
throw new InvalidObjectException(
"Rational must be deserialized from a reduced form for finite values");
}
}
}
private static NumberFormatException invalidRational(String s) {
throw new NumberFormatException("Invalid Rational: \"" + s + "\"");
}
/**
* Parses the specified string as a rational value.
* The ASCII characters {@code \}{@code u003a} (':') and
* {@code \}{@code u002f} ('/') are recognized as separators between
* the numerator and denumerator.
*
* For any {@code Rational r}: {@code Rational.parseRational(r.toString()).equals(r)}.
* However, the method also handles rational numbers expressed in the
* following forms:
*
* "num{@code /}den" or
* "num{@code :}den" {@code => new Rational(num, den);},
* where num and den are string integers potentially
* containing a sign, such as "-10", "+7" or "5".
*
* {@code
* Rational.parseRational("3:+6").equals(new Rational(1, 2)) == true
* Rational.parseRational("-3/-6").equals(new Rational(1, 2)) == true
* Rational.parseRational("4.56") => throws NumberFormatException
* }
*
* @param string the string representation of a rational value.
* @return the rational value represented by {@code string}.
*
* @throws NumberFormatException if {@code string} cannot be parsed
* as a rational value.
* @throws NullPointerException if {@code string} was {@code null}
*/
public static Rational parseRational(String string)
throws NumberFormatException {
checkNotNull(string, "string must not be null");
if (string.equals("NaN")) {
return NaN;
} else if (string.equals("Infinity")) {
return POSITIVE_INFINITY;
} else if (string.equals("-Infinity")) {
return NEGATIVE_INFINITY;
}
int sep_ix = string.indexOf(':');
if (sep_ix < 0) {
sep_ix = string.indexOf('/');
}
if (sep_ix < 0) {
throw invalidRational(string);
}
try {
return new Rational(Integer.parseInt(string.substring(0, sep_ix)),
Integer.parseInt(string.substring(sep_ix + 1)));
} catch (NumberFormatException e) {
throw invalidRational(string);
}
}
}