All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scala.tools.nsc.transform.TailCalls.scala Maven / Gradle / Ivy

/* NSC -- new scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author Iulian Dragos
 */

package scala.tools.nsc
package transform

import symtab.Flags
import Flags.SYNTHETIC

/** Perform tail recursive call elimination.
 *
 *  @author Iulian Dragos
 *  @version 1.0
 */
abstract class TailCalls extends Transform {
  import global._                     // the global environment
  import definitions._                // standard classes and methods
  import typer.{ typed, typedPos }    // methods to type trees

  val phaseName: String = "tailcalls"

  def newTransformer(unit: CompilationUnit): Transformer =
    new TailCallElimination(unit)

  /** Create a new phase which applies transformer */
  override def newPhase(prev: scala.tools.nsc.Phase): StdPhase = new Phase(prev)

  /** The phase defined by this transform */
  class Phase(prev: scala.tools.nsc.Phase) extends StdPhase(prev) {
    def apply(unit: global.CompilationUnit) {
      if (!(settings.debuginfo.value == "notailcalls")) {
        newTransformer(unit).transformUnit(unit);
      }
    }
  }

  import treeInfo.hasSynthCaseSymbol

  /**
   * A Tail Call Transformer
   *
   * @author     Erik Stenman, Iulian Dragos
   * @version    1.1
   *
   * What it does:
   * 

* Finds method calls in tail-position and replaces them with jumps. * A call is in a tail-position if it is the last instruction to be * executed in the body of a method. This is done by recursing over * the trees that may contain calls in tail-position (trees that can't * contain such calls are not transformed). However, they are not that * many. *

*

* Self-recursive calls in tail-position are replaced by jumps to a * label at the beginning of the method. As the JVM provides no way to * jump from a method to another one, non-recursive calls in * tail-position are not optimized. *

*

* A method call is self-recursive if it calls the current method and * the method is final (otherwise, it could * be a call to an overridden method in a subclass). Furthermore, If * the method has type parameters, the call must contain these * parameters as type arguments. Recursive calls on a different instance * are optimized. Since 'this' is not a local variable, a dummy local val * is added and used as a label parameter. The backend knows to load * the corresponding argument in the 'this' (local at index 0). This dummy local * is never used and should be cleand up by dead code elimination (when enabled). *

*

* This phase has been moved before pattern matching to catch more * of the common cases of tail recursive functions. This means that * more cases should be taken into account (like nested function, and * pattern cases). *

*

* If a method contains self-recursive calls, a label is added to at * the beginning of its body and the calls are replaced by jumps to * that label. *

*

* Assumes: Uncurry has been run already, and no multiple * parameter lists exit. *

*/ class TailCallElimination(unit: CompilationUnit) extends Transformer { private val defaultReason = "it contains a recursive call not in tail position" /** Has the label been accessed? Then its symbol is in this set. */ private val accessed = new scala.collection.mutable.HashSet[Symbol]() // `accessed` was stored as boolean in the current context -- this is no longer tenable // with jumps to labels in tailpositions now considered in tailposition, // a downstream context may access the label, and the upstream one will be none the wiser // this is necessary because tail-calls may occur in places where syntactically they seem impossible // (since we now consider jumps to labels that are in tailposition, such as matchEnd(x) {x}) class Context() { /** The current method */ var method: Symbol = NoSymbol // symbols of label defs in this method that are in tail position var tailLabels: Set[Symbol] = Set() /** The current tail-call label */ var label: Symbol = NoSymbol /** The expected type arguments of self-recursive calls */ var tparams: List[Symbol] = Nil /** Tells whether we are in a (possible) tail position */ var tailPos = false /** The reason this method could not be optimized. */ var failReason = defaultReason var failPos = method.pos def this(that: Context) = { this() this.method = that.method this.tparams = that.tparams this.tailPos = that.tailPos this.failPos = that.failPos this.label = that.label this.tailLabels = that.tailLabels } def this(dd: DefDef) { this() this.method = dd.symbol this.tparams = dd.tparams map (_.symbol) this.tailPos = true this.failPos = dd.pos /** Create a new method symbol for the current method and store it in * the label field. */ this.label = { val label = method.newLabel(newTermName("_" + method.name), method.pos) val thisParam = method.newSyntheticValueParam(currentClass.typeOfThis) label setInfo MethodType(thisParam :: method.tpe.params, method.tpe.finalResultType) } if (isEligible) label substInfo (method.tpe.typeParams, tparams) } def enclosingType = method.enclClass.typeOfThis def methodTypeParams = method.tpe.typeParams def isEligible = method.isEffectivelyFinal // @tailrec annotation indicates mandatory transformation def isMandatory = method.hasAnnotation(TailrecClass) && !forMSIL def isTransformed = isEligible && accessed(label) def tailrecFailure() = unit.error(failPos, "could not optimize @tailrec annotated " + method + ": " + failReason) def newThis(pos: Position) = logResult("Creating new `this` during tailcalls\n method: %s\n current class: %s".format( method.ownerChain.mkString(" -> "), currentClass.ownerChain.mkString(" -> "))) { method.newValue(nme.THIS, pos, SYNTHETIC) setInfo currentClass.typeOfThis } override def toString(): String = ( "" + method.name + " tparams: " + tparams + " tailPos: " + tailPos + " Label: " + label + " Label type: " + label.info ) } private var ctx: Context = new Context() private def noTailContext() = { val t = new Context(ctx) t.tailPos = false t } /** Rewrite this tree to contain no tail recursive calls */ def transform(tree: Tree, nctx: Context): Tree = { val saved = ctx ctx = nctx try transform(tree) finally this.ctx = saved } def noTailTransform(tree: Tree): Tree = transform(tree, noTailContext()) def noTailTransforms(trees: List[Tree]) = { val nctx = noTailContext() trees map (t => transform(t, nctx)) } override def transform(tree: Tree): Tree = { /** A possibly polymorphic apply to be considered for tail call transformation. */ def rewriteApply(target: Tree, fun: Tree, targs: List[Tree], args: List[Tree]) = { val receiver: Tree = fun match { case Select(qual, _) => qual case _ => EmptyTree } def receiverIsSame = ctx.enclosingType.widen =:= receiver.tpe.widen def receiverIsSuper = ctx.enclosingType.widen <:< receiver.tpe.widen def isRecursiveCall = (ctx.method eq fun.symbol) && ctx.tailPos def transformArgs = noTailTransforms(args) def matchesTypeArgs = ctx.tparams sameElements (targs map (_.tpe.typeSymbol)) /** Records failure reason in Context for reporting. * Position is unchanged (by default, the method definition.) */ def fail(reason: String) = { debuglog("Cannot rewrite recursive call at: " + fun.pos + " because: " + reason) ctx.failReason = reason treeCopy.Apply(tree, noTailTransform(target), transformArgs) } /** Position of failure is that of the tree being considered. */ def failHere(reason: String) = { ctx.failPos = fun.pos fail(reason) } def rewriteTailCall(recv: Tree): Tree = { debuglog("Rewriting tail recursive call: " + fun.pos.lineContent.trim) accessed += ctx.label typedPos(fun.pos)(Apply(Ident(ctx.label), noTailTransform(recv) :: transformArgs)) } if (!ctx.isEligible) fail("it is neither private nor final so can be overridden") else if (!isRecursiveCall) { if (receiverIsSuper) failHere("it contains a recursive call targeting supertype " + receiver.tpe) else failHere(defaultReason) } else if (!matchesTypeArgs) failHere("it is called recursively with different type arguments") else if (receiver == EmptyTree) rewriteTailCall(This(currentClass)) else if (forMSIL) fail("it cannot be optimized on MSIL") else if (!receiverIsSame) failHere("it changes type of 'this' on a polymorphic recursive call") else rewriteTailCall(receiver) } tree match { case ValDef(_, _, _, _) => if (tree.symbol.isLazy && tree.symbol.hasAnnotation(TailrecClass)) unit.error(tree.pos, "lazy vals are not tailcall transformed") super.transform(tree) case dd @ DefDef(_, _, _, vparamss0, _, rhs0) if !dd.symbol.hasAccessorFlag => val newCtx = new Context(dd) def isRecursiveCall(t: Tree) = { val sym = t.symbol (sym != null) && { sym.isMethod && (dd.symbol.name == sym.name) && (dd.symbol.enclClass isSubClass sym.enclClass) } } if (newCtx.isMandatory) { if (!rhs0.exists(isRecursiveCall)) { unit.error(tree.pos, "@tailrec annotated method contains no recursive calls") } } // labels are local to a method, so only traverse the rhs of a defdef val collectTailPosLabels = new TailPosLabelsTraverser collectTailPosLabels traverse rhs0 newCtx.tailLabels = collectTailPosLabels.tailLabels.toSet debuglog("Considering " + dd.name + " for tailcalls, with labels in tailpos: "+ newCtx.tailLabels) val newRHS = transform(rhs0, newCtx) deriveDefDef(tree){rhs => if (newCtx.isTransformed) { /** We have rewritten the tree, but there may be nested recursive calls remaining. * If @tailrec is given we need to fail those now. */ if (newCtx.isMandatory) { for (t @ Apply(fn, _) <- newRHS ; if fn.symbol == newCtx.method) { newCtx.failPos = t.pos newCtx.tailrecFailure() } } val newThis = newCtx.newThis(tree.pos) val vpSyms = vparamss0.flatten map (_.symbol) typedPos(tree.pos)(Block( List(ValDef(newThis, This(currentClass))), LabelDef(newCtx.label, newThis :: vpSyms, newRHS) )) } else { if (newCtx.isMandatory && newRHS.exists(isRecursiveCall)) newCtx.tailrecFailure() newRHS } } // a translated match case Block(stats, expr) if stats forall hasSynthCaseSymbol => // the assumption is once we encounter a case, the remainder of the block will consist of cases // the prologue may be empty, usually it is the valdef that stores the scrut val (prologue, cases) = stats span (s => !s.isInstanceOf[LabelDef]) treeCopy.Block(tree, noTailTransforms(prologue) ++ transformTrees(cases), transform(expr) ) // a translated casedef case LabelDef(_, _, body) if hasSynthCaseSymbol(tree) => deriveLabelDef(tree)(transform) case Block(stats, expr) => treeCopy.Block(tree, noTailTransforms(stats), transform(expr) ) case CaseDef(pat, guard, body) => deriveCaseDef(tree)(transform) case If(cond, thenp, elsep) => treeCopy.If(tree, cond, transform(thenp), transform(elsep) ) case Match(selector, cases) => treeCopy.Match(tree, noTailTransform(selector), transformTrees(cases).asInstanceOf[List[CaseDef]] ) case Try(block, catches, finalizer @ EmptyTree) => // SI-1672 Catches are in tail position when there is no finalizer treeCopy.Try(tree, noTailTransform(block), transformTrees(catches).asInstanceOf[List[CaseDef]], EmptyTree ) case Try(block, catches, finalizer) => // no calls inside a try are in tail position if there is a finalizer, but keep recursing for nested functions treeCopy.Try(tree, noTailTransform(block), noTailTransforms(catches).asInstanceOf[List[CaseDef]], noTailTransform(finalizer) ) case Apply(tapply @ TypeApply(fun, targs), vargs) => rewriteApply(tapply, fun, targs, vargs) case Apply(fun, args) => if (fun.symbol == Boolean_or || fun.symbol == Boolean_and) treeCopy.Apply(tree, fun, transformTrees(args)) else if (fun.symbol.isLabel && args.nonEmpty && args.tail.isEmpty && ctx.tailLabels(fun.symbol)) { // this is to detect tailcalls in translated matches // it's a one-argument call to a label that is in a tailposition and that looks like label(x) {x} // thus, the argument to the call is in tailposition val saved = ctx.tailPos ctx.tailPos = true debuglog("in tailpos label: "+ args.head) val res = transform(args.head) ctx.tailPos = saved if (res ne args.head) { // we tail-called -- TODO: shield from false-positives where we rewrite but don't tail-call // must leave the jump to the original tailpos-label (fun)! // there might be *a* tailcall *in* res, but it doesn't mean res *always* tailcalls treeCopy.Apply(tree, fun, List(res)) } else rewriteApply(fun, fun, Nil, args) } else rewriteApply(fun, fun, Nil, args) case Alternative(_) | Star(_) | Bind(_, _) => sys.error("We should've never gotten inside a pattern") case Select(qual, name) => treeCopy.Select(tree, noTailTransform(qual), name) case EmptyTree | Super(_, _) | This(_) | Ident(_) | Literal(_) | Function(_, _) | TypeTree() => tree case _ => super.transform(tree) } } } // collect the LabelDefs (generated by the pattern matcher) in a DefDef that are in tail position // the labels all look like: matchEnd(x) {x} // then, in a forward jump `matchEnd(expr)`, `expr` is considered in tail position (and the matchEnd jump is replaced by the jump generated by expr) class TailPosLabelsTraverser extends Traverser { val tailLabels = new scala.collection.mutable.HashSet[Symbol]() private var maybeTail: Boolean = true // since we start in the rhs of a DefDef def traverse(tree: Tree, maybeTailNew: Boolean): Unit = { val saved = maybeTail maybeTail = maybeTailNew try traverse(tree) finally maybeTail = saved } def traverseNoTail(tree: Tree) = traverse(tree, false) def traverseTreesNoTail(trees: List[Tree]) = trees foreach traverseNoTail override def traverse(tree: Tree) = tree match { // we're looking for label(x){x} in tail position, since that means `a` is in tail position in a call `label(a)` case LabelDef(_, List(arg), body@Ident(_)) if arg.symbol == body.symbol => if (maybeTail) tailLabels += tree.symbol // jumps to matchEnd are transparent; need this case for nested matches // (and the translated match case below does things in reverse for this case's sake) case Apply(fun, arg :: Nil) if hasSynthCaseSymbol(fun) && tailLabels(fun.symbol) => traverse(arg) case Apply(fun, args) if (fun.symbol == Boolean_or || fun.symbol == Boolean_and) => traverseTrees(args) // a translated casedef case LabelDef(_, _, body) if hasSynthCaseSymbol(tree) => traverse(body) // a translated match case Block(stats, expr) if stats forall hasSynthCaseSymbol => // the assumption is once we encounter a case, the remainder of the block will consist of cases // the prologue may be empty, usually it is the valdef that stores the scrut val (prologue, cases) = stats span (s => !s.isInstanceOf[LabelDef]) traverse(expr) traverseTrees(cases.reverse) // reverse so that we enter the matchEnd LabelDef before we see jumps to it traverseTreesNoTail(prologue) // selector (may be absent) case CaseDef(pat, guard, body) => traverse(body) case Match(selector, cases) => traverseNoTail(selector) traverseTrees(cases) case dd @ DefDef(_, _, _, _, _, _) => // we are run per-method case Block(stats, expr) => traverseTreesNoTail(stats) traverse(expr) case If(cond, thenp, elsep) => traverse(thenp) traverse(elsep) case Try(block, catches, finalizer) => traverseNoTail(block) traverseTreesNoTail(catches) traverseNoTail(finalizer) case Apply(_, _) | EmptyTree | Super(_, _) | This(_) | Select(_, _) | Ident(_) | Literal(_) | Function(_, _) | TypeTree() => case _ => super.traverse(tree) } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy