scala.tools.selectivecps.SelectiveANFTransform.scala Maven / Gradle / Ivy
The newest version!
// $Id$
package scala.tools.selectivecps
import scala.tools.nsc.transform._
import scala.tools.nsc.symtab._
import scala.tools.nsc.plugins._
/**
* In methods marked @cps, explicitly name results of calls to other @cps methods
*/
abstract class SelectiveANFTransform extends PluginComponent with Transform with
TypingTransformers with CPSUtils {
// inherits abstract value `global` and class `Phase` from Transform
import global._ // the global environment
import definitions._ // standard classes and methods
import typer.atOwner // methods to type trees
override def description = "ANF pre-transform for @cps"
/** the following two members override abstract members in Transform */
val phaseName: String = "selectiveanf"
protected def newTransformer(unit: CompilationUnit): Transformer =
new ANFTransformer(unit)
class ANFTransformer(unit: CompilationUnit) extends TypingTransformer(unit) {
implicit val _unit = unit // allow code in CPSUtils.scala to report errors
var cpsAllowed: Boolean = false // detect cps code in places we do not handle (yet)
object RemoveTailReturnsTransformer extends Transformer {
override def transform(tree: Tree): Tree = tree match {
case Block(stms, r @ Return(expr)) =>
treeCopy.Block(tree, stms, expr)
case Block(stms, expr) =>
treeCopy.Block(tree, stms, transform(expr))
case If(cond, r1 @ Return(thenExpr), r2 @ Return(elseExpr)) =>
treeCopy.If(tree, cond, transform(thenExpr), transform(elseExpr))
case If(cond, r1 @ Return(thenExpr), elseExpr) =>
treeCopy.If(tree, cond, transform(thenExpr), transform(elseExpr))
case If(cond, thenExpr, r2 @ Return(elseExpr)) =>
treeCopy.If(tree, cond, transform(thenExpr), transform(elseExpr))
case If(cond, thenExpr, elseExpr) =>
treeCopy.If(tree, cond, transform(thenExpr), transform(elseExpr))
case Try(block, catches, finalizer) =>
treeCopy.Try(tree,
transform(block),
(catches map (t => transform(t))).asInstanceOf[List[CaseDef]],
transform(finalizer))
case CaseDef(pat, guard, r @ Return(expr)) =>
treeCopy.CaseDef(tree, pat, guard, expr)
case CaseDef(pat, guard, body) =>
treeCopy.CaseDef(tree, pat, guard, transform(body))
case Return(_) =>
unit.error(tree.pos, "return expressions in CPS code must be in tail position")
tree
case _ =>
super.transform(tree)
}
}
def removeTailReturns(body: Tree): Tree = {
// support body with single return expression
body match {
case Return(expr) => expr
case _ => RemoveTailReturnsTransformer.transform(body)
}
}
override def transform(tree: Tree): Tree = {
if (!cpsEnabled) return tree
tree match {
// Maybe we should further generalize the transform and move it over
// to the regular Transformer facility. But then, actual and required cps
// state would need more complicated (stateful!) tracking.
// Making the default case use transExpr(tree, None, None) instead of
// calling super.transform() would be a start, but at the moment,
// this would cause infinite recursion. But we could remove the
// ValDef case here.
case dd @ DefDef(mods, name, tparams, vparamss, tpt, rhs0) =>
debuglog("transforming " + dd.symbol)
atOwner(dd.symbol) {
val rhs =
if (cpsParamTypes(tpt.tpe).nonEmpty) removeTailReturns(rhs0)
else rhs0
val rhs1 = transExpr(rhs, None, getExternalAnswerTypeAnn(tpt.tpe))(getExternalAnswerTypeAnn(tpt.tpe).isDefined)
debuglog("result "+rhs1)
debuglog("result is of type "+rhs1.tpe)
treeCopy.DefDef(dd, mods, name, transformTypeDefs(tparams), transformValDefss(vparamss),
transform(tpt), rhs1)
}
case ff @ Function(vparams, body) =>
debuglog("transforming anon function " + ff.symbol)
atOwner(ff.symbol) {
//val body1 = transExpr(body, None, getExternalAnswerTypeAnn(body.tpe))
// need to special case partial functions: if expected type is @cps
// but all cases are pure, then we would transform
// { x => x match { case A => ... }} to
// { x => shiftUnit(x match { case A => ... })}
// which Uncurry cannot handle (see function6.scala)
// thus, we push down the shiftUnit to each of the case bodies
val ext = getExternalAnswerTypeAnn(body.tpe)
val pureBody = getAnswerTypeAnn(body.tpe).isEmpty
implicit val isParentImpure = ext.isDefined
def transformPureMatch(tree: Tree, selector: Tree, cases: List[CaseDef]) = {
val caseVals = cases map { case cd @ CaseDef(pat, guard, body) =>
// if (!hasPlusMarker(body.tpe)) body modifyType (_ withAnnotation newPlusMarker()) // TODO: to avoid warning
val bodyVal = transExpr(body, None, ext) // ??? triggers "cps-transformed unexpectedly" warning in transTailValue
treeCopy.CaseDef(cd, transform(pat), transform(guard), bodyVal)
}
treeCopy.Match(tree, transform(selector), caseVals)
}
def transformPureVirtMatch(body: Block, selDef: ValDef, cases: List[Tree], matchEnd: Tree) = {
val stats = transform(selDef) :: (cases map (transExpr(_, None, ext)))
treeCopy.Block(body, stats, transExpr(matchEnd, None, ext))
}
val body1 = body match {
case Match(selector, cases) if ext.isDefined && pureBody =>
transformPureMatch(body, selector, cases)
// virtpatmat switch
case Block(List(selDef: ValDef), mat@Match(selector, cases)) if ext.isDefined && pureBody =>
treeCopy.Block(body, List(transform(selDef)), transformPureMatch(mat, selector, cases))
// virtpatmat
case b@Block(matchStats@((selDef: ValDef) :: cases), matchEnd) if ext.isDefined && pureBody && (matchStats forall treeInfo.hasSynthCaseSymbol) =>
transformPureVirtMatch(b, selDef, cases, matchEnd)
// virtpatmat that stores the scrut separately -- TODO: can we eliminate this case??
case Block(List(selDef0: ValDef), mat@Block(matchStats@((selDef: ValDef) :: cases), matchEnd)) if ext.isDefined && pureBody && (matchStats forall treeInfo.hasSynthCaseSymbol)=>
treeCopy.Block(body, List(transform(selDef0)), transformPureVirtMatch(mat, selDef, cases, matchEnd))
case _ =>
transExpr(body, None, ext)
}
debuglog("anf result "+body1+"\nresult is of type "+body1.tpe)
treeCopy.Function(ff, transformValDefs(vparams), body1)
}
case vd @ ValDef(mods, name, tpt, rhs) => // object-level valdefs
debuglog("transforming valdef " + vd.symbol)
if (getExternalAnswerTypeAnn(tpt.tpe).isEmpty) {
atOwner(vd.symbol) {
val rhs1 = transExpr(rhs, None, None)
treeCopy.ValDef(vd, mods, name, transform(tpt), rhs1)
}
} else {
unit.error(tree.pos, "cps annotations not allowed on by-value parameters or value definitions")
super.transform(tree)
}
case TypeTree() =>
// circumvent cpsAllowed here
super.transform(tree)
case Apply(_,_) =>
// this allows reset { ... } in object constructors
// it's kind of a hack to put it here (see note above)
transExpr(tree, None, None)
case _ =>
if (hasAnswerTypeAnn(tree.tpe)) {
if (!cpsAllowed) {
if (tree.symbol.isLazy)
unit.error(tree.pos, "implementation restriction: cps annotations not allowed on lazy value definitions")
else
unit.error(tree.pos, "cps code not allowed here / " + tree.getClass + " / " + tree)
}
log(tree)
}
cpsAllowed = false
super.transform(tree)
}
}
def transExpr(tree: Tree, cpsA: CPSInfo, cpsR: CPSInfo)(implicit isAnyParentImpure: Boolean = false): Tree = {
transTailValue(tree, cpsA, cpsR)(cpsR.isDefined || isAnyParentImpure) match {
case (Nil, b) => b
case (a, b) =>
treeCopy.Block(tree, a,b)
}
}
def transArgList(fun: Tree, args: List[Tree], cpsA: CPSInfo)(implicit isAnyParentImpure: Boolean): (List[List[Tree]], List[Tree], CPSInfo) = {
val formals = fun.tpe.paramTypes
val overshoot = args.length - formals.length
var spc: CPSInfo = cpsA
val (stm,expr) = (for ((a,tp) <- args.zip(formals ::: List.fill(overshoot)(NoType))) yield {
tp match {
case TypeRef(_, ByNameParamClass, List(elemtp)) =>
// note that we're not passing just isAnyParentImpure
(Nil, transExpr(a, None, getAnswerTypeAnn(elemtp))(getAnswerTypeAnn(elemtp).isDefined || isAnyParentImpure))
case _ =>
val (valStm, valExpr, valSpc) = transInlineValue(a, spc)
spc = valSpc
(valStm, valExpr)
}
}).unzip
(stm,expr,spc)
}
// precondition: cpsR.isDefined "implies" isAnyParentImpure
def transValue(tree: Tree, cpsA: CPSInfo, cpsR: CPSInfo)(implicit isAnyParentImpure: Boolean): (List[Tree], Tree, CPSInfo) = {
// return value: (stms, expr, spc), where spc is CPSInfo after stms but *before* expr
implicit val pos = tree.pos
tree match {
case Block(stms, expr) =>
val (cpsA2, cpsR2) = (cpsA, linearize(cpsA, getAnswerTypeAnn(tree.tpe))) // tbd
// val (cpsA2, cpsR2) = (None, getAnswerTypeAnn(tree.tpe))
val (a, b) = transBlock(stms, expr, cpsA2, cpsR2)(cpsR2.isDefined || isAnyParentImpure)
val tree1 = (treeCopy.Block(tree, a, b)) // no updateSynthFlag here!!!
(Nil, tree1, cpsA)
case If(cond, thenp, elsep) =>
/* possible situations:
cps before (cpsA)
cps in condition (spc) <-- synth flag set if *only* here!
cps in (one or both) branches */
val (condStats, condVal, spc) = transInlineValue(cond, cpsA)
val (cpsA2, cpsR2) = if (hasSynthMarker(tree.tpe))
(spc, linearize(spc, getAnswerTypeAnn(tree.tpe))) else
(None, getAnswerTypeAnn(tree.tpe)) // if no cps in condition, branches must conform to tree.tpe directly
val thenVal = transExpr(thenp, cpsA2, cpsR2)(cpsR2.isDefined || isAnyParentImpure)
val elseVal = transExpr(elsep, cpsA2, cpsR2)(cpsR2.isDefined || isAnyParentImpure)
// check that then and else parts agree (not necessary any more, but left as sanity check)
if (cpsR.isDefined) {
if (elsep == EmptyTree)
unit.error(tree.pos, "always need else part in cps code")
}
if (hasAnswerTypeAnn(thenVal.tpe) != hasAnswerTypeAnn(elseVal.tpe)) {
unit.error(tree.pos, "then and else parts must both be cps code or neither of them")
}
(condStats, updateSynthFlag(treeCopy.If(tree, condVal, thenVal, elseVal)), spc)
case Match(selector, cases) =>
val (selStats, selVal, spc) = transInlineValue(selector, cpsA)
val (cpsA2, cpsR2) =
if (hasSynthMarker(tree.tpe)) (spc, linearize(spc, getAnswerTypeAnn(tree.tpe)))
else (None, getAnswerTypeAnn(tree.tpe))
val caseVals = cases map { case cd @ CaseDef(pat, guard, body) =>
val bodyVal = transExpr(body, cpsA2, cpsR2)(cpsR2.isDefined || isAnyParentImpure)
treeCopy.CaseDef(cd, transform(pat), transform(guard), bodyVal)
}
(selStats, updateSynthFlag(treeCopy.Match(tree, selVal, caseVals)), spc)
// this is utterly broken: LabelDefs need to be considered together when transforming them to DefDefs:
// suppose a Block {L1; ... ; LN}
// this should become {D1def ; ... ; DNdef ; D1()}
// where D$idef = def L$i(..) = {L$i.body; L${i+1}(..)}
case ldef @ LabelDef(name, params, rhs) =>
// println("trans LABELDEF "+(name, params, tree.tpe, hasAnswerTypeAnn(tree.tpe)))
// TODO why does the labeldef's type have a cpsMinus annotation, whereas the rhs does not? (BYVALmode missing/too much somewhere?)
if (hasAnswerTypeAnn(tree.tpe)) {
// currentOwner.newMethod(name, tree.pos, Flags.SYNTHETIC) setInfo ldef.symbol.info
val sym = ldef.symbol resetFlag Flags.LABEL
val rhs1 = rhs //new TreeSymSubstituter(List(ldef.symbol), List(sym)).transform(rhs)
val rhsVal = transExpr(rhs1, None, getAnswerTypeAnn(tree.tpe))(getAnswerTypeAnn(tree.tpe).isDefined || isAnyParentImpure) changeOwner (currentOwner -> sym)
val stm1 = localTyper.typed(DefDef(sym, rhsVal))
// since virtpatmat does not rely on fall-through, don't call the labels it emits
// transBlock will take care of calling the first label
// calling each labeldef is wrong, since some labels may be jumped over
// we can get away with this for now since the only other labels we emit are for tailcalls/while loops,
// which do not have consecutive labeldefs (and thus fall-through is irrelevant)
if (treeInfo.hasSynthCaseSymbol(ldef)) (List(stm1), localTyper.typed{Literal(Constant(()))}, cpsA)
else {
assert(params.isEmpty, "problem in ANF transforming label with non-empty params "+ ldef)
(List(stm1), localTyper.typed{Apply(Ident(sym), List())}, cpsA)
}
} else {
val rhsVal = transExpr(rhs, None, None)
(Nil, updateSynthFlag(treeCopy.LabelDef(tree, name, params, rhsVal)), cpsA)
}
case Try(block, catches, finalizer) =>
val blockVal = transExpr(block, cpsA, cpsR)
val catchVals = for {
cd @ CaseDef(pat, guard, body) <- catches
bodyVal = transExpr(body, cpsA, cpsR)
} yield {
treeCopy.CaseDef(cd, transform(pat), transform(guard), bodyVal)
}
val finallyVal = transExpr(finalizer, None, None) // for now, no cps in finally
(Nil, updateSynthFlag(treeCopy.Try(tree, blockVal, catchVals, finallyVal)), cpsA)
case Assign(lhs, rhs) =>
// allow cps code in rhs only
val (stms, expr, spc) = transInlineValue(rhs, cpsA)
(stms, updateSynthFlag(treeCopy.Assign(tree, transform(lhs), expr)), spc)
case Return(expr0) =>
if (isAnyParentImpure)
unit.error(tree.pos, "return expression not allowed, since method calls CPS method")
val (stms, expr, spc) = transInlineValue(expr0, cpsA)
(stms, updateSynthFlag(treeCopy.Return(tree, expr)), spc)
case Throw(expr0) =>
val (stms, expr, spc) = transInlineValue(expr0, cpsA)
(stms, updateSynthFlag(treeCopy.Throw(tree, expr)), spc)
case Typed(expr0, tpt) =>
// TODO: should x: A @cps[B,C] have a special meaning?
// type casts used in different ways (see match2.scala, #3199)
val (stms, expr, spc) = transInlineValue(expr0, cpsA)
val tpt1 = if (treeInfo.isWildcardStarArg(tree)) tpt else
treeCopy.TypeTree(tpt).setType(removeAllCPSAnnotations(tpt.tpe))
// (stms, updateSynthFlag(treeCopy.Typed(tree, expr, tpt1)), spc)
(stms, treeCopy.Typed(tree, expr, tpt1).setType(removeAllCPSAnnotations(tree.tpe)), spc)
case TypeApply(fun, args) =>
val (stms, expr, spc) = transInlineValue(fun, cpsA)
(stms, updateSynthFlag(treeCopy.TypeApply(tree, expr, args)), spc)
case Select(qual, name) =>
val (stms, expr, spc) = transInlineValue(qual, cpsA)
(stms, updateSynthFlag(treeCopy.Select(tree, expr, name)), spc)
case Apply(fun, args) =>
val (funStm, funExpr, funSpc) = transInlineValue(fun, cpsA)
val (argStm, argExpr, argSpc) = transArgList(fun, args, funSpc)
(funStm ::: (argStm.flatten), updateSynthFlag(treeCopy.Apply(tree, funExpr, argExpr)),
argSpc)
case _ =>
cpsAllowed = true
(Nil, transform(tree), cpsA)
}
}
// precondition: cpsR.isDefined "implies" isAnyParentImpure
def transTailValue(tree: Tree, cpsA: CPSInfo, cpsR: CPSInfo)(implicit isAnyParentImpure: Boolean): (List[Tree], Tree) = {
val (stms, expr, spc) = transValue(tree, cpsA, cpsR)
val bot = linearize(spc, getAnswerTypeAnn(expr.tpe))(unit, tree.pos)
val plainTpe = removeAllCPSAnnotations(expr.tpe)
if (cpsR.isDefined && !bot.isDefined) {
if (!expr.isEmpty && (expr.tpe.typeSymbol ne NothingClass)) {
// must convert!
debuglog("cps type conversion (has: " + cpsA + "/" + spc + "/" + expr.tpe + ")")
debuglog("cps type conversion (expected: " + cpsR.get + "): " + expr)
if (!hasPlusMarker(expr.tpe))
unit.warning(tree.pos, "expression " + tree + " is cps-transformed unexpectedly")
try {
val Some((a, b)) = cpsR
/* Since shiftUnit is bounded [A,B,C>:B] this may not typecheck
* if C is overly specific. So if !(B <:< C), call shiftUnit0
* instead, which takes only two type arguments.
*/
val conforms = a <:< b
val call = localTyper.typedPos(tree.pos)(
Apply(
TypeApply(
gen.mkAttributedRef( if (conforms) MethShiftUnit else MethShiftUnit0 ),
List(TypeTree(plainTpe), TypeTree(a)) ++ ( if (conforms) List(TypeTree(b)) else Nil )
),
List(expr)
)
)
// This is today's sick/meaningless heuristic for spotting breakdown so
// we don't proceed until stack traces start draping themselves over everything.
// If there are wildcard types in the tree and B == Nothing, something went wrong.
// (I thought WildcardTypes would be enough, but nope. 'reset0 { 0 }' has them.)
//
// Code as simple as reset((_: String).length)
// will crash meaninglessly without this check. See SI-3718.
//
// TODO - obviously this should be done earlier, differently, or with
// a more skilled hand. Most likely, all three.
if ((b.typeSymbol eq NothingClass) && call.tpe.exists(_ eq WildcardType))
unit.error(tree.pos, "cannot cps-transform malformed (possibly in shift/reset placement) expression")
else
return ((stms, call))
}
catch {
case ex:TypeError =>
unit.error(ex.pos, "cannot cps-transform expression " + tree + ": " + ex.msg)
}
}
} else if (!cpsR.isDefined && bot.isDefined) {
// error!
debuglog("cps type error: " + expr)
//println("cps type error: " + expr + "/" + expr.tpe + "/" + getAnswerTypeAnn(expr.tpe))
//println(cpsR + "/" + spc + "/" + bot)
unit.error(tree.pos, "found cps expression in non-cps position")
} else {
// all is well
if (hasPlusMarker(expr.tpe)) {
unit.warning(tree.pos, "expression " + expr + " of type " + expr.tpe + " is not expected to have a cps type")
expr modifyType removeAllCPSAnnotations
}
// TODO: sanity check that types agree
}
(stms, expr)
}
def transInlineValue(tree: Tree, cpsA: CPSInfo)(implicit isAnyParentImpure: Boolean): (List[Tree], Tree, CPSInfo) = {
val (stms, expr, spc) = transValue(tree, cpsA, None) // never required to be cps
getAnswerTypeAnn(expr.tpe) match {
case spcVal @ Some(_) =>
val valueTpe = removeAllCPSAnnotations(expr.tpe)
val sym: Symbol = (
currentOwner.newValue(newTermName(unit.fresh.newName("tmp")), tree.pos, Flags.SYNTHETIC)
setInfo valueTpe
setAnnotations List(AnnotationInfo(MarkerCPSSym.tpe_*, Nil, Nil))
)
expr.changeOwner(currentOwner -> sym)
(stms ::: List(ValDef(sym, expr) setType(NoType)),
Ident(sym) setType(valueTpe) setPos(tree.pos), linearize(spc, spcVal)(unit, tree.pos))
case _ =>
(stms, expr, spc)
}
}
def transInlineStm(stm: Tree, cpsA: CPSInfo)(implicit isAnyParentImpure: Boolean): (List[Tree], CPSInfo) = {
stm match {
// TODO: what about DefDefs?
// TODO: relation to top-level val def?
// TODO: what about lazy vals?
case tree @ ValDef(mods, name, tpt, rhs) =>
val (stms, anfRhs, spc) = atOwner(tree.symbol) { transValue(rhs, cpsA, None) }
val tv = new ChangeOwnerTraverser(tree.symbol, currentOwner)
stms.foreach(tv.traverse(_))
// TODO: symbol might already have annotation. Should check conformance
// TODO: better yet: do without annotations on symbols
val spcVal = getAnswerTypeAnn(anfRhs.tpe)
spcVal foreach (_ => tree.symbol setAnnotations List(AnnotationInfo(MarkerCPSSym.tpe_*, Nil, Nil)))
(stms:::List(treeCopy.ValDef(tree, mods, name, tpt, anfRhs)), linearize(spc, spcVal)(unit, tree.pos))
case _ =>
val (headStms, headExpr, headSpc) = transInlineValue(stm, cpsA)
val valSpc = getAnswerTypeAnn(headExpr.tpe)
(headStms:::List(headExpr), linearize(headSpc, valSpc)(unit, stm.pos))
}
}
// precondition: cpsR.isDefined "implies" isAnyParentImpure
def transBlock(stms: List[Tree], expr: Tree, cpsA: CPSInfo, cpsR: CPSInfo)(implicit isAnyParentImpure: Boolean): (List[Tree], Tree) = {
def rec(currStats: List[Tree], currAns: CPSInfo, accum: List[Tree]): (List[Tree], Tree) =
currStats match {
case Nil =>
val (anfStats, anfExpr) = transTailValue(expr, currAns, cpsR)
(accum ++ anfStats, anfExpr)
case stat :: rest =>
val (stats, nextAns) = transInlineStm(stat, currAns)
rec(rest, nextAns, accum ++ stats)
}
val (anfStats, anfExpr) = rec(stms, cpsA, List())
// println("\nanf-block:\n"+ ((stms :+ expr) mkString ("{", "\n", "}")) +"\nBECAME\n"+ ((anfStats :+ anfExpr) mkString ("{", "\n", "}")))
// println("synth case? "+ (anfStats map (t => (t, t.isDef, treeInfo.hasSynthCaseSymbol(t)))))
// SUPER UGLY HACK: handle virtpatmat-style matches, whose labels have already been turned into DefDefs
if (anfStats.nonEmpty && (anfStats forall (t => !t.isDef || treeInfo.hasSynthCaseSymbol(t)))) {
val (prologue, rest) = (anfStats :+ anfExpr) span (s => !s.isInstanceOf[DefDef]) // find first case
// println("rest: "+ rest)
// val (defs, calls) = rest partition (_.isInstanceOf[DefDef])
if (rest.nonEmpty) {
// the filter drops the ()'s emitted when transValue encountered a LabelDef
val stats = prologue ++ (rest filter (_.isInstanceOf[DefDef])).reverse // ++ calls
// println("REVERSED "+ (stats mkString ("{", "\n", "}")))
(stats, localTyper.typed{Apply(Ident(rest.head.symbol), List())}) // call first label to kick-start the match
} else (anfStats, anfExpr)
} else (anfStats, anfExpr)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy