Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2006-2013, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
package scala
package util.parsing.combinator
import scala.util.parsing.input._
import scala.collection.mutable.ListBuffer
import scala.annotation.tailrec
import scala.annotation.migration
import scala.language.implicitConversions
import scala.util.DynamicVariable
// TODO: better error handling (labelling like parsec's >)
/** `Parsers` is a component that ''provides'' generic parser combinators.
*
* There are two abstract members that must be defined in order to
* produce parsers: the type `Elem` and
* [[scala.util.parsing.combinator.Parsers.Parser]]. There are helper
* methods that produce concrete `Parser` implementations -- see ''primitive
* parser'' below.
*
* A `Parsers` may define multiple `Parser` instances, which are combined
* to produced the desired parser.
*
* The type of the elements these parsers should parse must be defined
* by declaring `Elem`
* (each parser is polymorphic in the type of result it produces).
*
* There are two aspects to the result of a parser:
* 1. success or failure
* 1. the result.
*
* A [[scala.util.parsing.combinator.Parsers.Parser]] produces both kinds of information,
* by returning a [[scala.util.parsing.combinator.Parsers.ParseResult]] when its `apply`
* method is called on an input.
*
* The term ''parser combinator'' refers to the fact that these parsers
* are constructed from primitive parsers and composition operators, such
* as sequencing, alternation, optionality, repetition, lifting, and so on. For example,
* given `p1` and `p2` of type [[scala.util.parsing.combinator.Parsers.Parser]]:
*
* {{{
* p1 ~ p2 // sequencing: must match p1 followed by p2
* p1 | p2 // alternation: must match either p1 or p2, with preference given to p1
* p1.? // optionality: may match p1 or not
* p1.* // repetition: matches any number of repetitions of p1
* }}}
*
* These combinators are provided as methods on [[scala.util.parsing.combinator.Parsers.Parser]],
* or as methods taking one or more `Parsers` and returning a `Parser` provided in
* this class.
*
* A ''primitive parser'' is a parser that accepts or rejects a single
* piece of input, based on a certain criterion, such as whether the
* input...
* - is equal to some given object (see method `accept`),
* - satisfies a certain predicate (see method `acceptIf`),
* - is in the domain of a given partial function (see method `acceptMatch`)
* - or other conditions, by using one of the other methods available, or subclassing `Parser`
*
* Even more primitive parsers always produce the same result, irrespective of the input. See
* methods `success`, `err` and `failure` as examples.
*
* @see [[scala.util.parsing.combinator.RegexParsers]] and other known subclasses for practical examples.
*
* @author Martin Odersky
* @author Iulian Dragos
* @author Adriaan Moors
*/
trait Parsers {
/** the type of input elements the provided parsers consume (When consuming
* invidual characters, a parser is typically called a ''scanner'', which
* produces ''tokens'' that are consumed by what is normally called a ''parser''.
* Nonetheless, the same principles apply, regardless of the input type.) */
type Elem
/** The parser input is an abstract reader of input elements, i.e. the type
* of input the parsers in this component expect. */
type Input = Reader[Elem]
/** A base class for parser results. A result is either successful or not
* (failure may be fatal, i.e., an Error, or not, i.e., a Failure). On
* success, provides a result of type `T` which consists of some result
* (and the rest of the input). */
sealed abstract class ParseResult[+T] {
/** Functional composition of ParseResults.
*
* @param f the function to be lifted over this result
* @return `f` applied to the result of this `ParseResult`, packaged up as a new `ParseResult`
*/
def map[U](f: T => U): ParseResult[U]
/** Partial functional composition of ParseResults.
*
* @param f the partial function to be lifted over this result
* @param error a function that takes the same argument as `f` and
* produces an error message to explain why `f` wasn't applicable
* (it is called when this is the case)
* @return if `f` f is defined at the result in this `ParseResult`, `f`
* applied to the result of this `ParseResult`, packaged up as
* a new `ParseResult`. If `f` is not defined, `Failure`.
*/
def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U]
def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U]
def filterWithError(p: T => Boolean, error: T => String, position: Input): ParseResult[T]
def append[U >: T](a: => ParseResult[U]): ParseResult[U]
def isEmpty = !successful
/** Returns the embedded result. */
def get: T
def getOrElse[B >: T](default: => B): B =
if (isEmpty) default else this.get
val next: Input
val successful: Boolean
}
/** The success case of `ParseResult`: contains the result and the remaining input.
*
* @param result The parser's output
* @param next The parser's remaining input
*/
case class Success[+T](result: T, override val next: Input) extends ParseResult[T] {
def map[U](f: T => U) = Success(f(result), next)
def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U]
= if(f.isDefinedAt(result)) Success(f(result), next)
else Failure(error(result), next)
def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U]
= f(result)(next)
def filterWithError(p: T => Boolean, error: T => String, position: Input): ParseResult[T] =
if (p(result)) this
else Failure(error(result), position)
def append[U >: T](a: => ParseResult[U]): ParseResult[U] = this
def get: T = result
/** The toString method of a Success. */
override def toString = "["+next.pos+"] parsed: "+result
val successful = true
}
private lazy val lastNoSuccessVar = new DynamicVariable[Option[NoSuccess]](None)
/** A common super-class for unsuccessful parse results. */
sealed abstract class NoSuccess(val msg: String, override val next: Input) extends ParseResult[Nothing] { // when we don't care about the difference between Failure and Error
val successful = false
if (lastNoSuccessVar.value forall (v => !(next.pos < v.next.pos)))
lastNoSuccessVar.value = Some(this)
def map[U](f: Nothing => U) = this
def mapPartial[U](f: PartialFunction[Nothing, U], error: Nothing => String): ParseResult[U] = this
def flatMapWithNext[U](f: Nothing => Input => ParseResult[U]): ParseResult[U]
= this
def filterWithError(p: Nothing => Boolean, error: Nothing => String, position: Input): ParseResult[Nothing] = this
def get: Nothing = scala.sys.error("No result when parsing failed")
}
/** An extractor so `NoSuccess(msg, next)` can be used in matches. */
object NoSuccess {
def unapply[T](x: ParseResult[T]) = x match {
case Failure(msg, next) => Some((msg, next))
case Error(msg, next) => Some((msg, next))
case _ => None
}
}
/** The failure case of `ParseResult`: contains an error-message and the remaining input.
* Parsing will back-track when a failure occurs.
*
* @param msg An error message string describing the failure.
* @param next The parser's unconsumed input at the point where the failure occurred.
*/
case class Failure(override val msg: String, override val next: Input) extends NoSuccess(msg, next) {
/** The toString method of a Failure yields an error message. */
override def toString = "["+next.pos+"] failure: "+msg+"\n\n"+next.pos.longString
def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = { val alt = a; alt match {
case Success(_, _) => alt
case ns: NoSuccess => if (alt.next.pos < next.pos) this else alt
}}
}
/** The fatal failure case of ParseResult: contains an error-message and
* the remaining input.
* No back-tracking is done when a parser returns an `Error`.
*
* @param msg An error message string describing the error.
* @param next The parser's unconsumed input at the point where the error occurred.
*/
case class Error(override val msg: String, override val next: Input) extends NoSuccess(msg, next) {
/** The toString method of an Error yields an error message. */
override def toString = "["+next.pos+"] error: "+msg+"\n\n"+next.pos.longString
def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = this
}
def Parser[T](f: Input => ParseResult[T]): Parser[T]
= new Parser[T]{ def apply(in: Input) = f(in) }
def OnceParser[T](f: Input => ParseResult[T]): Parser[T] with OnceParser[T]
= new Parser[T] with OnceParser[T] { def apply(in: Input) = f(in) }
/** The root class of parsers.
* Parsers are functions from the Input type to ParseResult.
*/
abstract class Parser[+T] extends (Input => ParseResult[T]) {
private var name: String = ""
def named(n: String): this.type = {name=n; this}
override def toString() = "Parser ("+ name +")"
/** An unspecified method that defines the behaviour of this parser. */
def apply(in: Input): ParseResult[T]
def flatMap[U](f: T => Parser[U]): Parser[U]
= Parser{ in => this(in) flatMapWithNext(f)}
def map[U](f: T => U): Parser[U] //= flatMap{x => success(f(x))}
= Parser{ in => this(in) map(f)}
def filter(p: T => Boolean): Parser[T]
= withFilter(p)
def withFilter(p: T => Boolean): Parser[T]
= Parser{ in => this(in) filterWithError(p, "Input doesn't match filter: "+_, in)}
// no filter yet, dealing with zero is tricky!
@migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
def append[U >: T](p0: => Parser[U]): Parser[U] = { lazy val p = p0 // lazy argument
Parser{ in => this(in) append p(in)}
}
// the operator formerly known as +++, ++, &, but now, behold the venerable ~
// it's short, light (looks like whitespace), has few overloaded meaning (thanks to the recent change from ~ to unary_~)
// and we love it! (or do we like `,` better?)
/** A parser combinator for sequential composition.
*
* `p ~ q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`.
*
* @param q a parser that will be executed after `p` (this parser)
* succeeds -- evaluated at most once, and only when necessary.
* @return a `Parser` that -- on success -- returns a `~` (like a `Pair`,
* but easier to pattern match on) that contains the result of `p` and
* that of `q`. The resulting parser fails if either `p` or `q` fails.
*/
@migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
def ~ [U](q: => Parser[U]): Parser[~[T, U]] = { lazy val p = q // lazy argument
(for(a <- this; b <- p) yield new ~(a,b)).named("~")
}
/** A parser combinator for sequential composition which keeps only the right result.
*
* `p ~> q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`.
*
* @param q a parser that will be executed after `p` (this parser)
* succeeds -- evaluated at most once, and only when necessary.
* @return a `Parser` that -- on success -- returns the result of `q`.
*/
@migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
def ~> [U](q: => Parser[U]): Parser[U] = { lazy val p = q // lazy argument
(for(a <- this; b <- p) yield b).named("~>")
}
/** A parser combinator for sequential composition which keeps only the left result.
*
* `p <~ q` succeeds if `p` succeeds and `q` succeeds on the input
* left over by `p`.
*
* @note <~ has lower operator precedence than ~ or ~>.
*
* @param q a parser that will be executed after `p` (this parser) succeeds -- evaluated at most once, and only when necessary
* @return a `Parser` that -- on success -- returns the result of `p`.
*/
@migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
def <~ [U](q: => Parser[U]): Parser[T] = { lazy val p = q // lazy argument
(for(a <- this; b <- p) yield a).named("<~")
}
/* not really useful: V cannot be inferred because Parser is covariant in first type parameter (V is always trivially Nothing)
def ~~ [U, V](q: => Parser[U])(implicit combine: (T, U) => V): Parser[V] = new Parser[V] {
def apply(in: Input) = seq(Parser.this, q)((x, y) => combine(x,y))(in)
} */
/** A parser combinator for non-back-tracking sequential composition.
*
* `p ~! q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`.
* In case of failure, no back-tracking is performed (in an earlier parser produced by the `|` combinator).
*
* @param p a parser that will be executed after `p` (this parser) succeeds
* @return a `Parser` that -- on success -- returns a `~` (like a Pair, but easier to pattern match on)
* that contains the result of `p` and that of `q`.
* The resulting parser fails if either `p` or `q` fails, this failure is fatal.
*/
def ~! [U](p: => Parser[U]): Parser[~[T, U]]
= OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~!") }
/** A parser combinator for alternative composition.
*
* `p | q` succeeds if `p` succeeds or `q` succeeds.
* Note that `q` is only tried if `p`s failure is non-fatal (i.e., back-tracking is allowed).
*
* @param q a parser that will be executed if `p` (this parser) fails (and allows back-tracking)
* @return a `Parser` that returns the result of the first parser to succeed (out of `p` and `q`)
* The resulting parser succeeds if (and only if)
* - `p` succeeds, ''or''
* - if `p` fails allowing back-tracking and `q` succeeds.
*/
def | [U >: T](q: => Parser[U]): Parser[U] = append(q).named("|")
// TODO
/** A parser combinator for alternative with longest match composition.
*
* `p ||| q` succeeds if `p` succeeds or `q` succeeds.
* If `p` and `q` both succeed, the parser that consumed the most characters accepts.
*
* @param q0 a parser that accepts if p consumes less characters. -- evaluated at most once, and only when necessary
* @return a `Parser` that returns the result of the parser consuming the most characters (out of `p` and `q`).
*/
@migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
def ||| [U >: T](q0: => Parser[U]): Parser[U] = new Parser[U] {
lazy val q = q0 // lazy argument
def apply(in: Input) = {
val res1 = Parser.this(in)
val res2 = q(in)
(res1, res2) match {
case (s1 @ Success(_, next1), s2 @ Success(_, next2)) => if (next2.pos < next1.pos) s1 else s2
case (s1 @ Success(_, _), _) => s1
case (_, s2 @ Success(_, _)) => s2
case (e1 @ Error(_, _), _) => e1
case (f1 @ Failure(_, next1), ns2 @ NoSuccess(_, next2)) => if (next2.pos < next1.pos) f1 else ns2
}
}
override def toString = "|||"
}
/** A parser combinator for function application.
*
* `p ^^ f` succeeds if `p` succeeds; it returns `f` applied to the result of `p`.
*
* @param f a function that will be applied to this parser's result (see `map` in `ParseResult`).
* @return a parser that has the same behaviour as the current parser, but whose result is
* transformed by `f`.
*/
def ^^ [U](f: T => U): Parser[U] = map(f).named(toString+"^^")
/** A parser combinator that changes a successful result into the specified value.
*
* `p ^^^ v` succeeds if `p` succeeds; discards its result, and returns `v` instead.
*
* @param v The new result for the parser, evaluated at most once (if `p` succeeds), not evaluated at all if `p` fails.
* @return a parser that has the same behaviour as the current parser, but whose successful result is `v`
*/
@migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
def ^^^ [U](v: => U): Parser[U] = new Parser[U] {
lazy val v0 = v // lazy argument
def apply(in: Input) = Parser.this(in) map (x => v0)
}.named(toString+"^^^")
/** A parser combinator for partial function application.
*
* `p ^? (f, error)` succeeds if `p` succeeds AND `f` is defined at the result of `p`;
* in that case, it returns `f` applied to the result of `p`. If `f` is not applicable,
* error(the result of `p`) should explain why.
*
* @param f a partial function that will be applied to this parser's result
* (see `mapPartial` in `ParseResult`).
* @param error a function that takes the same argument as `f` and produces an error message
* to explain why `f` wasn't applicable
* @return a parser that succeeds if the current parser succeeds and `f` is applicable
* to the result. If so, the result will be transformed by `f`.
*/
def ^? [U](f: PartialFunction[T, U], error: T => String): Parser[U] = Parser{ in =>
this(in).mapPartial(f, error)}.named(toString+"^?")
/** A parser combinator for partial function application.
*
* `p ^? f` succeeds if `p` succeeds AND `f` is defined at the result of `p`;
* in that case, it returns `f` applied to the result of `p`.
*
* @param f a partial function that will be applied to this parser's result
* (see `mapPartial` in `ParseResult`).
* @return a parser that succeeds if the current parser succeeds and `f` is applicable
* to the result. If so, the result will be transformed by `f`.
*/
def ^? [U](f: PartialFunction[T, U]): Parser[U] = ^?(f, r => "Constructor function not defined at "+r)
/** A parser combinator that parameterizes a subsequent parser with the
* result of this one.
*
* Use this combinator when a parser depends on the result of a previous
* parser. `p` should be a function that takes the result from the first
* parser and returns the second parser.
*
* `p into fq` (with `fq` typically `{x => q}`) first applies `p`, and
* then, if `p` successfully returned result `r`, applies `fq(r)` to the
* rest of the input.
*
* ''From: G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3):323--343, 1992.''
*
* @example {{{
* def perlRE = "m" ~> (".".r into (separator => """[^%s]*""".format(separator).r <~ separator))
* }}}
*
* @param fq a function that, given the result from this parser, returns
* the second parser to be applied
* @return a parser that succeeds if this parser succeeds (with result `x`)
* and if then `fq(x)` succeeds
*/
def into[U](fq: T => Parser[U]): Parser[U] = flatMap(fq)
// shortcuts for combinators:
/** Returns `into(fq)`. */
def >>[U](fq: T => Parser[U])=into(fq)
/** Returns a parser that repeatedly parses what this parser parses.
*
* @return rep(this)
*/
def * = rep(this)
/** Returns a parser that repeatedly parses what this parser parses,
* interleaved with the `sep` parser. The `sep` parser specifies how
* the results parsed by this parser should be combined.
*
* @return chainl1(this, sep)
*/
def *[U >: T](sep: => Parser[(U, U) => U]) = chainl1(this, sep)
// TODO: improve precedence? a ~ b*(",") = a ~ (b*(",")) should be true
/** Returns a parser that repeatedly (at least once) parses what this parser parses.
*
* @return rep1(this)
*/
def + = rep1(this)
/** Returns a parser that optionally parses what this parser parses.
*
* @return opt(this)
*/
def ? = opt(this)
/** Changes the failure message produced by a parser.
*
* This doesn't change the behavior of a parser on neither
* success nor error, just on failure. The semantics are
* slightly different than those obtained by doing `| failure(msg)`,
* in that the message produced by this method will always
* replace the message produced, which is not guaranteed
* by that idiom.
*
* For example, parser `p` below will always produce the
* designated failure message, while `q` will not produce
* it if `sign` is parsed but `number` is not.
*
* {{{
* def p = sign.? ~ number withFailureMessage "Number expected!"
* def q = sign.? ~ number | failure("Number expected!")
* }}}
*
* @param msg The message that will replace the default failure message.
* @return A parser with the same properties and different failure message.
*/
def withFailureMessage(msg: String) = Parser{ in =>
this(in) match {
case Failure(_, next) => Failure(msg, next)
case other => other
}
}
/** Changes the error message produced by a parser.
*
* This doesn't change the behavior of a parser on neither
* success nor failure, just on error. The semantics are
* slightly different than those obtained by doing `| error(msg)`,
* in that the message produced by this method will always
* replace the message produced, which is not guaranteed
* by that idiom.
*
* For example, parser `p` below will always produce the
* designated error message, while `q` will not produce
* it if `sign` is parsed but `number` is not.
*
* {{{
* def p = sign.? ~ number withErrorMessage "Number expected!"
* def q = sign.? ~ number | error("Number expected!")
* }}}
*
* @param msg The message that will replace the default error message.
* @return A parser with the same properties and different error message.
*/
def withErrorMessage(msg: String) = Parser{ in =>
this(in) match {
case Error(_, next) => Error(msg, next)
case other => other
}
}
}
/** Wrap a parser so that its failures become errors (the `|` combinator
* will give up as soon as it encounters an error, on failure it simply
* tries the next alternative).
*/
def commit[T](p: => Parser[T]) = Parser{ in =>
p(in) match{
case s @ Success(_, _) => s
case e @ Error(_, _) => e
case f @ Failure(msg, next) => Error(msg, next)
}
}
/** A parser matching input elements that satisfy a given predicate.
*
* `elem(kind, p)` succeeds if the input starts with an element `e` for which `p(e)` is true.
*
* @param kind The element kind, used for error messages
* @param p A predicate that determines which elements match.
* @return
*/
def elem(kind: String, p: Elem => Boolean) = acceptIf(p)(inEl => kind+" expected")
/** A parser that matches only the given element `e`.
*
* `elem(e)` succeeds if the input starts with an element `e`.
*
* @param e the `Elem` that must be the next piece of input for the returned parser to succeed
* @return a `Parser` that succeeds if `e` is the next available input (and returns it).
*/
def elem(e: Elem): Parser[Elem] = accept(e)
/** A parser that matches only the given element `e`.
*
* The method is implicit so that elements can automatically be lifted to their parsers.
* For example, when parsing `Token`s, `Identifier("new")` (which is a `Token`) can be used directly,
* instead of first creating a `Parser` using `accept(Identifier("new"))`.
*
* @param e the `Elem` that must be the next piece of input for the returned parser to succeed
* @return a `tParser` that succeeds if `e` is the next available input.
*/
implicit def accept(e: Elem): Parser[Elem] = acceptIf(_ == e)("`"+e+"' expected but " + _ + " found")
/** A parser that matches only the given list of element `es`.
*
* `accept(es)` succeeds if the input subsequently provides the elements in the list `es`.
*
* @param es the list of expected elements
* @return a Parser that recognizes a specified list of elements
*/
def accept[ES <% List[Elem]](es: ES): Parser[List[Elem]] = acceptSeq(es)
/** The parser that matches an element in the domain of the partial function `f`.
*
* If `f` is defined on the first element in the input, `f` is applied
* to it to produce this parser's result.
*
* Example: The parser `accept("name", {case Identifier(n) => Name(n)})`
* accepts an `Identifier(n)` and returns a `Name(n)`
*
* @param expected a description of the kind of element this parser expects (for error messages)
* @param f a partial function that determines when this parser is successful and what its output is
* @return A parser that succeeds if `f` is applicable to the first element of the input,
* applying `f` to it to produce the result.
*/
def accept[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = acceptMatch(expected, f)
/** A parser matching input elements that satisfy a given predicate.
*
* `acceptIf(p)(el => "Unexpected "+el)` succeeds if the input starts with an element `e` for which `p(e)` is true.
*
* @param err A function from the received element into an error message.
* @param p A predicate that determines which elements match.
* @return A parser for elements satisfying p(e).
*/
def acceptIf(p: Elem => Boolean)(err: Elem => String): Parser[Elem] = Parser { in =>
if (in.atEnd) Failure("end of input", in)
else if (p(in.first)) Success(in.first, in.rest)
else Failure(err(in.first), in)
}
/** The parser that matches an element in the domain of the partial function `f`.
*
* If `f` is defined on the first element in the input, `f` is applied
* to it to produce this parser's result.
*
* Example: The parser `acceptMatch("name", {case Identifier(n) => Name(n)})`
* accepts an `Identifier(n)` and returns a `Name(n)`
*
* @param expected a description of the kind of element this parser expects (for error messages)
* @param f a partial function that determines when this parser is successful and what its output is
* @return A parser that succeeds if `f` is applicable to the first element of the input,
* applying `f` to it to produce the result.
*/
def acceptMatch[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = Parser{ in =>
if (in.atEnd) Failure("end of input", in)
else if (f.isDefinedAt(in.first)) Success(f(in.first), in.rest)
else Failure(expected+" expected", in)
}
/** A parser that matches only the given [[scala.collection.Iterable]] collection of elements `es`.
*
* `acceptSeq(es)` succeeds if the input subsequently provides the elements in the iterable `es`.
*
* @param es the list of expected elements
* @return a Parser that recognizes a specified list of elements
*/
def acceptSeq[ES <% Iterable[Elem]](es: ES): Parser[List[Elem]] =
es.foldRight[Parser[List[Elem]]](success(Nil)){(x, pxs) => accept(x) ~ pxs ^^ mkList}
/** A parser that always fails.
*
* @param msg The error message describing the failure.
* @return A parser that always fails with the specified error message.
*/
def failure(msg: String) = Parser{ in => Failure(msg, in) }
/** A parser that results in an error.
*
* @param msg The error message describing the failure.
* @return A parser that always fails with the specified error message.
*/
def err(msg: String) = Parser{ in => Error(msg, in) }
/** A parser that always succeeds.
*
* @param v The result for the parser
* @return A parser that always succeeds, with the given result `v`
*/
def success[T](v: T) = Parser{ in => Success(v, in) }
/** A helper method that turns a `Parser` into one that will
* print debugging information to stdout before and after
* being applied.
*/
def log[T](p: => Parser[T])(name: String): Parser[T] = Parser{ in =>
println("trying "+ name +" at "+ in)
val r = p(in)
println(name +" --> "+ r)
r
}
/** A parser generator for repetitions.
*
* `rep(p)` repeatedly uses `p` to parse the input until `p` fails
* (the result is a List of the consecutive results of `p`).
*
* @param p a `Parser` that is to be applied successively to the input
* @return A parser that returns a list of results produced by repeatedly applying `p` to the input.
*/
def rep[T](p: => Parser[T]): Parser[List[T]] = rep1(p) | success(List())
/** A parser generator for interleaved repetitions.
*
* `repsep(p, q)` repeatedly uses `p` interleaved with `q` to parse the input, until `p` fails.
* (The result is a `List` of the results of `p`.)
*
* Example: `repsep(term, ",")` parses a comma-separated list of term's, yielding a list of these terms.
*
* @param p a `Parser` that is to be applied successively to the input
* @param q a `Parser` that parses the elements that separate the elements parsed by `p`
* @return A parser that returns a list of results produced by repeatedly applying `p` (interleaved with `q`) to the input.
* The results of `p` are collected in a list. The results of `q` are discarded.
*/
def repsep[T](p: => Parser[T], q: => Parser[Any]): Parser[List[T]] =
rep1sep(p, q) | success(List())
/** A parser generator for non-empty repetitions.
*
* `rep1(p)` repeatedly uses `p` to parse the input until `p` fails -- `p` must succeed at least
* once (the result is a `List` of the consecutive results of `p`)
*
* @param p a `Parser` that is to be applied successively to the input
* @return A parser that returns a list of results produced by repeatedly applying `p` to the input
* (and that only succeeds if `p` matches at least once).
*/
def rep1[T](p: => Parser[T]): Parser[List[T]] = rep1(p, p)
/** A parser generator for non-empty repetitions.
*
* `rep1(f, p)` first uses `f` (which must succeed) and then repeatedly
* uses `p` to parse the input until `p` fails
* (the result is a `List` of the consecutive results of `f` and `p`)
*
* @param first a `Parser` that parses the first piece of input
* @param p0 a `Parser` that is to be applied successively to the rest of the input (if any) -- evaluated at most once, and only when necessary
* @return A parser that returns a list of results produced by first applying `f` and then
* repeatedly `p` to the input (it only succeeds if `f` matches).
*/
@migration("The `p0` call-by-name arguments is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
def rep1[T](first: => Parser[T], p0: => Parser[T]): Parser[List[T]] = Parser { in =>
lazy val p = p0 // lazy argument
val elems = new ListBuffer[T]
def continue(in: Input): ParseResult[List[T]] = {
val p0 = p // avoid repeatedly re-evaluating by-name parser
@tailrec def applyp(in0: Input): ParseResult[List[T]] = p0(in0) match {
case Success(x, rest) => elems += x ; applyp(rest)
case e @ Error(_, _) => e // still have to propagate error
case _ => Success(elems.toList, in0)
}
applyp(in)
}
first(in) match {
case Success(x, rest) => elems += x ; continue(rest)
case ns: NoSuccess => ns
}
}
/** A parser generator for a specified number of repetitions.
*
* `repN(n, p)` uses `p` exactly `n` time to parse the input
* (the result is a `List` of the `n` consecutive results of `p`).
*
* @param p a `Parser` that is to be applied successively to the input
* @param num the exact number of times `p` must succeed
* @return A parser that returns a list of results produced by repeatedly applying `p` to the input
* (and that only succeeds if `p` matches exactly `n` times).
*/
def repN[T](num: Int, p: => Parser[T]): Parser[List[T]] =
if (num == 0) success(Nil) else Parser { in =>
val elems = new ListBuffer[T]
val p0 = p // avoid repeatedly re-evaluating by-name parser
@tailrec def applyp(in0: Input): ParseResult[List[T]] =
if (elems.length == num) Success(elems.toList, in0)
else p0(in0) match {
case Success(x, rest) => elems += x ; applyp(rest)
case ns: NoSuccess => ns
}
applyp(in)
}
/** A parser generator for non-empty repetitions.
*
* `rep1sep(p, q)` repeatedly applies `p` interleaved with `q` to parse the
* input, until `p` fails. The parser `p` must succeed at least once.
*
* @param p a `Parser` that is to be applied successively to the input
* @param q a `Parser` that parses the elements that separate the elements parsed by `p`
* (interleaved with `q`)
* @return A parser that returns a list of results produced by repeatedly applying `p` to the input
* (and that only succeeds if `p` matches at least once).
* The results of `p` are collected in a list. The results of `q` are discarded.
*/
def rep1sep[T](p : => Parser[T], q : => Parser[Any]): Parser[List[T]] =
p ~ rep(q ~> p) ^^ {case x~y => x::y}
/** A parser generator that, roughly, generalises the rep1sep generator so
* that `q`, which parses the separator, produces a left-associative
* function that combines the elements it separates.
*
* ''From: J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced Functional Programming,
* volume 925 of Lecture Notes in Computer Science, pages 1--23. Springer, 1995.''
*
* @param p a parser that parses the elements
* @param q a parser that parses the token(s) separating the elements, yielding a left-associative function that
* combines two elements into one
*/
def chainl1[T](p: => Parser[T], q: => Parser[(T, T) => T]): Parser[T]
= chainl1(p, p, q)
/** A parser generator that, roughly, generalises the `rep1sep` generator
* so that `q`, which parses the separator, produces a left-associative
* function that combines the elements it separates.
*
* @param first a parser that parses the first element
* @param p a parser that parses the subsequent elements
* @param q a parser that parses the token(s) separating the elements,
* yielding a left-associative function that combines two elements
* into one
*/
def chainl1[T, U](first: => Parser[T], p: => Parser[U], q: => Parser[(T, U) => T]): Parser[T]
= first ~ rep(q ~ p) ^^ {
case x ~ xs => xs.foldLeft(x: T){case (a, f ~ b) => f(a, b)} // x's type annotation is needed to deal with changed type inference due to SI-5189
}
/** A parser generator that generalises the `rep1sep` generator so that `q`,
* which parses the separator, produces a right-associative function that
* combines the elements it separates. Additionally, the right-most (last)
* element and the left-most combining function have to be supplied.
*
* rep1sep(p: Parser[T], q) corresponds to chainr1(p, q ^^ cons, cons, Nil) (where val cons = (x: T, y: List[T]) => x :: y)
*
* @param p a parser that parses the elements
* @param q a parser that parses the token(s) separating the elements, yielding a right-associative function that
* combines two elements into one
* @param combine the "last" (left-most) combination function to be applied
* @param first the "first" (right-most) element to be combined
*/
def chainr1[T, U](p: => Parser[T], q: => Parser[(T, U) => U], combine: (T, U) => U, first: U): Parser[U]
= p ~ rep(q ~ p) ^^ {
case x ~ xs => (new ~(combine, x) :: xs).foldRight(first){case (f ~ a, b) => f(a, b)}
}
/** A parser generator for optional sub-phrases.
*
* `opt(p)` is a parser that returns `Some(x)` if `p` returns `x` and `None` if `p` fails.
*
* @param p A `Parser` that is tried on the input
* @return a `Parser` that always succeeds: either with the result provided by `p` or
* with the empty result
*/
def opt[T](p: => Parser[T]): Parser[Option[T]] =
p ^^ (x => Some(x)) | success(None)
/** Wrap a parser so that its failures and errors become success and
* vice versa -- it never consumes any input.
*/
def not[T](p: => Parser[T]): Parser[Unit] = Parser { in =>
p(in) match {
case Success(_, _) => Failure("Expected failure", in)
case _ => Success((), in)
}
}
/** A parser generator for guard expressions. The resulting parser will
* fail or succeed just like the one given as parameter but it will not
* consume any input.
*
* @param p a `Parser` that is to be applied to the input
* @return A parser that returns success if and only if `p` succeeds but
* never consumes any input
*/
def guard[T](p: => Parser[T]): Parser[T] = Parser { in =>
p(in) match{
case s@ Success(s1,_) => Success(s1, in)
case e => e
}
}
/** `positioned` decorates a parser's result with the start position of the
* input it consumed.
*
* @param p a `Parser` whose result conforms to `Positional`.
* @return A parser that has the same behaviour as `p`, but which marks its
* result with the start position of the input it consumed,
* if it didn't already have a position.
*/
def positioned[T <: Positional](p: => Parser[T]): Parser[T] = Parser { in =>
p(in) match {
case Success(t, in1) => Success(if (t.pos == NoPosition) t setPos in.pos else t, in1)
case ns: NoSuccess => ns
}
}
/** A parser generator delimiting whole phrases (i.e. programs).
*
* `phrase(p)` succeeds if `p` succeeds and no input is left over after `p`.
*
* @param p the parser that must consume all input for the resulting parser
* to succeed.
* @return a parser that has the same result as `p`, but that only succeeds
* if `p` consumed all the input.
*/
def phrase[T](p: Parser[T]) = new Parser[T] {
def apply(in: Input) = lastNoSuccessVar.withValue(None) {
p(in) match {
case s @ Success(out, in1) =>
if (in1.atEnd)
s
else
lastNoSuccessVar.value filterNot { _.next.pos < in1.pos } getOrElse Failure("end of input expected", in1)
case ns => lastNoSuccessVar.value.getOrElse(ns)
}
}
}
/** Given a concatenation with a repetition (list), move the concatenated element into the list */
def mkList[T] = (_: ~[T, List[T]]) match { case x ~ xs => x :: xs }
/** A wrapper over sequence of matches.
*
* Given `p1: Parser[A]` and `p2: Parser[B]`, a parser composed with
* `p1 ~ p2` will have type `Parser[~[A, B]]`. The successful result
* of the parser can be extracted from this case class.
*
* It also enables pattern matching, so something like this is possible:
*
* {{{
* def concat(p1: Parser[String], p2: Parser[String]): Parser[String] =
* p1 ~ p2 ^^ { case a ~ b => a + b }
* }}}
*/
case class ~[+a, +b](_1: a, _2: b) {
override def toString = "("+ _1 +"~"+ _2 +")"
}
/** A parser whose `~` combinator disallows back-tracking.
*/
trait OnceParser[+T] extends Parser[T] {
override def ~ [U](p: => Parser[U]): Parser[~[T, U]]
= OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~") }
}
}