All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.lang.Float Maven / Gradle / Ivy

/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package java.lang;

/**
 * The wrapper for the primitive type {@code float}.
 *
 * @see java.lang.Number
 * @since 1.0
 */
public final class Float extends Number implements Comparable {
    static final int EXPONENT_BIAS = 127;

    static final int EXPONENT_BITS = 9;
    static final int MANTISSA_BITS = 23;
    static final int NON_MANTISSA_BITS = 9;

    static final int SIGN_MASK     = 0x80000000;
    static final int EXPONENT_MASK = 0x7f800000;
    static final int MANTISSA_MASK = 0x007fffff;

    private static final long serialVersionUID = -2671257302660747028L;

    /**
     * The value which the receiver represents.
     */
    private final float value;

    /**
     * Constant for the maximum {@code float} value, (2 - 2-23) * 2127.
     */
    public static final float MAX_VALUE = 3.40282346638528860e+38f;

    /**
     * Constant for the minimum {@code float} value, 2-149.
     */
    public static final float MIN_VALUE = 1.40129846432481707e-45f;

    /**
     * Constant for the Not-a-Number (NaN) value of the {@code float} type.
     */
    public static final float NaN = 0.0f / 0.0f;

    /**
     * Constant for the positive infinity value of the {@code float} type.
     */
    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;

    /**
     * Constant for the negative infinity value of the {@code float} type.
     */
    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;

    /**
     * Constant for the smallest positive normal value of the {@code float} type.
     *
     * @since 1.6
     */
    public static final float MIN_NORMAL = 1.1754943508222875E-38f;

    /**
     * Maximum base-2 exponent that a finite value of the {@code float} type may have.
     * Equal to {@code Math.getExponent(Float.MAX_VALUE)}.
     *
     * @since 1.6
     */
    public static final int MAX_EXPONENT = 127;

    /**
     * Minimum base-2 exponent that a normal value of the {@code float} type may have.
     * Equal to {@code Math.getExponent(Float.MIN_NORMAL)}.
     *
     * @since 1.6
     */
    public static final int MIN_EXPONENT = -126;

    /**
     * The {@link Class} object that represents the primitive type {@code
     * float}.
     *
     * @since 1.1
     */
    @SuppressWarnings("unchecked")
    public static final Class TYPE
            = (Class) float[].class.getComponentType();
    // Note: Float.TYPE can't be set to "float.class", since *that* is
    // defined to be "java.lang.Float.TYPE";

    /**
     * Constant for the number of bits needed to represent a {@code float} in
     * two's complement form.
     *
     * @since 1.5
     */
    public static final int SIZE = 32;

    /**
     * Constructs a new {@code Float} with the specified primitive float value.
     *
     * @param value
     *            the primitive float value to store in the new instance.
     */
    public Float(float value) {
        this.value = value;
    }

    /**
     * Constructs a new {@code Float} with the specified primitive double value.
     *
     * @param value
     *            the primitive double value to store in the new instance.
     */
    public Float(double value) {
        this.value = (float) value;
    }

    /**
     * Constructs a new {@code Float} from the specified string.
     *
     * @param string
     *            the string representation of a float value.
     * @throws NumberFormatException
     *             if {@code string} can not be parsed as a float value.
     * @see #parseFloat(String)
     */
    public Float(String string) throws NumberFormatException {
        this(parseFloat(string));
    }

    /**
     * Compares this object to the specified float object to determine their
     * relative order. There are two special cases:
     * 
    *
  • {@code Float.NaN} is equal to {@code Float.NaN} and it is greater * than any other float value, including {@code Float.POSITIVE_INFINITY};
  • *
  • +0.0f is greater than -0.0f
  • *
* * @param object * the float object to compare this object to. * @return a negative value if the value of this float is less than the * value of {@code object}; 0 if the value of this float and the * value of {@code object} are equal; a positive value if the value * of this float is greater than the value of {@code object}. * @see java.lang.Comparable * @since 1.2 */ public int compareTo(Float object) { return compare(value, object.value); } @Override public byte byteValue() { return (byte) value; } @Override public double doubleValue() { return value; } /** * Tests this double for equality with {@code object}. * To be equal, {@code object} must be an instance of {@code Float} and * {@code floatToIntBits} must give the same value for both objects. * *

Note that, unlike {@code ==}, {@code -0.0} and {@code +0.0} compare * unequal, and {@code NaN}s compare equal by this method. * * @param object * the object to compare this float with. * @return {@code true} if the specified object is equal to this * {@code Float}; {@code false} otherwise. */ @Override public boolean equals(Object object) { return (object instanceof Float) && (floatToIntBits(this.value) == floatToIntBits(((Float) object).value)); } /** * Returns an integer corresponding to the bits of the given * IEEE 754 single precision * float {@code value}. All Not-a-Number (NaN) values are converted to a single NaN * representation ({@code 0x7fc00000}) (compare to {@link #floatToRawIntBits}). */ public static native int floatToIntBits(float value); /** * Returns an integer corresponding to the bits of the given * IEEE 754 single precision * float {@code value}. Not-a-Number (NaN) values are preserved (compare * to {@link #floatToIntBits}). */ public static native int floatToRawIntBits(float value); /** * Gets the primitive value of this float. * * @return this object's primitive value. */ @Override public float floatValue() { return value; } @Override public int hashCode() { return floatToIntBits(value); } /** * Returns the IEEE 754 * single precision float corresponding to the given {@code bits}. */ public static native float intBitsToFloat(int bits); @Override public int intValue() { return (int) value; } /** * Indicates whether this object represents an infinite value. * * @return {@code true} if the value of this float is positive or negative * infinity; {@code false} otherwise. */ public boolean isInfinite() { return isInfinite(value); } /** * Indicates whether the specified float represents an infinite value. * * @param f * the float to check. * @return {@code true} if the value of {@code f} is positive or negative * infinity; {@code false} otherwise. */ public static boolean isInfinite(float f) { return (f == POSITIVE_INFINITY) || (f == NEGATIVE_INFINITY); } /** * Indicates whether this object is a Not-a-Number (NaN) value. * * @return {@code true} if this float is Not-a-Number; * {@code false} if it is a (potentially infinite) float number. */ public boolean isNaN() { return isNaN(value); } /** * Indicates whether the specified float is a Not-a-Number (NaN) * value. * * @param f * the float value to check. * @return {@code true} if {@code f} is Not-a-Number; * {@code false} if it is a (potentially infinite) float number. */ public static boolean isNaN(float f) { return f != f; } @Override public long longValue() { return (long) value; } /** * Parses the specified string as a float value. * * @param string * the string representation of a float value. * @return the primitive float value represented by {@code string}. * @throws NumberFormatException * if {@code string} can not be parsed as a float value. * @see #valueOf(String) * @since 1.2 */ public static float parseFloat(String string) throws NumberFormatException { return StringToReal.parseFloat(string); } @Override public short shortValue() { return (short) value; } @Override public String toString() { return Float.toString(value); } /** * Returns a string containing a concise, human-readable description of the * specified float value. * * @param f * the float to convert to a string. * @return a printable representation of {@code f}. */ public static String toString(float f) { return RealToString.getInstance().floatToString(f); } /** * Parses the specified string as a float value. * * @param string * the string representation of a float value. * @return a {@code Float} instance containing the float value represented * by {@code string}. * @throws NumberFormatException * if {@code string} can not be parsed as a float value. * @see #parseFloat(String) */ public static Float valueOf(String string) throws NumberFormatException { return parseFloat(string); } /** * Compares the two specified float values. There are two special cases: *

    *
  • {@code Float.NaN} is equal to {@code Float.NaN} and it is greater * than any other float value, including {@code Float.POSITIVE_INFINITY};
  • *
  • +0.0f is greater than -0.0f
  • *
* * @param float1 * the first value to compare. * @param float2 * the second value to compare. * @return a negative value if {@code float1} is less than {@code float2}; * 0 if {@code float1} and {@code float2} are equal; a positive * value if {@code float1} is greater than {@code float2}. * @since 1.4 */ public static int compare(float float1, float float2) { // Non-zero, non-NaN checking. if (float1 > float2) { return 1; } if (float2 > float1) { return -1; } if (float1 == float2 && 0.0f != float1) { return 0; } // NaNs are equal to other NaNs and larger than any other float if (isNaN(float1)) { if (isNaN(float2)) { return 0; } return 1; } else if (isNaN(float2)) { return -1; } // Deal with +0.0 and -0.0 int f1 = floatToRawIntBits(float1); int f2 = floatToRawIntBits(float2); // The below expression is equivalent to: // (f1 == f2) ? 0 : (f1 < f2) ? -1 : 1 // because f1 and f2 are either 0 or Integer.MIN_VALUE return (f1 >> 31) - (f2 >> 31); } /** * Returns a {@code Float} instance for the specified float value. * * @param f * the float value to store in the instance. * @return a {@code Float} instance containing {@code f}. * @since 1.5 */ public static Float valueOf(float f) { return new Float(f); } /** * Converts the specified float into its hexadecimal string representation. * * @param f * the float to convert. * @return the hexadecimal string representation of {@code f}. * @since 1.5 */ public static String toHexString(float f) { /* * Reference: http://en.wikipedia.org/wiki/IEEE_754-1985 */ if (f != f) { return "NaN"; } if (f == POSITIVE_INFINITY) { return "Infinity"; } if (f == NEGATIVE_INFINITY) { return "-Infinity"; } int bitValue = floatToIntBits(f); boolean negative = (bitValue & 0x80000000) != 0; // mask exponent bits and shift down int exponent = (bitValue & 0x7f800000) >>> 23; // mask significand bits and shift up // significand is 23-bits, so we shift to treat it like 24-bits int significand = (bitValue & 0x007FFFFF) << 1; if (exponent == 0 && significand == 0) { return (negative ? "-0x0.0p0" : "0x0.0p0"); } StringBuilder hexString = new StringBuilder(10); if (negative) { hexString.append("-0x"); } else { hexString.append("0x"); } if (exponent == 0) { // denormal (subnormal) value hexString.append("0."); // significand is 23-bits, so there can be 6 hex digits int fractionDigits = 6; // remove trailing hex zeros, so Integer.toHexString() won't print // them while ((significand != 0) && ((significand & 0xF) == 0)) { significand >>>= 4; fractionDigits--; } // this assumes Integer.toHexString() returns lowercase characters String hexSignificand = Integer.toHexString(significand); // if there are digits left, then insert some '0' chars first if (significand != 0 && fractionDigits > hexSignificand.length()) { int digitDiff = fractionDigits - hexSignificand.length(); while (digitDiff-- != 0) { hexString.append('0'); } } hexString.append(hexSignificand); hexString.append("p-126"); } else { // normal value hexString.append("1."); // significand is 23-bits, so there can be 6 hex digits int fractionDigits = 6; // remove trailing hex zeros, so Integer.toHexString() won't print // them while ((significand != 0) && ((significand & 0xF) == 0)) { significand >>>= 4; fractionDigits--; } // this assumes Integer.toHexString() returns lowercase characters String hexSignificand = Integer.toHexString(significand); // if there are digits left, then insert some '0' chars first if (significand != 0 && fractionDigits > hexSignificand.length()) { int digitDiff = fractionDigits - hexSignificand.length(); while (digitDiff-- != 0) { hexString.append('0'); } } hexString.append(hexSignificand); hexString.append('p'); // remove exponent's 'bias' and convert to a string hexString.append(exponent - 127); } return hexString.toString(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy