All Downloads are FREE. Search and download functionalities are using the official Maven repository.

soot.jimple.toolkits.annotation.purity.PurityGraph Maven / Gradle / Ivy

There is a newer version: 1.12.0
Show newest version
/* Soot - a J*va Optimization Framework
 * Copyright (C) 2005 Antoine Mine
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/**
 * Implementation of the paper "A Combined Pointer and Purity Analysis for
 * Java Programs" by Alexandru Salcianu and Martin Rinard, within the
 * Soot Optimization Framework.
 *
 * by Antoine Mine, 2005/01/24
 */

package soot.jimple.toolkits.annotation.purity;
import java.util.*;
import soot.*;
import soot.util.*;
import soot.util.dot.*;
import soot.jimple.*;

/**
 * Purity graphs are mutable structures that are updated in-place.
 * You can safely hash graphs. Equality comparison means isomorphism
 * (equal nodes, equal edges).
 */

/**
 * Modifications with respect to the article:
 *
 * - "unanalizable call" are treated by first constructing a conservative
 * calee graph where all parameters escape globally and return points to
 * the global node, and then applying the standard analysable call construction
 *
 * - unanalysable calls add a mutation on the global node; the "field" is named
 * "outside-world" and models the mutation of any static field, but also
 * side-effects by native methods, such as I/O, that make methods impure
 * (see below).
 *
 * - Whenever a method mutates the global node, it is marked as "impure"
 * (this can be due to a side-effect or static field mutation), even if the
 * global node is not rechable from parameter nodes through outside edges.
 * It seems to me it was a defect from the article ?
 * TODO: see if we must take the global node  into account also when stating
 * whether a parameter is read-only or safe.
 *
 * - "simplifyXXX" functions are experimiental... they may be unsound, and
 * thus, not used now.
 *
 *
 *
 *
 * NOTE:
 * A lot of precision degradation comes from sequences of the form
 *   this.field = y; z = this.field
 * in initialisers: the second statment creates a load node because, as a
 * parameter, this may have escaped and this.field may be externally modified
 * in-between the two instructions. I am not sure this can actually happend
 * in an initialiser... in a a function called directly and only by
 * initialisers.
 *
 * For the moment, summary of unanalised methods are either pure, completely
 * impure (modify args & side-effects) or partially impure (modify args but
 * not the gloal node). We should really be able to specify more precisely
 * which arguments are r/o or safe within this methods.
 * E.g., the analysis java.lang.String: void getChars(int,int,char [],int)
 * imprecisely finds that this is not safe (because of the internal call to
 * System.arraycopy that, in general, may introduce aliases) => it pollutes 
 * many things (e.g., StringBuffer append(String), and thus, exception 
 * constructors, etc.)
 *
 */
public class PurityGraph
{
    public static final boolean doCheck = false;

    protected Set      nodes;      // all nodes
    protected Set      paramNodes; // only parameter & this nodes
    protected MultiMap edges;      // source node -> edges
    protected MultiMap locals;     // local -> nodes
    protected Set      ret;        // return -> nodes
    protected Set      globEscape; // nodes escaping globally
    protected MultiMap backEdges;  // target node -> edges
    protected MultiMap backLocals; // target node -> local node sources
    protected MultiMap mutated;    // node -> field such that (node,field) is mutated

    /**
     * Initially empty graph.
     */
    PurityGraph()
    {
	// nodes & paramNodes are added lazily
	nodes      = new HashSet();
	paramNodes = new HashSet();
	edges      = new HashMultiMap();
	locals     = new HashMultiMap();
	ret        = new HashSet();
	globEscape = new HashSet();
	backEdges  = new HashMultiMap();
	backLocals = new HashMultiMap();
	mutated    = new HashMultiMap();
	if (doCheck) sanityCheck();
    }

    /**
     * Copy constructor.
     */
    PurityGraph(PurityGraph x)
    {
	nodes      = new HashSet(x.nodes);
	paramNodes = new HashSet(x.paramNodes);
	edges      = new HashMultiMap(x.edges);
	locals     = new HashMultiMap(x.locals);
	ret        = new HashSet(x.ret);
	globEscape = new HashSet(x.globEscape);
	backEdges  = new HashMultiMap(x.backEdges);
	backLocals = new HashMultiMap(x.backLocals);
	mutated    = new HashMultiMap(x.mutated);
	if (doCheck) sanityCheck();
    }

    public int hashCode() 
    { 
	return nodes.hashCode()
	    //+  paramNodes.hashCode()  // redundant info
	    +  edges.hashCode()
	    +  locals.hashCode()
	    +  ret.hashCode()
	    +  globEscape.hashCode()
	    //+  backEdges.hashCode()   // redundant info
	    //+  backLocals.hashCode()  // redundant info
	    + mutated.hashCode()
	    ;
    }

    public boolean equals(Object o)
    {
	if (!(o instanceof PurityGraph)) return false;
	PurityGraph g = (PurityGraph)o;
	return nodes.equals(g.nodes)
	    //&& paramNodes.equals(g.paramNodes)  // redundant info
	    && edges.equals(g.edges)
	    && locals.equals(g.locals) 
	    && ret.equals(g.ret)
	    && globEscape.equals(g.globEscape)
	    //&& backEdges.equals(g.backEdges)    // redundant info
	    //&& backLocals.equals(g.backLocals)  // redundant info
	    && mutated.equals(g.mutated)
	    ;
    }

    /** 
     * Caching: this semm to actually improve both speed and memory 
     * consumption!
     */
    private static final Map nodeCache =  new HashMap();
    private static final Map edgeCache =  new HashMap();
    private static PurityNode cacheNode(PurityNode p)
    {
	if (!nodeCache.containsKey(p)) nodeCache.put(p,p);
	return nodeCache.get(p);
    }
    private static PurityEdge cacheEdge(PurityEdge e)
    {
	if (!edgeCache.containsKey(e)) edgeCache.put(e,e);
	return edgeCache.get(e);
    }

    /**
     * Conservative constructor for unanalysable calls.
     *
     * 

Note: this gives a valid summary for all native methods, including * Thread.start(). * * @param withEffect add a mutated abstract field for the global node to * account for side-effects in the environment (I/O, etc.). */ public static PurityGraph conservativeGraph(SootMethod m, boolean withEffect) { PurityGraph g = new PurityGraph(); PurityNode glob = PurityGlobalNode.node; g.nodes.add(glob); // parameters & this escape globally Iterator it = m.getParameterTypes().iterator(); int i = 0; while (it.hasNext()) { if (it.next() instanceof RefLikeType) { PurityNode n = cacheNode(new PurityParamNode(i)); g.globEscape.add(n); g.nodes.add(n); g.paramNodes.add(n); } i++; } // return value escapes globally if (m.getReturnType() instanceof RefLikeType) g.ret.add(glob); // add a side-effect on the environment // added by [AM] if (withEffect) g.mutated.put(glob,"outside-world"); if (doCheck) g.sanityCheck(); return g; } /** * Special constructor for "pure" methods returning a fresh object. * (or simply pure if returns void or primitive). */ public static PurityGraph freshGraph(SootMethod m) { PurityGraph g = new PurityGraph(); if (m.getReturnType() instanceof RefLikeType) { PurityNode n = cacheNode(new PurityMethodNode(m)); g.ret.add(n); g.nodes.add(n); } if (doCheck) g.sanityCheck(); return g; } /** * Replace the current graph with its union with arg. * arg is not modified. */ void union(PurityGraph arg) { nodes.addAll(arg.nodes); paramNodes.addAll(arg.paramNodes); edges.putAll(arg.edges); locals.putAll(arg.locals); ret.addAll(arg.ret); globEscape.addAll(arg.globEscape); backEdges.putAll(arg.backEdges); backLocals.putAll(arg.backLocals); mutated.putAll(arg.mutated); if (doCheck) sanityCheck(); } /** * Sanity check. Used internally for debugging! */ protected void sanityCheck() { boolean err = false; Iterator it = edges.keySet().iterator(); while (it.hasNext()) { PurityNode src = (PurityNode)it.next(); Iterator itt = edges.get(src).iterator(); while (itt.hasNext()) { PurityEdge e = (PurityEdge)itt.next(); if (!src.equals(e.getSource())) {G.v().out.println("invalid edge source "+e+", should be "+src);err=true;} if (!nodes.contains(e.getSource())) {G.v().out.println("nodes does not contain edge source "+e);err=true;} if (!nodes.contains(e.getTarget())) {G.v().out.println("nodes does not contain edge target "+e);err=true;} if (!backEdges.get(e.getTarget()).contains(e)) {G.v().out.println("backEdges does not contain edge "+e);err=true;} if (!e.isInside() && !e.getTarget().isLoad()) {G.v().out.println("target of outside edge is not a load node "+e);err=true;} } } it = backEdges.keySet().iterator(); while (it.hasNext()) { PurityNode dst = (PurityNode)it.next(); Iterator itt = backEdges.get(dst).iterator(); while (itt.hasNext()) { PurityEdge e = (PurityEdge)itt.next(); if (!dst.equals(e.getTarget())) {G.v().out.println("invalid backEdge dest "+e+", should be "+dst);err=true;} if (!edges.get(e.getSource()).contains(e)) {G.v().out.println("backEdge not in edges "+e);err=true;} } } it = nodes.iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (n.isParam() && !paramNodes.contains(n)) {G.v().out.println("paramNode not in paramNodes "+n);err=true;} } it = paramNodes.iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (!n.isParam()) {G.v().out.println("paramNode contains a non-param node "+n);err=true;} if (!nodes.contains(n)) {G.v().out.println("paramNode not in nodes "+n);err=true;} } it = globEscape.iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (!nodes.contains(n)) {G.v().out.println("globEscape not in nodes "+n);err=true;} } it = locals.keySet().iterator(); while (it.hasNext()) { Local l = (Local)it.next(); Iterator itt = locals.get(l).iterator(); while (itt.hasNext()) { PurityNode n = (PurityNode)itt.next(); if (!nodes.contains(n)) {G.v().out.println("target of local node in nodes "+l+" / "+n);err=true;} if (!backLocals.get(n).contains(l)) {G.v().out.println("backLocals does contain local "+l+" / "+n);err=true;} } } it = backLocals.keySet().iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); Iterator itt = backLocals.get(n).iterator(); while (itt.hasNext()) { Local l = (Local)itt.next(); if (!nodes.contains(n)) {G.v().out.println("backLocal node not in in nodes "+l+" / "+n);err=true;} if (!locals.get(l).contains(n)) {G.v().out.println("locals does contain backLocal "+l+" / "+n);err=true;} } } it = ret.iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (!nodes.contains(n)) {G.v().out.println("target of ret not in nodes "+n);err=true;} } it = mutated.keySet().iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (!nodes.contains(n)) {G.v().out.println("mutated node not in nodes "+n);err=true;} } if (err) { dump(); DotGraph dot = new DotGraph("sanityCheckFailure"); fillDotGraph("chk",dot); dot.plot("sanityCheckFailure.dot"); throw new Error("PurityGraph sanity check failed!!!"); } } //////////////////////// // ESCAPE INFORMATION // //////////////////////// protected void internalPassEdges(Set toColor, Set dest, boolean consider_inside) { Iterator it = toColor.iterator(); while (it.hasNext()) { PurityEdge edge = (PurityEdge) it.next(); if (consider_inside || !edge.isInside()) { PurityNode node = edge.getTarget(); if (!dest.contains(node)) { dest.add(node); internalPassEdges(edges.get(node),dest,consider_inside); } } } } protected void internalPassNode(PurityNode node, Set dest, boolean consider_inside) { if (!dest.contains(node)) { dest.add(node); internalPassEdges(edges.get(node),dest,consider_inside); } } protected void internalPassNodes(Set toColor, Set dest, boolean consider_inside) { Iterator it = toColor.iterator(); while (it.hasNext()) internalPassNode((PurityNode)it.next(), dest, consider_inside); } protected Set getEscaping() { Set escaping = new HashSet(); internalPassNodes(ret,escaping,true); internalPassNodes(globEscape,escaping,true); internalPassNode(PurityGlobalNode.node,escaping,true); internalPassNodes(paramNodes,escaping,true); return escaping; } /** * Call this on the merge of graphs at all return points of a method to * know whether the method is pure. */ public boolean isPure() { if (!mutated.get(PurityGlobalNode.node).isEmpty()) return false; Set A = new HashSet(); Set B = new HashSet(); internalPassNodes(paramNodes, A, false); internalPassNodes(globEscape, B, true); internalPassNode(PurityGlobalNode.node,B,true); Iterator it = A.iterator(); while (it.hasNext()) { PurityNode n = it.next(); if (B.contains(n) || !mutated.get(n).isEmpty()) return false; } return true; } /** * We use a less restrictive notion of purity for constructors: pure * constructors can mutate fields of this. * * @see isPure */ public boolean isPureConstructor() { if (!mutated.get(PurityGlobalNode.node).isEmpty()) return false; Set A = new HashSet(); Set B = new HashSet(); internalPassNodes(paramNodes, A, false); internalPassNodes(globEscape, B, true); internalPassNode(PurityGlobalNode.node,B,true); PurityNode th = PurityThisNode.node; Iterator it = A.iterator(); while (it.hasNext()) { PurityNode n = it.next(); if (B.contains(n) || (!n.equals(th) && !mutated.get(n).isEmpty())) return false; } return true; } /** * A parameter (or this) can be: * - read and write * - read only * - safe (read only & no externally visible alias is created) */ static final int PARAM_RW = 0; static final int PARAM_RO = 1; static final int PARAM_SAFE = 2; protected int internalParamStatus(PurityNode p) { if (!paramNodes.contains(p)) return PARAM_RW; Set S1 = new HashSet(); internalPassNode(p, S1, false); Iterator it = S1.iterator(); while (it.hasNext()) { PurityNode n = it.next(); if (n.isLoad() || n.equals(p)) { if (!mutated.get(n).isEmpty() || globEscape.contains(n)) return PARAM_RW; } } Set S2 = new HashSet(); internalPassNodes(ret,S2,true); internalPassNodes(paramNodes,S2,true); it = S2.iterator(); while (it.hasNext()) { Iterator itt = edges.get(it.next()).iterator(); while (itt.hasNext()) { PurityEdge e = (PurityEdge)itt.next(); if (e.isInside() && S1.contains(e.getTarget())) return PARAM_RO; } } return PARAM_SAFE; } /** * Call this on the merge of graphs at all return points of a method to * know whether an object passed as method parameter is read only * (PARAM_RO), read write (PARAM_RW), or safe (PARAM_SAFE). * Returns PARAM_RW for primitive-type parameters. */ public int paramStatus(int param) { return internalParamStatus(cacheNode(new PurityParamNode(param))); } /** * @see isParamReadOnly */ public int thisStatus() { return internalParamStatus(PurityThisNode.node); } ///////////////////////// // GRAPH MANUPULATIONS // ///////////////////////// public Object clone() { return new PurityGraph(this); } // utility functions to update local / backLocals constitently protected final boolean localsRemove(Local local) { Iterator it = locals.get(local).iterator(); while (it.hasNext()) { Object node = it.next(); backLocals.remove(node,local); } return locals.remove(local); } protected final boolean localsPut(Local local, PurityNode node) { backLocals.put(node,local); return locals.put(local,node); } protected final boolean localsPutAll(Local local, Set nodes) { Iterator it = nodes.iterator(); while (it.hasNext()) { Object node = it.next(); backLocals.put(node,local); } return locals.putAll(local,nodes); } /** Utility function to remove a node & all adjacent edges */ protected final void removeNode(PurityNode n) { Iterator it = edges.get(n).iterator(); while (it.hasNext()) { PurityEdge e = (PurityEdge)it.next(); backEdges.remove(e.getTarget(),e); } it = backEdges.get(n).iterator(); while (it.hasNext()) { PurityEdge e = (PurityEdge)it.next(); edges.remove(e.getSource(),e); } it = backLocals.get(n).iterator(); while (it.hasNext()) { Local l = (Local)it.next(); locals.remove(l,n); } ret.remove(n); edges.remove(n); backEdges.remove(n); backLocals.remove(n); nodes.remove(n); paramNodes.remove(n); globEscape.remove(n); mutated.remove(n); } /** Utility function to merge node src into dst; src is removed */ protected final void mergeNodes(PurityNode src, PurityNode dst) { Iterator it = (new LinkedList(edges.get(src))).iterator(); while (it.hasNext()) { PurityEdge e = (PurityEdge)it.next(); PurityNode n = e.getTarget(); if (n.equals(src)) n = dst; PurityEdge ee = cacheEdge(new PurityEdge(dst, e.getField(), n, e.isInside())); edges.remove(src, e); edges.put(dst, ee); backEdges.remove(n, e); backEdges.put(n, ee); } it = (new LinkedList(backEdges.get(src))).iterator(); while (it.hasNext()) { PurityEdge e = (PurityEdge)it.next(); PurityNode n = e.getSource(); if (n.equals(src)) n = dst; PurityEdge ee = cacheEdge(new PurityEdge(n, e.getField(), dst, e.isInside())); edges.remove(n, e); edges.put(n, ee); backEdges.remove(src, e); backEdges.put(dst, ee); } it = (new LinkedList(backLocals.get(src))).iterator(); while (it.hasNext()) { Local l = (Local)it.next(); locals.remove(l, src); backLocals.remove(src, l); locals.put(l,dst); backLocals.put(dst, l); } { Set m = mutated.get(src); mutated.remove(src); mutated.putAll(dst,m); } if (ret.contains(src)) { ret.remove(src); ret.add(dst); } if (globEscape.contains(src)) { globEscape.remove(src); globEscape.add(dst); } nodes.remove(src); nodes.add(dst); paramNodes.remove(src); if (dst.isParam()) paramNodes.add(dst); } /** Experimental simplification: merge redundant load nodes. */ void simplifyLoad() { Iterator it = (new LinkedList(nodes)).iterator(); while (it.hasNext()) { PurityNode p = (PurityNode)it.next(); Map fmap = new HashMap(); Iterator itt = (new LinkedList(edges.get(p))).iterator(); while (itt.hasNext()) { PurityEdge e = (PurityEdge)itt.next(); PurityNode tgt = e.getTarget(); if (!e.isInside() && !tgt.equals(p)) { String f = e.getField(); if (fmap.containsKey(f) && nodes.contains(fmap.get(f))) mergeNodes(tgt, fmap.get(f)); else fmap.put(f,tgt); } } } if (doCheck) sanityCheck(); } /** Experimental sumplification: remove inside nodes not reachables from escaping nodes (params, ret, globEscape) or load nodes. */ void simplifyInside() { Set r = new HashSet(); internalPassNodes(paramNodes,r,true); internalPassNodes(ret,r,true); internalPassNodes(globEscape,r,true); internalPassNode(PurityGlobalNode.node,r,true); Iterator it = nodes.iterator(); while (it.hasNext()) { PurityNode n = (PurityNode) it.next(); if (n.isLoad()) internalPassNode(n,r,true); } it = (new LinkedList(nodes)).iterator(); while (it.hasNext()) { PurityNode n = (PurityNode) it.next(); if (n.isInside() && !r.contains(n)) removeNode(n); } if (doCheck) sanityCheck(); } /** * Remove all local bindings (except ret). * This info is indeed superfluous on summary purity graphs representing * the effect of a method. This saves a little memory, but also, * simplify summary graph drawings a lot! * * DO NOT USE DURING INTRA-PROCEDURAL ANALYSIS! */ void removeLocals() { locals = new HashMultiMap(); backLocals = new HashMultiMap(); } /** Copy assignment left = right. */ void assignParamToLocal(int right, Local left) { // strong update on local PurityNode node = cacheNode(new PurityParamNode(right)); localsRemove(left); localsPut(left,node); nodes.add(node); paramNodes.add(node); if (doCheck) sanityCheck(); } /** Copy assignment left = this. */ void assignThisToLocal(Local left) { // strong update on local PurityNode node = PurityThisNode.node; localsRemove(left); localsPut(left,node); nodes.add(node); paramNodes.add(node); if (doCheck) sanityCheck(); } /** Copy assignment left = right. */ void assignLocalToLocal(Local right, Local left) { // strong update on local localsRemove(left); localsPutAll(left,locals.get(right)); if (doCheck) sanityCheck(); } /** return right statement . */ void returnLocal(Local right) { // strong update on ret ret.clear(); ret.addAll(locals.get(right)); if (doCheck) sanityCheck(); } /** * Load non-static: left = right.field, or left = right[?] if field is []. */ void assignFieldToLocal(Stmt stmt, Local right, String field, Local left) { Set esc = new HashSet(); Set escaping = getEscaping(); // strong update on local localsRemove(left); Iterator itRight = locals.get(right).iterator(); while (itRight.hasNext()) { PurityNode nodeRight = (PurityNode) itRight.next(); Iterator itEdges = edges.get(nodeRight).iterator(); while (itEdges.hasNext()) { PurityEdge edge = (PurityEdge) itEdges.next(); if (edge.isInside() && edge.getField().equals(field)) localsPut(left, edge.getTarget()); } if (escaping.contains(nodeRight)) esc.add(nodeRight); } if (!esc.isEmpty()) { // right can escape // we add a label load node & outside edges PurityNode loadNode = cacheNode(new PurityStmtNode(stmt,false)); nodes.add(loadNode); Iterator itEsc = esc.iterator(); while (itEsc.hasNext()) { PurityNode node = itEsc.next(); PurityEdge edge = cacheEdge(new PurityEdge(node, field, loadNode, false)); if (edges.put(node, edge)) backEdges.put(loadNode, edge); } localsPut(left, loadNode); } if (doCheck) sanityCheck(); } /** * Store non-static: left.field = right, or left[?] = right if field is []. */ void assignLocalToField(Local right, Local left, String field) { // weak update on inside edges Iterator itLeft = locals.get(left).iterator(); while (itLeft.hasNext()) { PurityNode nodeLeft = (PurityNode) itLeft.next(); Iterator itRight = locals.get(right).iterator(); while (itRight.hasNext()) { PurityNode nodeRight = (PurityNode) itRight.next(); PurityEdge edge = cacheEdge(new PurityEdge(nodeLeft, field, nodeRight, true)); if (edges.put(nodeLeft, edge)) backEdges.put(nodeRight, edge); } if (!nodeLeft.isInside()) mutated.put(nodeLeft, field); } if (doCheck) sanityCheck(); } /** Allocation: left = new or left = new[?]. */ void assignNewToLocal(Stmt stmt, Local left) { // strong update on local // we add a label inside node PurityNode node = cacheNode(new PurityStmtNode(stmt,true)); localsRemove(left); localsPut(left, node); nodes.add(node); if (doCheck) sanityCheck(); } /** A local variable is used in an unknown construct. */ void localEscapes(Local l) { // nodes escape globally globEscape.addAll(locals.get(l)); if (doCheck) sanityCheck(); } /** A local variable is assigned to some outside value. */ void localIsUnknown(Local l) { // strong update on local PurityNode node = PurityGlobalNode.node; localsRemove(l); localsPut(l, node); nodes.add(node); if (doCheck) sanityCheck(); } /** * Store static: C.field = right. */ void assignLocalToStaticField(Local right, String field) { PurityNode node = PurityGlobalNode.node; localEscapes(right); mutated.put(node, field); nodes.add(node); if (doCheck) sanityCheck(); } /** * Store a primitive type into a non-static field left.field = v */ void mutateField(Local left, String field) { Iterator it = locals.get(left).iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (!n.isInside()) mutated.put(n, field); } if (doCheck) sanityCheck(); } /** * Store a primitive type into a static field left.field = v */ void mutateStaticField(String field) { PurityNode node = PurityGlobalNode.node; mutated.put(node, field); nodes.add(node); if (doCheck) sanityCheck(); } /** * Method call left = right.method(args). * * @param g is method's summary PurityGraph * @param left can be null (no return value) * @param right can be null (static call) * @param args is a list of Value */ void methodCall(PurityGraph g, Local right, List args, Local left) { MultiMap mu = new HashMultiMap(); // compute mapping relation g -> this ///////////////////////////////////// Iterator it = args.iterator(); // (1) rule int nb = 0; while (it.hasNext()) { Value arg = (Value)it.next(); if (arg instanceof Local && ((Local)arg).getType() instanceof RefLikeType) { mu.putAll(cacheNode(new PurityParamNode(nb)),locals.get(arg)); } nb++; } if (right!=null) // (1) rule for "this" argument mu.putAll(PurityThisNode.node,locals.get(right)); // COULD BE OPTIMIZED! // many times, we need to copy sets cause we mutate them within iterators boolean hasChanged = true; while (hasChanged) { // (2) & (3) rules fixpoint hasChanged = false; // (2) it = (new LinkedList(mu.keySet())).iterator(); while (it.hasNext()) { PurityNode n1 = (PurityNode)it.next(); Iterator it3 = (new LinkedList(mu.get(n1))).iterator(); while (it3.hasNext()) { PurityNode n3 = (PurityNode)it3.next(); Iterator it12 = g.edges.get(n1).iterator(); while (it12.hasNext()) { PurityEdge e12 = (PurityEdge)it12.next(); if (!e12.isInside()) { Iterator it34 = edges.get(n3).iterator(); while (it34.hasNext()) { PurityEdge e34 = (PurityEdge)it34.next(); if (e34.isInside() && e12.getField().equals(e34.getField())) if (mu.put(e12.getTarget(),e34.getTarget())) hasChanged = true; } } } } } // (3) it = g.edges.keySet().iterator(); while (it.hasNext()) { PurityNode n1 = (PurityNode)it.next(); Iterator it3 = g.edges.keySet().iterator(); while (it3.hasNext()) { PurityNode n3 = (PurityNode)it3.next(); // ((mu(n1) U {n1}) inter (mu(n3) U {n3})) not empty Set mu1 = new HashSet(mu.get(n1)); Set mu3 = new HashSet(mu.get(n3)); boolean cond = n1.equals(n3) || mu1.contains(n3) || mu3.contains(n1); Iterator itt = mu1.iterator(); while (!cond && itt.hasNext()) { cond = cond || mu3.contains(itt.next()); } // add (mu(n4) U ({n4} inter PNodes)) to mu(n2) if (cond && (!n1.equals(n3) || n1.isLoad())) { Iterator it12 = g.edges.get(n1).iterator(); while (it12.hasNext()) { PurityEdge e12 = (PurityEdge)it12.next(); if (!e12.isInside()) { Iterator it34 = g.edges.get(n3).iterator(); while (it34.hasNext()) { PurityEdge e34 = (PurityEdge)it34.next(); if (e34.isInside()) { if (e12.getField().equals(e34.getField())) { PurityNode n2 = e12.getTarget(); PurityNode n4 = e34.getTarget(); // add n4 (if not param node) to mu(n2) if (!n4.isParam() && mu.put(n2,n4)) hasChanged = true; // add mu(n4) to mu(n2) if (mu.putAll(n2,mu.get(n4))) hasChanged = true; } } } } } } } } } // extend mu into mu' it = g.nodes.iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (!n.isParam()) { mu.put(n,n); nodes.add(n); } } // combine g into this ////////////////////// // project edges it = g.edges.keySet().iterator(); while (it.hasNext()) { PurityNode n1 = (PurityNode)it.next(); Iterator it12 = g.edges.get(n1).iterator(); while (it12.hasNext()) { PurityEdge e12 = (PurityEdge)it12.next(); String f = e12.getField(); PurityNode n2 = e12.getTarget(); Iterator itm1 = mu.get(n1).iterator(); while (itm1.hasNext()) { PurityNode mu1 = (PurityNode)itm1.next(); if (e12.isInside()) { Iterator itm2 = mu.get(n2).iterator(); while (itm2.hasNext()) { PurityNode mu2 = (PurityNode)itm2.next(); PurityEdge edge = cacheEdge(new PurityEdge(mu1,f,mu2,true)); edges.put(mu1,edge); backEdges.put(mu2,edge); } } else { PurityEdge edge = cacheEdge(new PurityEdge(mu1,f,n2,false)); edges.put(mu1,edge); backEdges.put(n2,edge); } } } } // return value if (left!=null) { // strong update on locals localsRemove(left); it = g.ret.iterator(); while (it.hasNext()) localsPutAll(left, mu.get(it.next())); } // global escape it = g.globEscape.iterator(); while (it.hasNext()) globEscape.addAll(mu.get(it.next())); if (doCheck) sanityCheck(); // simplification ///////////////// Set escaping = getEscaping(); it = (new LinkedList(nodes)).iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (!escaping.contains(n)) if (n.isLoad()) // remove captured load nodes removeNode(n); else { // ... and outside edges from captured nodes Iterator itt = (new LinkedList(edges.get(n))).iterator(); while (itt.hasNext()) { PurityEdge e = (PurityEdge)itt.next(); if (!e.isInside()) { edges.remove(n,e); backEdges.remove(e.getTarget(),e); } } } } // update mutated ///////////////// it = g.mutated.keySet().iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); Iterator itt = mu.get(n).iterator(); while (itt.hasNext()) { PurityNode nn = (PurityNode)itt.next(); if (nodes.contains(nn) && !nn.isInside()) { Iterator ittt = g.mutated.get(n).iterator(); while (ittt.hasNext()) { String f = (String)ittt.next(); mutated.put(nn,f); } } } } if (doCheck) sanityCheck(); } ///////////// // DRAWING // ///////////// /** * Fills a dot graph or subgraph with the graphical representation * of the purity graph. * * @param prefix is used to prefix all dot node and edge names. Use it * to avoid collision when several subgraphs are laid in the same dot * file! * * @param out is a newly created dot graph or subgraph where to put the * result. * *

Note: outside edges, param and load nodes are gray dashed, while * inside edges and nodes are solid black. * Globally escaping nodes have a red label. */ void fillDotGraph(String prefix, DotGraph out) { Map nodeId = new HashMap(); int id = 0; // add nodes Iterator it = nodes.iterator(); while (it.hasNext()) { PurityNode n = (PurityNode) it.next(); String label = "N"+prefix+"_"+id; DotGraphNode node = out.drawNode(label); node.setLabel(n.toString()); if (!n.isInside()) { node.setStyle("dashed"); node.setAttribute("color","gray50"); } if (globEscape.contains(n)) node.setAttribute("fontcolor","red"); nodeId.put(n,label); id++; } // add edges it = edges.keySet().iterator(); while (it.hasNext()) { PurityNode src = (PurityNode) it.next(); Iterator itt = edges.get(src).iterator(); while (itt.hasNext()) { PurityEdge e = (PurityEdge) itt.next(); DotGraphEdge edge = out.drawEdge(nodeId.get(e.getSource()), nodeId.get(e.getTarget())); edge.setLabel(e.getField()); if (!e.isInside()) { edge.setStyle("dashed"); edge.setAttribute("color","gray50"); edge.setAttribute("fontcolor","gray40"); } } } // add locals it = locals.keySet().iterator(); while (it.hasNext()) { Local local = (Local) it.next(); if (!locals.get(local).isEmpty()) { String label = "L"+prefix+"_"+id; DotGraphNode node = out.drawNode(label); node.setLabel(local.toString()); node.setShape("plaintext"); Iterator itt = locals.get(local).iterator(); while (itt.hasNext()) { PurityNode dst = (PurityNode) itt.next(); out.drawEdge(label,nodeId.get(dst)); } id++; } } // ret if (!ret.isEmpty()) { DotGraphNode node = out.drawNode("ret_"+prefix); node.setLabel("ret"); node.setShape("plaintext"); Iterator itt = ret.iterator(); while (itt.hasNext()) { PurityNode dst = (PurityNode) itt.next(); out.drawEdge("ret_"+prefix,nodeId.get(dst)); } } // add mutated it = mutated.keySet().iterator(); while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); Iterator itt = mutated.get(n).iterator(); while (itt.hasNext()) { String f = (String)itt.next(); String label = "M"+prefix+"_"+id; DotGraphNode node = out.drawNode(label); node.setLabel(""); node.setShape("plaintext"); DotGraphEdge edge = out.drawEdge(nodeId.get(n),label); edge.setLabel(f); id++; } } } /** Debugging... */ static private void dumpSet(String name, Set s) { G.v().out.println(name); Iterator it = s.iterator(); while (it.hasNext()) G.v().out.println(" "+it.next().toString()); } static private void dumpMultiMap(String name, MultiMap s) { G.v().out.println(name); Iterator it = s.keySet().iterator(); while (it.hasNext()) { Object o = it.next(); G.v().out.println(" "+o.toString()); Iterator itt = s.get(o).iterator(); while (itt.hasNext()) G.v().out.println(" "+itt.next().toString()); } } void dump() { dumpSet("nodes Set:",nodes); dumpSet("paramNodes Set:",paramNodes); dumpMultiMap("edges MultiMap:",edges); dumpMultiMap("locals MultiMap:",locals); dumpSet("ret Set:",ret); dumpSet("globEscape Set:",globEscape); dumpMultiMap("backEdges MultiMap:",backEdges); dumpMultiMap("backLocals MultiMap:",backLocals); dumpMultiMap("mutated MultiMap:",mutated); G.v().out.println(""); } /** Simple statistics on maximal graph sizes.*/ static private int maxInsideNodes = 0; static private int maxLoadNodes = 0; static private int maxInsideEdges = 0; static private int maxOutsideEdges = 0; static private int maxMutated = 0; void dumpStat() { G.v().out.println("Stat: "+ maxInsideNodes+" inNodes, "+ maxLoadNodes+" loadNodes, "+ maxInsideEdges+" inEdges, "+ maxOutsideEdges+" outEdges, "+ maxMutated+" mutated."); } void updateStat() { Iterator it = nodes.iterator(); int insideNodes = 0; int loadNodes = 0; while (it.hasNext()) { PurityNode n = (PurityNode)it.next(); if (n.isInside()) insideNodes++; else if (n.isLoad()) loadNodes++; } int insideEdges = 0; int outsideEdges = 0; it = edges.keySet().iterator(); while (it.hasNext()) { Iterator itt = edges.get(it.next()).iterator(); while (itt.hasNext()) { PurityEdge e = (PurityEdge)itt.next(); if (e.isInside()) insideEdges++; else outsideEdges++; } } int mutatedFields = 0; it = mutated.keySet().iterator(); while (it.hasNext()) mutatedFields += mutated.get(it.next()).size(); boolean changed = false; if (insideNodes>maxInsideNodes) { maxInsideNodes=insideNodes; changed=true; } if (loadNodes>maxLoadNodes) { maxLoadNodes=loadNodes; changed=true; } if (insideEdges>maxInsideEdges) { maxInsideEdges=insideEdges; changed=true; } if ( outsideEdges>maxOutsideEdges) { maxOutsideEdges=outsideEdges; changed=true; } if (mutatedFields>maxMutated) { maxMutated=mutatedFields; changed=true; } if (changed) dumpStat(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy