All Downloads are FREE. Search and download functionalities are using the official Maven repository.

eu.bengreen.data.utility.LargestTriangleThreeBucketsTime Maven / Gradle / Ivy

Go to download

A high performance data logging and graphing system for time series data.

There is a newer version: 3.9
Show newest version
package eu.bengreen.data.utility;

import org.rrd4j.graph.DownSampler;

/**
 * A variation of the Largest-Triangle-Three-Buckets.
 * 

* Modified by Fabrice Bacchella for NaN support. * @author Benjamin Green * */ public class LargestTriangleThreeBucketsTime extends DownSampleImpl { public LargestTriangleThreeBucketsTime(int threshold) { super(threshold); } @Override public DataSet downsizeImpl(DownSampler.DataSet sampled, long[] timestamps, double[] values) { int inputLength = timestamps.length; int bucket_interval = (int)((timestamps[inputLength - 1] - timestamps[0]) / threshold); int sampled_index = 0; double every = (double)(inputLength - 2) / (double)(threshold - 2); int a = 0, next_a = 0; long max_area_point_timestamp = -1; double max_area_point_value; double max_area; setDataSetLine(sampled, sampled_index++, timestamps[a], values[a]); for (int i = 0; i < threshold - 2; i++) { long avg_x = 0L; double avg_y = 0.0D; int avg_range_start = (int)Math.floor((i+0)*every) + 0; int avg_range_end = (int)Math.floor((i+1)*every) + 1; avg_range_end = avg_range_end < inputLength ? avg_range_end : inputLength; int avg_range_length = (int)(avg_range_end - avg_range_start); while (avg_range_start < avg_range_end) { avg_x = avg_x + timestamps[avg_range_start]; if ( ! Double.isNaN(values[avg_range_start])) { avg_y = Double.isNaN(avg_y) ? values[avg_range_start] : avg_y + values[avg_range_start]; } avg_range_start++; } if(Double.isNaN(avg_y)) { a = avg_range_end; setDataSetLine(sampled, sampled_index++, timestamps[avg_range_end - 1], Double.NaN); continue; } avg_x /= avg_range_length; avg_y /= avg_range_length; int range_offs = (int)Math.floor((i + 0) * every) + 1; int range_to = (int)Math.floor((i + 1) * every) + 1; double point_a_x = timestamps[a]; double point_a_y = Double.isNaN(values[a]) ? 0 : values[a]; max_area = -1; max_area_point_value = Double.NaN; long ending_time = timestamps[range_offs] + bucket_interval; while (range_offs < range_to) { double offs_value = Double.isNaN(values[range_offs]) ? 0 : values[range_offs]; double area = Math.abs( 0.5D * (point_a_x - avg_x) * (offs_value - point_a_y) - (point_a_x - timestamps[range_offs]) * (avg_y - point_a_y) ); if (area > max_area) { max_area = area; max_area_point_timestamp = ending_time; max_area_point_value = offs_value; next_a = range_offs; } range_offs++; } setDataSetLine(sampled, sampled_index++, max_area_point_timestamp, max_area_point_value); a = next_a; } setDataSetLine(sampled, sampled_index++, timestamps[inputLength - 1], values[inputLength - 1]); return sampled; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy