scalax.collection.AnyGraph.scala Maven / Gradle / Ivy
The newest version!
package scalax.collection
import scala.annotation.unchecked.{uncheckedVariance => uV}
import scala.collection.immutable.Iterable
import scala.reflect.ClassTag
import scalax.collection.generic._
import scalax.collection.generic.Factory
import scalax.collection.config.GraphConfig
import scalax.collection.edges.{DiEdge, UnDiEdge}
import scalax.collection.hyperedges.{ordered, DiHyperEdge, HyperEdge}
import scalax.collection.mutable.{Builder, EqHashMap}
/** A template trait for graphs.
*
* This trait provides the common structure and operations of immutable graphs independently
* of their representation.
*
* If `E` inherits `DiHyperEdgeLike` the graph is directed, otherwise it is undirected or mixed.
*
* @tparam N the user type of the nodes (vertices) in this graph.
* @tparam E the type of the edges in this graph.
* @tparam This the higher kinded type of the graph itself.
*
* @define REIMPLFACTORY Note that this method must be reimplemented in each module
* having its own factory methods such as `constrained` does.
* @define CONTGRAPH The `Graph` instance that contains `this`
* @author Peter Empen
*/
trait GraphLike[N, E <: Edge[N], +CC[X, Y <: Edge[X]] <: GraphLike[X, Y, CC] with AnyGraph[X, Y]]
extends GraphBase[N, E, CC]
with GraphTraversal[N, E]
with GraphDegree[N, E, CC]
with ToString[N, E, CC] {
thisGraph: CC[N, E] =>
protected type ThisGraph = thisGraph.type
def empty: CC[N, E]
protected[this] def newBuilder: mutable.Builder[N, E, CC]
def isDirected: Boolean = edges.nonEmpty && edges.hasOnlyDiEdges
def isHyper: Boolean = edges.nonEmpty && edges.hasAnyHyperEdge
def isMixed: Boolean = edges.nonEmpty && edges.hasMixedEdges
def isMulti: Boolean = edges.nonEmpty && edges.hasAnyMultiEdge
/** The companion object of `CC`. */
val companion: Factory[CC]
implicit def config: GraphConfig
/** `Graph` instances are equal if their nodes and edges turned
* to outer nodes and outer edges are equal. Any `TraversableOnce`
* instance may also be equal to this graph if its set representation
* contains equalling outer nodes and outer edges. Thus the following
* expressions hold:
* {{{
* Graph(1~2, 3) == List(1~2, 3)
* Graph(1~2, 3) == List(1, 2, 2, 3, 2~1)
* }}}
* The first test is `false` because of the failing nodes `1` and `2`.
* The second is true because of duplicate elimination and undirected edge equivalence.
*/
override def equals(that: Any): Boolean = that match {
case that: AnyGraph[N, E] @unchecked =>
(this eq that) ||
this.order == that.order &&
this.size == that.size && {
val thatNodes = that.nodes.toOuter
try this.nodes forall (thisN => thatNodes(thisN.outer))
catch { case _: ClassCastException => false }
} && {
val thatEdges = that.edges.toOuter
try this.edges forall (thisE => thatEdges(thisE.outer))
catch { case _: ClassCastException => false }
}
case that: IterableOnce[_] =>
val thatSet = that.iterator.to(Set)
this.elementCount == thatSet.size && {
val thatNodes = thatSet.asInstanceOf[Set[N]]
try this.nodes forall (thisN => thatNodes(thisN.outer))
catch { case _: ClassCastException => false }
} && {
val thatEdges = thatSet.asInstanceOf[Set[E]]
try this.edges forall (thisE => thatEdges(thisE.outer))
catch { case _: ClassCastException => false }
}
case _ =>
false
}
type NodeT <: GraphInnerNode
trait GraphInnerNode extends BaseInnerNode with TraverserInnerNode { this: NodeT =>
/** $CONTGRAPH inner edge. */
final def containingGraph: ThisGraph = thisGraph
}
protected trait NodeBase extends BaseNodeBase with GraphInnerNode {
this: NodeT =>
final def isContaining[N, E <: Edge[N]](g: GraphBase[N, E, CC] @uV): Boolean =
g eq containingGraph
}
type NodeSetT <: GraphNodeSet
trait GraphNodeSet extends NodeSet with NodeSetToString {
protected def copy: NodeSetT
final override def -(node: NodeT): NodeSetT =
if (this contains node) { val c = copy; c minus node; c }
else this.asInstanceOf[NodeSetT]
/** removes `node` from this node set leaving the edge set unchanged.
*
* @param node the node to be removed from the node set.
*/
protected def minus(node: NodeT): Unit
/** removes `node` either rippling or gently.
*
* @param node the node to be subtracted
* @param rippleDelete if `true`, `node` will be deleted with its incident edges;
* otherwise `node` will be only deleted if it has no incident edges or
* all its incident edges are hooks.
* @param minusNode implementation of node removal without considering incident edges.
* @param minusEdges implementation of removal of all incident edges.
* @return `true` if `node` has been removed.
*/
final protected[collection] def subtract(
node: NodeT,
rippleDelete: Boolean,
minusNode: (NodeT) => Unit,
minusEdges: (NodeT) => Unit
): Boolean = {
def minusNodeTrue = { minusNode(node); true }
def minusAllTrue = { minusEdges(node); minusNodeTrue }
if (this contains node)
if (node.edges.isEmpty) minusNodeTrue
else if (rippleDelete) minusAllTrue
else if (node.hasOnlyHooks) minusAllTrue
else handleNotGentlyRemovable
else false
}
protected def handleNotGentlyRemovable = false
}
trait GraphInnerEdge extends BaseInnerEdge {
this: EdgeT =>
/** $CONTGRAPH inner edge. */
final def containingGraph: ThisGraph = thisGraph
final protected[collection] def asEdgeT: EdgeT = this
}
type EdgeT = GraphInnerEdge
import scala.{SerialVersionUID => S}
// format: off
@S(-901) class InnerHyperEdge (val ends: Several[NodeT], val outer: E) extends Abstract.HyperEdge (ends) with EdgeT
@S(-902) class InnerOrderedHyperEdge(val ends: Several[NodeT], val outer: E) extends Abstract.OrderedHyperEdge(ends) with EdgeT
@S(-903) class InnerDiHyperEdge (override val sources: OneOrMore[NodeT], override val targets: OneOrMore[NodeT], val outer: E) extends Abstract.DiHyperEdge (sources, targets) with EdgeT
@S(-904) class InnerOrderedDiHyperEdge(override val sources: OneOrMore[NodeT], override val targets: OneOrMore[NodeT], val outer: E) extends Abstract.OrderedDiHyperEdge(sources, targets) with EdgeT
@S(-905) class InnerUnDiEdge(val source: NodeT, val target: NodeT, val outer: E) extends Abstract.UnDiEdge(source, target) with EdgeT
@S(-906) class InnerDiEdge (val source: NodeT, val target: NodeT, val outer: E) extends Abstract.DiEdge (source, target) with EdgeT
@transient object InnerHyperEdge { def unapply(edge: InnerHyperEdge): Option[Several[NodeT]] = Some(edge.ends) }
@transient object InnerOrderedHyperEdge { def unapply(edge: InnerOrderedHyperEdge): Option[Several[NodeT]] = Some(edge.ends) }
@transient object InnerDiHyperEdge { def unapply(edge: InnerDiHyperEdge): Option[(OneOrMore[NodeT], OneOrMore[NodeT])] = Some(edge.sources, edge.targets) }
@transient object InnerOrderedDiHyperEdge { def unapply(edge: InnerOrderedDiHyperEdge): Option[(OneOrMore[NodeT], OneOrMore[NodeT])] = Some(edge.sources, edge.targets) }
@transient object InnerUnDiEdge { def unapply(edge: InnerUnDiEdge): Option[(NodeT, NodeT)] = Some(edge.source, edge.target) }
@transient object InnerDiEdge { def unapply(edge: InnerDiEdge): Option[(NodeT, NodeT)] = Some(edge.source, edge.target) }
// format: on
final override protected def newHyperEdge(outer: E, nodes: Several[NodeT]): EdgeT = outer match {
case _: AnyHyperEdge[N] with OrderedEndpoints => new InnerOrderedHyperEdge(nodes, outer)
case _: AnyHyperEdge[N] => new InnerHyperEdge(nodes, outer)
case e => throw new MatchError(s"Unexpected HyperEdge $e")
}
protected def newDiHyperEdge(outer: E, sources: OneOrMore[NodeT], targets: OneOrMore[NodeT]): EdgeT = outer match {
case _: AnyDiHyperEdge[N] with OrderedEndpoints => new InnerOrderedDiHyperEdge(sources, targets, outer)
case _: AnyDiHyperEdge[N] => new InnerDiHyperEdge(sources, targets, outer)
case e => throw new MatchError(s"Unexpected DiHyperEdge $e")
}
protected def newEdge(outer: E, node_1: NodeT, node_2: NodeT): EdgeT = outer match {
case _: AnyDiEdge[N] => new InnerDiEdge(node_1, node_2, outer)
case _: AnyUnDiEdge[N] => new InnerUnDiEdge(node_1, node_2, outer)
case e => throw new MatchError(s"Unexpected Edge $e")
}
type EdgeSetT <: GraphEdgeSet
trait GraphEdgeSet extends EdgeSet with EdgeSetToString {
def hasOnlyDiEdges: Boolean
def hasOnlyUnDiEdges: Boolean
def hasMixedEdges: Boolean
def hasAnyHyperEdge: Boolean
def hasAnyMultiEdge: Boolean
}
final def contains(node: N): Boolean = nodes contains newNode(node)
final def contains(edge: E): Boolean = edges contains newHyperEdge(edge, edge.ends map newNode)
def iterator: Iterator[InnerElem] = nodes.iterator ++ edges.iterator
def toIterable: Iterable[InnerElem] = new Iterable[InnerElem] {
def iterator: Iterator[InnerElem] = thisGraph.iterator
}
def outerIterator: Iterator[OuterElem] =
nodes.iterator.map[OuterElem](n => OuterNode(n.outer)) ++
edges.iterator.map[OuterElem](e => OuterEdge(e.outer))
def toOuterIterable: Iterable[OuterElem] = new Iterable[OuterElem] {
def iterator: Iterator[OuterElem] = outerIterator
}
@inline final def find(node: N): Option[NodeT] = nodes find node
@inline final def find(edge: E): Option[EdgeT] = edges find edge
@inline final def get(node: N): NodeT = nodes get node
@inline final def get(edge: E): EdgeT = edges.find(edge).get
final def filter(nodeP: NodePredicate = anyNode, edgeP: EdgePredicate = anyEdge): CC[N, E] = {
import scala.collection.Set
def build(nodes: Set[NodeT]): CC[N, E] = {
val b = companion.newBuilder[N, E]
nodes foreach { case InnerNode(innerN, outerN) =>
b addOne outerN
innerN.edges foreach { case InnerEdge(innerE, outerE) =>
if (edgeP(innerE) && (innerE.ends forall nodes.contains)) b += outerE
}
}
b.result
}
(nodeP, edgeP) match {
case (`anyNode`, `anyEdge`) => this
case (`anyNode`, _) => build(nodes)
case (fN, _) => build(nodes filter fN)
}
}
final def map[NN, EC[X] <: Edge[X]](
fNode: NodeT => NN
)(implicit w1: E <:< GenericMapper, w2: EC[N] =:= E, t: ClassTag[EC[NN]]): CC[NN, EC[NN]] =
mapNodes[NN, EC[NN]](fNode) match {
case (nMap, builder) => map(nMap, builder)
}
private def map[NN, EC[X] <: Edge[X]](
nMap: EqHashMap[NodeT, NN],
builder: Builder[NN, EC[NN], CC @uV]
)(implicit w1: E <:< GenericMapper, w2: EC[N] =:= E, t: ClassTag[EC[NN]]): CC[NN, EC[NN]] = {
def validate[E <: Edge[NN]](e: E): Option[EC[NN]] = e match {
case e if t.runtimeClass.isInstance(e) => Some(e.asInstanceOf[EC[NN]])
case _ => None
}
edges foreach {
case InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), outer) =>
def fallback[A]: (A, A) => AnyEdge[A] = outer match {
case _: AnyDiEdge[N] => DiEdge.apply
case _ => UnDiEdge.apply
}
(nMap get n1, nMap get n2) match {
case (Some(nn1), Some(nn2)) =>
outer match {
case gM: GenericEdgeMapper[EC @unchecked] => builder += gM.map(nn1, nn2)
case pM: PartialEdgeMapper[EC[NN] @unchecked] =>
pM.map[NN].lift(nn1, nn2).fold(validate(fallback(nn1, nn2)))(Some(_)).map(builder += _)
}
case _ =>
}
case InnerEdge(
AnyDiHyperEdge(sources: OneOrMore[NodeT] @unchecked, targets: OneOrMore[NodeT] @unchecked),
outer
) =>
def fallback[A]: (OneOrMore[A], OneOrMore[A]) => AnyDiHyperEdge[A] = outer match {
case _: OrderedEndpoints => ordered.DiHyperEdge.apply
case _ => DiHyperEdge.apply
}
(sources.flatMapEither(nMap.get), targets.flatMapEither(nMap.get)) match {
case (Right(newSources), Right(newTargets)) =>
outer match {
case gM: GenericDiHyperEdgeMapper[EC @unchecked] => builder += gM.map(newSources, newTargets)
case pM: PartialDiHyperEdgeMapper[EC[NN] @unchecked] =>
pM.map[NN]
.lift(newSources, newTargets)
.fold(validate(fallback(newSources, newTargets)))(Some(_))
.map(builder += _)
}
case _ =>
}
case InnerEdge(AnyHyperEdge(ends: Several[NodeT] @unchecked), outer) =>
def fallback[A]: Several[A] => AnyHyperEdge[A] = outer match {
case _: OrderedEndpoints => ordered.HyperEdge.apply
case _ => HyperEdge.apply
}
ends.flatMapEither(nMap.get) match {
case Right(newEnds) =>
outer match {
case gM: GenericHyperEdgeMapper[EC @unchecked] => builder += gM.map(newEnds)
case pM: PartialHyperEdgeMapper[EC[NN] @unchecked] =>
pM.map[NN].lift(newEnds).fold(validate(fallback(newEnds)))(Some(_)).map(builder += _)
}
case _ =>
}
}
builder.result
}
final def mapBound(fNode: NodeT => N)(implicit w1: E <:< PartialMapper): CC[N, E] =
mapNodes[N, E](fNode) match {
case (nMap, builder) => mapBound(nMap, builder)
}
private def mapBound(nMap: EqHashMap[NodeT, N], builder: Builder[N, E, CC @uV]): CC[N, E] = {
edges foreach {
case InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), outer) =>
(nMap get n1, nMap get n2) match {
case (Some(nn1), Some(nn2)) =>
outer match {
case pM: PartialEdgeMapper[E @unchecked] => pM.map[N].lift(nn1, nn2).map(builder += _)
case _ =>
}
case _ =>
}
case InnerEdge(
AnyDiHyperEdge(sources: OneOrMore[NodeT] @unchecked, targets: OneOrMore[NodeT] @unchecked),
outer
) =>
(sources.flatMapEither(nMap.get), targets.flatMapEither(nMap.get)) match {
case (Right(newSources), Right(newTargets)) =>
outer match {
case pM: PartialDiHyperEdgeMapper[E @unchecked] =>
pM.map[N].lift(newSources, newTargets).map(builder += _)
case _ =>
}
case _ =>
}
case InnerEdge(AnyHyperEdge(ends: Several[NodeT] @unchecked), outer) =>
ends.flatMapEither(nMap.get) match {
case Right(newEnds) =>
outer match {
case pM: PartialHyperEdgeMapper[E @unchecked] => pM.map[N].lift(newEnds).map(builder += _)
case _ =>
}
case _ =>
}
}
builder.result
}
private def mapNodes[NN, EE <: Edge[NN]](fNode: NodeT => NN): (EqHashMap[NodeT, NN], Builder[NN, EE, CC]) = {
val nMap = EqHashMap.empty[NodeT, NN](order)
val b = companion.newBuilder[NN, EE](config)
nodes foreach { n =>
val nn = fNode(n)
nMap put (n, nn)
b += nn
}
(nMap, b)
}
private def flatMapNodesBiased[NN, EE <: Edge[NN]](
fNode: NodeT => Seq[NN]
): (EqHashMap[NodeT, NN], Builder[NN, EE, CC]) = {
val nMap = EqHashMap.empty[NodeT, NN](order)
val b = companion.newBuilder[NN, EE](config)
nodes foreach { n =>
val newNodes = fNode(n)
newNodes.headOption.map { head =>
var preserved: Option[NN] = None
newNodes foreach { nn =>
b += nn
if (n.outer == nn) preserved = Some(nn)
}
nMap put (n, preserved.fold(head)(identity))
}
}
(nMap, b)
}
private def flatMapNodes[NN, EE <: Edge[NN]](
fNode: NodeT => Seq[NN]
): (EqHashMap[NodeT, Seq[NN]], Builder[NN, EE, CC]) = {
val nMap = EqHashMap.empty[NodeT, Seq[NN]](order)
val b = companion.newBuilder[NN, EE](config)
nodes foreach { n =>
val newNodes = fNode(n)
nMap put (n, newNodes)
b ++= newNodes
}
(nMap, b)
}
final def map[NN, EC[X] <: Edge[X]](
fNode: NodeT => NN,
fEdge: (EdgeT, NN, NN) => EC[NN]
)(implicit
w: E <:< AnyEdge[N]
): CC[NN, EC[NN]] =
mapBound(fNode, fEdge)
final def mapBound[NN, EC <: Edge[NN]](
fNode: NodeT => NN,
fEdge: (EdgeT, NN, NN) => EC
)(implicit w: E <:< AnyEdge[N]): CC[NN, EC] =
mapNodes[NN, EC](fNode) match {
case (nMap, builder) =>
edges foreach { case e @ InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), _) =>
builder += fEdge(e, nMap(n1), nMap(n2))
}
builder.result
}
final def mapHyper[NN, EC[X] <: Edge[X]](
fNode: NodeT => NN,
fHyperEdge: (EdgeT, Several[NN]) => EC[NN],
fDiHyperEdge: Option[(EdgeT, OneOrMore[NN], OneOrMore[NN]) => EC[NN]],
fEdge: Option[(EdgeT, NN, NN) => EC[NN]]
)(implicit w: E <:< AnyHyperEdge[N]): CC[NN, EC[NN]] =
mapHyperBound(fNode, fHyperEdge, fDiHyperEdge, fEdge)
final def mapHyperBound[NN, EC <: Edge[NN]](
fNode: NodeT => NN,
fHyperEdge: (EdgeT, Several[NN]) => EC,
fDiHyperEdge: Option[(EdgeT, OneOrMore[NN], OneOrMore[NN]) => EC],
fEdge: Option[(EdgeT, NN, NN) => EC]
)(implicit w: E <:< AnyHyperEdge[N]): CC[NN, EC] =
mapNodes[NN, EC](fNode) match {
case (nMap, builder) =>
edges foreach {
case e @ InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), _) =>
fEdge.fold {
builder += fHyperEdge(e, Several(nMap(n1), nMap(n2)))
} { f =>
builder += f(e, nMap(n1), nMap(n2))
}
case e @ InnerEdge(
AnyDiHyperEdge(sources: OneOrMore[NodeT @unchecked], targets: OneOrMore[NodeT @unchecked]),
_
) =>
fDiHyperEdge.fold {
builder += fHyperEdge(e, Several.fromUnsafe(sources.map(nMap).iterator ++ targets.map(nMap).iterator))
} { f =>
builder += f(e, sources.map(nMap), targets.map(nMap))
}
case e @ InnerEdge(AnyHyperEdge(ends: Several[NodeT @unchecked]), _) =>
builder += fHyperEdge(e, ends.map(nMap))
}
builder.result
}
def mapDiHyper[NN, EC[X] <: Edge[X]](
fNode: NodeT => NN,
fDiHyperEdge: (EdgeT, OneOrMore[NN], OneOrMore[NN]) => EC[NN],
fEdge: Option[(EdgeT, NN, NN) => EC[NN]]
)(implicit w: E <:< AnyDiHyperEdge[N]): CC[NN, EC[NN]] =
mapDiHyperBound(fNode, fDiHyperEdge, fEdge)
def mapDiHyperBound[NN, EC <: Edge[NN]](
fNode: NodeT => NN,
fDiHyperEdge: (EdgeT, OneOrMore[NN], OneOrMore[NN]) => EC,
fEdge: Option[(EdgeT, NN, NN) => EC]
)(implicit w: E <:< AnyDiHyperEdge[N]): CC[NN, EC] =
mapNodes[NN, EC](fNode) match {
case (nMap, builder) =>
edges foreach {
case e @ InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), _) =>
import OneOrMore.one
fEdge.fold {
builder += fDiHyperEdge(e, one(nMap(n1)), one(nMap(n2)))
} { f =>
builder += f(e, nMap(n1), nMap(n2))
}
case e @ InnerEdge(
AnyDiHyperEdge(sources: OneOrMore[NodeT @unchecked], targets: OneOrMore[NodeT @unchecked]),
_
) =>
builder += fDiHyperEdge(e, sources.map(nMap), targets.map(nMap))
}
builder.result
}
final def flatMap[NN, EC[X] <: Edge[X]](
fNode: NodeT => Seq[NN]
)(implicit w1: E <:< GenericMapper, w2: EC[N] =:= E, t: ClassTag[EC[NN]]): CC[NN, EC[NN]] =
flatMapNodesBiased[NN, EC[NN]](fNode) match {
case (nMap, builder) => map(nMap, builder)
}
final def flatMapBound(fNode: NodeT => Seq[N])(implicit w1: E <:< PartialMapper): CC[N, E] =
flatMapNodesBiased[N, E](fNode) match {
case (nMap, builder) => mapBound(nMap, builder)
}
final def flatMap[NN, EC[X] <: Edge[X]](
fNode: NodeT => Seq[NN],
fEdge: (EdgeT, Seq[NN], Seq[NN]) => Seq[EC[NN]]
)(implicit w: E <:< AnyEdge[N]): CC[NN, EC[NN]] =
flatMapBound(fNode, fEdge)
final def flatMapBound[NN, EC <: Edge[NN]](
fNode: NodeT => Seq[NN],
fEdge: (EdgeT, Seq[NN], Seq[NN]) => Seq[EC]
)(implicit w: E <:< AnyEdge[N]): CC[NN, EC] =
flatMapNodes[NN, EC](fNode) match {
case (nMap, builder) =>
edges foreach { case e @ InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), _) =>
builder ++= (edges = fEdge(e, nMap(n1), nMap(n2)))
}
builder.result
}
final def flatMapHyper[NN, EC[X] <: Edge[X]](
fNode: NodeT => Seq[NN],
fHyperEdge: (EdgeT, Seq[NN]) => Seq[EC[NN]],
fDiHyperEdge: Option[(EdgeT, Seq[NN], Seq[NN]) => Seq[EC[NN]]],
fEdge: Option[(EdgeT, Seq[NN], Seq[NN]) => Seq[EC[NN]]]
)(implicit w: E <:< AnyHyperEdge[N]): CC[NN, EC[NN]] =
flatMapHyperBound(fNode, fHyperEdge, fDiHyperEdge, fEdge)
final def flatMapHyperBound[NN, EC <: Edge[NN]](
fNode: NodeT => Seq[NN],
fHyperEdge: (EdgeT, Seq[NN]) => Seq[EC],
fDiHyperEdge: Option[(EdgeT, Seq[NN], Seq[NN]) => Seq[EC]],
fEdge: Option[(EdgeT, Seq[NN], Seq[NN]) => Seq[EC]]
)(implicit w: E <:< AnyHyperEdge[N]): CC[NN, EC] =
flatMapNodes[NN, EC](fNode) match {
case (nMap, builder) =>
edges foreach {
case e @ InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), _) =>
val nn1s = nMap(n1)
val nn2s = nMap(n2)
builder ++= (edges = fEdge.fold(fHyperEdge(e, nn1s ++ nn2s))(_(e, nn1s, nn2s)))
case e @ InnerEdge(
AnyDiHyperEdge(sources: OneOrMore[NodeT @unchecked], targets: OneOrMore[NodeT @unchecked]),
_
) =>
val newSources = sources.flatMap(nMap)
val newTargets = targets.flatMap(nMap)
builder ++= (edges =
fDiHyperEdge.fold(fHyperEdge(e, newSources ++ newTargets))(_(e, newSources, newTargets))
)
case e @ InnerEdge(AnyHyperEdge(ends: Several[NodeT @unchecked]), _) =>
builder ++= (edges = fHyperEdge(e, ends.flatMap(nMap)))
}
builder.result
}
final def flatMapDiHyper[NN, EC[X] <: Edge[X]](
fNode: NodeT => Seq[NN],
fDiHyperEdge: (EdgeT, Seq[NN], Seq[NN]) => Seq[EC[NN]],
fEdge: Option[(EdgeT, Seq[NN], Seq[NN]) => Seq[EC[NN]]]
)(implicit w: E <:< AnyDiHyperEdge[N]): CC[NN, EC[NN]] =
flatMapDiHyperBound(fNode, fDiHyperEdge, fEdge)
final def flatMapDiHyperBound[NN, EC <: Edge[NN]](
fNode: NodeT => Seq[NN],
fDiHyperEdge: (EdgeT, Seq[NN], Seq[NN]) => Seq[EC],
fEdge: Option[(EdgeT, Seq[NN], Seq[NN]) => Seq[EC]]
)(implicit w: E <:< AnyDiHyperEdge[N]): CC[NN, EC] =
flatMapNodes[NN, EC](fNode) match {
case (nMap, builder) =>
edges foreach {
case e @ InnerEdge(AnyEdge(n1: NodeT @unchecked, n2: NodeT @unchecked), _) =>
val nn1s = nMap(n1)
val nn2s = nMap(n2)
builder ++= (edges = fEdge.fold(fDiHyperEdge(e, nn1s, nn2s))(_(e, nn1s, nn2s)))
case e @ InnerEdge(
AnyDiHyperEdge(sources: OneOrMore[NodeT @unchecked], targets: OneOrMore[NodeT @unchecked]),
_
) =>
val newSources = sources.flatMap(nMap)
val newTargets = targets.flatMap(nMap)
builder ++= (edges = fDiHyperEdge(e, newSources, newTargets))
}
builder.result
}
def foldLeft[B](z: B)(opNode: (B, NodeT) => B, opEdge: (B, EdgeT) => B): B =
edges.foldLeft(nodes.foldLeft(z)(opNode))(opEdge)
}
/** Bundled functionality for mutable and immutable graphs alike.
*
* @tparam N the type of the nodes (vertices) in this graph.
* @tparam E the type of the edges in this graph.
*/
trait AnyGraph[N, E <: Edge[N]] extends GraphLike[N, E, AnyGraph]
© 2015 - 2025 Weber Informatics LLC | Privacy Policy