All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tomgibara.crinch.hashing.PerfectStringHash Maven / Gradle / Ivy

Go to download

A high performance data logging and graphing system for time series data.

There is a newer version: 3.9
Show newest version
/*
 * Copyright 2010 Tom Gibara
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0

 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * 
 */
package com.tomgibara.crinch.hashing;

import java.math.BigInteger;
import java.util.Arrays;
import java.util.Comparator;

/**
 * 

* A "minimal perfect hash" for Strings. After construction with an array of * n unique non-null strings, an instance of this class will return a * unique hash value h (0 <= h < n) for any string s in the * array. A negative has value will typically be returned for a string that is * not in the array. *

* *

* However, the supplied array is not retained. This means that the * implementation cannot necessarily confirm that a string is not in the * supplied array. Where this implementation cannot distinguish that a string is * not in the array, a 'valid' hash value may be returned. Under no * circumstances will a hash value be returned that is greater than or equal to * n. *

* *

* IMPORTANT NOTE: The array of strings supplied to the * constructor will be mutated: it is re-ordered so that * hash(a[i]) == i. Application code must generally use this * information to map hash values back onto the appropriate string value. *

* *

* NOTE: Good performance of this algorithm is predicated on * string hash values being cached by the String class. Experience * indicates that is is a good assumption. *

* * * @author Tom Gibara */ public class PerfectStringHash implements Hash { // statics /** * Comparator used to order the supplied string array. Hashcodes take * priority, we will do a binary search on those. Otherwise, lengths take * priority over character ordering because the hash algorithm prefers to * compare lengths, it's faster. */ private static final Comparator comparator = new Comparator() { @Override public int compare(String s1, String s2) { final int h1 = s1.hashCode(); final int h2 = s2.hashCode(); if (h1 == h2) { final int d = s1.length() - s2.length(); return d == 0 ? s1.compareTo(s2) : d; } return h1 < h2 ? -1 : 1; } }; /** * Builds a (typically v. small) decision tree for distinguishing strings * that share the same hash value. * * @param values * the string values to distinguish * @param start * the index from which the values should be read * @param length * the number of string values that need to be distinguished * @param pivots * the array that will hold our decision nodes * @param pivotIndex * the index at which the tree should be written */ private static void generatePivots(String[] values, int start, int length, int[] pivots, int pivotIndex) { final int capacity = Integer.highestOneBit(length - 1) << 1; final int depth = Integer.numberOfTrailingZeros(capacity); pivots[ pivotIndex << 1 ] = depth; pivots[(pivotIndex << 1) + 1] = length; pivotIndex++; //build the array for (int i = 0; i < depth; i++) { int step = capacity >> i; for (int j = (1 << (depth-i-1)) - 1; j < capacity; j += step) { final int part; final int comp; if (j >= length - 1) { part = Integer.MIN_VALUE; comp = 0; } else { final String v1 = values[start + j]; final String v2 = values[start + j + 1]; final int l1 = v1.length(); final int l2 = v2.length(); if (l1 == l2) { int tPart = -1; int tComp = -1; for (int k = 0; k < l1; k++) { final char c1 = v1.charAt(k); final char c2 = v2.charAt(k); if (c1 == c2) continue; if (c1 < c2) { //must occur at some point because we have already checked that the two strings are unequal tPart = k; tComp = c1; } else { //shouldn't be possible - we've sorted the strings to avoid this case throw new IllegalStateException(); } break; } //check if we've been passed a duplicated value if (tPart == -1) throw new IllegalArgumentException("duplicate value: " + v1); part = tPart; comp = tComp; } else { part = -1; comp = l1; } } pivots[ pivotIndex<<1 ] = part; pivots[(pivotIndex<<1) + 1] = comp; pivotIndex++; } } } // fields /** * The hashcodes of the supplied strings. */ private final int[] hashes; /** * Stores two ints for every string, an offset into the pivot array (-1 if * not necessary) and the depth of the decision tree that is rooted there. */ private final int[] offsets; /** * Stores two ints for every decision, the index at which a character * comparison needs to be made, followed by the character value to be * compared against; or -1 to indicate a length comparison, followed by the * length to be compared against. */ private final int[] pivots; /** * Cache a range object which indicates the range of hash values generated. */ private final HashRange range; /** * Constructs a minimal perfect string hashing over the supplied strings. * * @param values * an array of unique non-null strings that will be reordered * such that hash(values[i]) == i. */ public PerfectStringHash(final String values[]) { final int length = values.length; if (length == 0) throw new IllegalArgumentException("No values supplied"); final int[] hashes = new int[length]; final int[] offsets = new int[2 * length]; final int[] runLengths = new int[length]; //sort values so that we can assume ordering by hashcode, length and char[] Arrays.sort(values, comparator); //pull the hashcodes into an array for analysis for (int i = 0; i < length; i++) hashes[i] = values[i].hashCode(); //test for unique hashes int offset = 0; if (length > 1) { int previousHash = hashes[0]; int runLength = 1; for (int i = 1; i <= length; i++) { int currentHash = i == length ? ~previousHash : hashes[i]; if (currentHash == previousHash) { runLength++; } else { if (runLength > 1) { final int firstIndex = i - runLength; for (int j = i - 1; j >= firstIndex; j--) { runLengths[j] = runLength; //offset points to the first node in decision tree offsets[ j<<1 ] = offset; //adjustment is number of indices to first duplicate offsets[(j<<1) + 1] = j - firstIndex; } //extra one for recording depth offset += (Integer.highestOneBit(runLength - 1) << 1); runLength = 1; } else { runLengths[i-1] = 1; offsets[(i-1)<<1] = -1; } } previousHash = currentHash; } } //shortcut for when all hashes are unique if (offset == 0) { this.hashes = hashes; this.offsets = null; this.pivots = null; this.range = new HashRange(0, length - 1); return; } //build the decision trees final int[] pivots = new int[offset * 2]; for (int i = 0; i < length;) { final int runLength = runLengths[i]; if (runLength > 1) generatePivots(values, i, runLength, pivots, (int) offsets[i << 1]); i += runLength; } //setup our state this.pivots = pivots; this.offsets = offsets; this.hashes = hashes; this.range = new HashRange(0, length - 1); } // hash generator methods @Override public HashRange getRange() { return range; } @Override public BigInteger hashAsBigInt(String value) { return BigInteger.valueOf(hash(value)); } //TODO decide whether to throw an IAE if -1 is returned from hash @Override public int hashAsInt(String value) { return hash(value); } @Override public long hashAsLong(String value) { return hash(value); } /** * Generates a hashcode for the supplied string. * * @param value * any string, not null * @return a minimal hashcode for the supplied string, or -1 */ private int hash(String value) { final int h = value.hashCode(); final int index = Arrays.binarySearch(hashes, h); final int[] pivots = this.pivots; if (pivots == null || index < 0) return index; final int offset = offsets[index << 1]; if (offset == -1) return index; final int depth = pivots[(offset << 1) ]; final int count = pivots[(offset << 1) + 1]; int i = 0; for (int d = 0; d < depth; d++) { final int t = (offset + (1 << d) + i) << 1; final int part = pivots[t ]; final int comp = pivots[t + 1]; final boolean right; if (part == Integer.MIN_VALUE) { //easy case - no right value right = false; } else if (part == -1) { //compare length right = value.length() > comp; } else { //lengths are equal, compare character right = value.charAt(part) > (char) comp; } i <<= 1; if (right) i++; } return i >= count ? -1 : index + i - offsets[(index << 1) + 1]; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy