scala.PartialFunction.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scala-library Show documentation
Show all versions of scala-library Show documentation
Standard library for the Scala Programming Language
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2002-2013, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
package scala
/** A partial function of type `PartialFunction[A, B]` is a unary function
* where the domain does not necessarily include all values of type `A`.
* The function `isDefinedAt` allows to test dynamically if a value is in
* the domain of the function.
*
* Even if `isDefinedAt` returns true for an `a: A`, calling `apply(a)` may
* still throw an exception, so the following code is legal:
*
* {{{
* val f: PartialFunction[Int, Any] = { case _ => 1/0 }
* }}}
*
* The main distinction between `PartialFunction` and [[scala.Function1]] is
* that the user of a `PartialFunction` may choose to do something different
* with input that is declared to be outside its domain. For example:
*
* {{{
* val sample = 1 to 10
* val isEven: PartialFunction[Int, String] = {
* case x if x % 2 == 0 => x+" is even"
* }
*
* // the method collect can use isDefinedAt to select which members to collect
* val evenNumbers = sample collect isEven
*
* val isOdd: PartialFunction[Int, String] = {
* case x if x % 2 == 1 => x+" is odd"
* }
*
* // the method orElse allows chaining another partial function to handle
* // input outside the declared domain
* val numbers = sample map (isEven orElse isOdd)
* }}}
*
*
* @author Martin Odersky, Pavel Pavlov, Adriaan Moors
* @version 1.0, 16/07/2003
*/
trait PartialFunction[-A, +B] extends (A => B) { self =>
import PartialFunction._
/** Checks if a value is contained in the function's domain.
*
* @param x the value to test
* @return `'''true'''`, iff `x` is in the domain of this function, `'''false'''` otherwise.
*/
def isDefinedAt(x: A): Boolean
/** Composes this partial function with a fallback partial function which
* gets applied where this partial function is not defined.
*
* @param that the fallback function
* @tparam A1 the argument type of the fallback function
* @tparam B1 the result type of the fallback function
* @return a partial function which has as domain the union of the domains
* of this partial function and `that`. The resulting partial function
* takes `x` to `this(x)` where `this` is defined, and to `that(x)` where it is not.
*/
def orElse[A1 <: A, B1 >: B](that: PartialFunction[A1, B1]): PartialFunction[A1, B1] =
new OrElse[A1, B1] (this, that)
//TODO: why not overload it with orElse(that: F1): F1?
/** Composes this partial function with a transformation function that
* gets applied to results of this partial function.
* @param k the transformation function
* @tparam C the result type of the transformation function.
* @return a partial function with the same domain as this partial function, which maps
* arguments `x` to `k(this(x))`.
*/
override def andThen[C](k: B => C): PartialFunction[A, C] =
new AndThen[A, B, C] (this, k)
/** Turns this partial function into a plain function returning an `Option` result.
* @see Function.unlift
* @return a function that takes an argument `x` to `Some(this(x))` if `this`
* is defined for `x`, and to `None` otherwise.
*/
def lift: A => Option[B] = new Lifted(this)
/** Applies this partial function to the given argument when it is contained in the function domain.
* Applies fallback function where this partial function is not defined.
*
* Note that expression `pf.applyOrElse(x, default)` is equivalent to
* {{{ if(pf isDefinedAt x) pf(x) else default(x) }}}
* except that `applyOrElse` method can be implemented more efficiently.
* For all partial function literals compiler generates `applyOrElse` implementation which
* avoids double evaluation of pattern matchers and guards.
* This makes `applyOrElse` the basis for the efficient implementation for many operations and scenarios, such as:
*
* - combining partial functions into `orElse`/`andThen` chains does not lead to
* excessive `apply`/`isDefinedAt` evaluation
* - `lift` and `unlift` do not evaluate source functions twice on each invocation
* - `runWith` allows efficient imperative-style combining of partial functions
* with conditionally applied actions
*
* For non-literal partial function classes with nontrivial `isDefinedAt` method
* it is recommended to override `applyOrElse` with custom implementation that avoids
* double `isDefinedAt` evaluation. This may result in better performance
* and more predictable behavior w.r.t. side effects.
*
* @param x the function argument
* @param default the fallback function
* @return the result of this function or fallback function application.
* @since 2.10
*/
def applyOrElse[A1 <: A, B1 >: B](x: A1, default: A1 => B1): B1 =
if (isDefinedAt(x)) apply(x) else default(x)
/** Composes this partial function with an action function which
* gets applied to results of this partial function.
* The action function is invoked only for its side effects; its result is ignored.
*
* Note that expression `pf.runWith(action)(x)` is equivalent to
* {{{ if(pf isDefinedAt x) { action(pf(x)); true } else false }}}
* except that `runWith` is implemented via `applyOrElse` and thus potentially more efficient.
* Using `runWith` avoids double evaluation of pattern matchers and guards for partial function literals.
* @see `applyOrElse`.
*
* @param action the action function
* @return a function which maps arguments `x` to `isDefinedAt(x)`. The resulting function
* runs `action(this(x))` where `this` is defined.
* @since 2.10
*/
def runWith[U](action: B => U): A => Boolean = { x =>
val z = applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) { action(z); true } else false
}
}
/** A few handy operations which leverage the extra bit of information
* available in partial functions. Examples:
* {{{
* import PartialFunction._
*
* def strangeConditional(other: Any): Boolean = cond(other) {
* case x: String if x == "abc" || x == "def" => true
* case x: Int => true
* }
* def onlyInt(v: Any): Option[Int] = condOpt(v) { case x: Int => x }
* }}}
*
* @author Paul Phillips
* @since 2.8
*/
object PartialFunction {
/** Composite function produced by `PartialFunction#orElse` method
*/
private class OrElse[-A, +B] (f1: PartialFunction[A, B], f2: PartialFunction[A, B]) extends PartialFunction[A, B] {
def isDefinedAt(x: A) = f1.isDefinedAt(x) || f2.isDefinedAt(x)
def apply(x: A): B = f1.applyOrElse(x, f2)
override def applyOrElse[A1 <: A, B1 >: B](x: A1, default: A1 => B1): B1 = {
val z = f1.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) z else f2.applyOrElse(x, default)
}
override def orElse[A1 <: A, B1 >: B](that: PartialFunction[A1, B1]) =
new OrElse[A1, B1] (f1, f2 orElse that)
override def andThen[C](k: B => C) =
new OrElse[A, C] (f1 andThen k, f2 andThen k)
}
/** Composite function produced by `PartialFunction#andThen` method
*/
private class AndThen[-A, B, +C] (pf: PartialFunction[A, B], k: B => C) extends PartialFunction[A, C] {
def isDefinedAt(x: A) = pf.isDefinedAt(x)
def apply(x: A): C = k(pf(x))
override def applyOrElse[A1 <: A, C1 >: C](x: A1, default: A1 => C1): C1 = {
val z = pf.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) k(z) else default(x)
}
}
/** To implement patterns like {{{ if(pf isDefinedAt x) f1(pf(x)) else f2(x) }}} efficiently
* the following trick is used:
*
* To avoid double evaluation of pattern matchers & guards `applyOrElse` method is used here
* instead of `isDefinedAt`/`apply` pair.
*
* After call to `applyOrElse` we need both the function result it returned and
* the fact if the function's argument was contained in its domain. The only degree of freedom we have here
* to achieve this goal is tweaking with the continuation argument (`default`) of `applyOrElse` method.
* The obvious way is to throw an exception from `default` function and to catch it after
* calling `applyOrElse` but I consider this somewhat inefficient.
*
* I know only one way how you can do this task efficiently: `default` function should return unique marker object
* which never may be returned by any other (regular/partial) function. This way after calling `applyOrElse` you need
* just one reference comparison to distinguish if `pf isDefined x` or not.
*
* This correctly interacts with specialization as return type of `applyOrElse`
* (which is parameterized upper bound) can never be specialized.
*
* Here `fallback_pf` is used as both unique marker object and special fallback function that returns it.
*/
private[this] val fallback_pf: PartialFunction[Any, Any] = { case _ => fallback_pf }
private def checkFallback[B] = fallback_pf.asInstanceOf[PartialFunction[Any, B]]
private def fallbackOccurred[B](x: B) = (fallback_pf eq x.asInstanceOf[AnyRef])
private class Lifted[-A, +B] (val pf: PartialFunction[A, B])
extends scala.runtime.AbstractFunction1[A, Option[B]] {
def apply(x: A): Option[B] = {
val z = pf.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) Some(z) else None
}
}
private class Unlifted[A, B] (f: A => Option[B]) extends scala.runtime.AbstractPartialFunction[A, B] {
def isDefinedAt(x: A): Boolean = f(x).isDefined
override def applyOrElse[A1 <: A, B1 >: B](x: A1, default: A1 => B1): B1 = {
val z = f(x)
if (!z.isEmpty) z.get else default(x)
}
override def lift = f
}
private[scala] def unlifted[A, B](f: A => Option[B]): PartialFunction[A, B] = f match {
case lf: Lifted[A, B] => lf.pf
case ff => new Unlifted(ff)
}
/** Converts ordinary function to partial one
* @since 2.10
*/
def apply[A, B](f: A => B): PartialFunction[A, B] = { case x => f(x) }
private[this] val constFalse: Any => Boolean = { _ => false}
private[this] val empty_pf: PartialFunction[Any, Nothing] = new PartialFunction[Any, Nothing] {
def isDefinedAt(x: Any) = false
def apply(x: Any) = throw new MatchError(x)
override def orElse[A1, B1](that: PartialFunction[A1, B1]) = that
override def andThen[C](k: Nothing => C) = this
override val lift = (x: Any) => None
override def runWith[U](action: Nothing => U) = constFalse
}
/** The partial function with empty domain.
* Any attempt to invoke empty partial function leads to throwing [[scala.MatchError]] exception.
* @since 2.10
*/
def empty[A, B] : PartialFunction[A, B] = empty_pf
/** Creates a Boolean test based on a value and a partial function.
* It behaves like a 'match' statement with an implied 'case _ => false'
* following the supplied cases.
*
* @param x the value to test
* @param pf the partial function
* @return true, iff `x` is in the domain of `pf` and `pf(x) == true`.
*/
def cond[T](x: T)(pf: PartialFunction[T, Boolean]): Boolean = pf.applyOrElse(x, constFalse)
/** Transforms a PartialFunction[T, U] `pf` into Function1[T, Option[U]] `f`
* whose result is `Some(x)` if the argument is in `pf`'s domain and `None`
* otherwise, and applies it to the value `x`. In effect, it is a
* `'''match'''` statement which wraps all case results in `Some(_)` and
* adds `'''case''' _ => None` to the end.
*
* @param x the value to test
* @param pf the PartialFunction[T, U]
* @return `Some(pf(x))` if `pf isDefinedAt x`, `None` otherwise.
*/
def condOpt[T,U](x: T)(pf: PartialFunction[T, U]): Option[U] = pf.lift(x)
}