scala.Predef.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scala-library Show documentation
Show all versions of scala-library Show documentation
Standard library for the Scala Programming Language
The newest version!
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2002-2013, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
package scala
import scala.collection.{ mutable, immutable, generic }
import immutable.StringOps
import mutable.ArrayOps
import generic.CanBuildFrom
import scala.annotation.{ elidable, implicitNotFound }
import scala.annotation.elidable.ASSERTION
import scala.language.{implicitConversions, existentials}
import scala.io.StdIn
/** The `Predef` object provides definitions that are accessible in all Scala
* compilation units without explicit qualification.
*
* === Commonly Used Types ===
* Predef provides type aliases for types which are commonly used, such as
* the immutable collection types [[scala.collection.immutable.Map]],
* [[scala.collection.immutable.Set]], and the [[scala.collection.immutable.List]]
* constructors ([[scala.collection.immutable.::]] and
* [[scala.collection.immutable.Nil]]).
*
* === Console I/O ===
* Predef provides a number of simple functions for console I/O, such as
* `print`, `println`, `readLine`, `readInt`, etc. These functions are all
* aliases of the functions provided by [[scala.Console]].
*
* === Assertions ===
*
* A set of `assert` functions are provided for use as a way to document
* and dynamically check invariants in code. `assert` statements can be elided
* at runtime by providing the command line argument `-Xdisable-assertions` to
* the `scala` command.
*
* Variants of `assert` intended for use with static analysis tools are also
* provided: `assume`, `require` and `ensuring`. `require` and `ensuring` are
* intended for use as a means of design-by-contract style specification
* of pre- and post-conditions on functions, with the intention that these
* specifications could be consumed by a static analysis tool. For instance,
*
* {{{
* def addNaturals(nats: List[Int]): Int = {
* require(nats forall (_ >= 0), "List contains negative numbers")
* nats.foldLeft(0)(_ + _)
* } ensuring(_ >= 0)
* }}}
*
* The declaration of `addNaturals` states that the list of integers passed should
* only contain natural numbers (i.e. non-negative), and that the result returned
* will also be natural. `require` is distinct from `assert` in that if the
* condition fails, then the caller of the function is to blame rather than a
* logical error having been made within `addNaturals` itself. `ensures` is a
* form of `assert` that declares the guarantee the function is providing with
* regards to it's return value.
*
* === Implicit Conversions ===
* A number of commonly applied implicit conversions are also defined here, and
* in the parent type [[scala.LowPriorityImplicits]]. Implicit conversions
* are provided for the "widening" of numeric values, for instance, converting a
* Short value to a Long value as required, and to add additional higher-order
* functions to Array values. These are described in more detail in the documentation of [[scala.Array]].
*/
object Predef extends LowPriorityImplicits with DeprecatedPredef with EmbeddedControls {
/**
* Retrieve the runtime representation of a class type. `classOf[T]` is equivalent to
* the class literal `T.class` in Java.
*
* @example {{{
* val listClass = classOf[List[_]]
* // listClass is java.lang.Class[List[_]] = class scala.collection.immutable.List
*
* val mapIntString = classOf[Map[Int,String]]
* // mapIntString is java.lang.Class[Map[Int,String]] = interface scala.collection.immutable.Map
* }}}
*/
def classOf[T]: Class[T] = null // This is a stub method. The actual implementation is filled in by the compiler.
type String = java.lang.String
type Class[T] = java.lang.Class[T]
// miscelleaneous -----------------------------------------------------
scala.`package` // to force scala package object to be seen.
scala.collection.immutable.List // to force Nil, :: to be seen.
type Function[-A, +B] = Function1[A, B]
type Map[A, +B] = immutable.Map[A, B]
type Set[A] = immutable.Set[A]
val Map = immutable.Map
val Set = immutable.Set
// Manifest types, companions, and incantations for summoning
@annotation.implicitNotFound(msg = "No ClassManifest available for ${T}.")
@deprecated("Use `scala.reflect.ClassTag` instead", "2.10.0")
type ClassManifest[T] = scala.reflect.ClassManifest[T]
// TODO undeprecated until Scala reflection becomes non-experimental
// @deprecated("This notion doesn't have a corresponding concept in 2.10, because scala.reflect.runtime.universe.TypeTag can capture arbitrary types. Use type tags instead of manifests, and there will be no need in opt manifests.", "2.10.0")
type OptManifest[T] = scala.reflect.OptManifest[T]
@annotation.implicitNotFound(msg = "No Manifest available for ${T}.")
// TODO undeprecated until Scala reflection becomes non-experimental
// @deprecated("Use `scala.reflect.ClassTag` (to capture erasures) or scala.reflect.runtime.universe.TypeTag (to capture types) or both instead", "2.10.0")
type Manifest[T] = scala.reflect.Manifest[T]
@deprecated("Use `scala.reflect.ClassTag` instead", "2.10.0")
val ClassManifest = scala.reflect.ClassManifest
// TODO undeprecated until Scala reflection becomes non-experimental
// @deprecated("Use `scala.reflect.ClassTag` (to capture erasures) or scala.reflect.runtime.universe.TypeTag (to capture types) or both instead", "2.10.0")
val Manifest = scala.reflect.Manifest
// TODO undeprecated until Scala reflection becomes non-experimental
// @deprecated("This notion doesn't have a corresponding concept in 2.10, because scala.reflect.runtime.universe.TypeTag can capture arbitrary types. Use type tags instead of manifests, and there will be no need in opt manifests.", "2.10.0")
val NoManifest = scala.reflect.NoManifest
// TODO undeprecated until Scala reflection becomes non-experimental
// @deprecated("Use scala.reflect.classTag[T] and scala.reflect.runtime.universe.typeTag[T] instead", "2.10.0")
def manifest[T](implicit m: Manifest[T]) = m
@deprecated("Use scala.reflect.classTag[T] instead", "2.10.0")
def classManifest[T](implicit m: ClassManifest[T]) = m
// TODO undeprecated until Scala reflection becomes non-experimental
// @deprecated("This notion doesn't have a corresponding concept in 2.10, because scala.reflect.runtime.universe.TypeTag can capture arbitrary types. Use type tags instead of manifests, and there will be no need in opt manifests.", "2.10.0")
def optManifest[T](implicit m: OptManifest[T]) = m
// Minor variations on identity functions
def identity[A](x: A): A = x // @see `conforms` for the implicit version
@inline def implicitly[T](implicit e: T) = e // for summoning implicit values from the nether world -- TODO: when dependent method types are on by default, give this result type `e.type`, so that inliner has better chance of knowing which method to inline in calls like `implicitly[MatchingStrategy[Option]].zero`
@inline def locally[T](x: T): T = x // to communicate intent and avoid unmoored statements
// errors and asserts -------------------------------------------------
// !!! Remove this when possible - ideally for 2.11.
// We are stuck with it a while longer because sbt's compiler interface
// still calls it as of 0.12.2.
@deprecated("Use `sys.error(message)` instead", "2.9.0")
def error(message: String): Nothing = sys.error(message)
/** Tests an expression, throwing an `AssertionError` if false.
* Calls to this method will not be generated if `-Xelide-below`
* is at least `ASSERTION`.
*
* @see elidable
* @param assertion the expression to test
*/
@elidable(ASSERTION)
def assert(assertion: Boolean) {
if (!assertion)
throw new java.lang.AssertionError("assertion failed")
}
/** Tests an expression, throwing an `AssertionError` if false.
* Calls to this method will not be generated if `-Xelide-below`
* is at least `ASSERTION`.
*
* @see elidable
* @param assertion the expression to test
* @param message a String to include in the failure message
*/
@elidable(ASSERTION) @inline
final def assert(assertion: Boolean, message: => Any) {
if (!assertion)
throw new java.lang.AssertionError("assertion failed: "+ message)
}
/** Tests an expression, throwing an `AssertionError` if false.
* This method differs from assert only in the intent expressed:
* assert contains a predicate which needs to be proven, while
* assume contains an axiom for a static checker. Calls to this method
* will not be generated if `-Xelide-below` is at least `ASSERTION`.
*
* @see elidable
* @param assumption the expression to test
*/
@elidable(ASSERTION)
def assume(assumption: Boolean) {
if (!assumption)
throw new java.lang.AssertionError("assumption failed")
}
/** Tests an expression, throwing an `AssertionError` if false.
* This method differs from assert only in the intent expressed:
* assert contains a predicate which needs to be proven, while
* assume contains an axiom for a static checker. Calls to this method
* will not be generated if `-Xelide-below` is at least `ASSERTION`.
*
* @see elidable
* @param assumption the expression to test
* @param message a String to include in the failure message
*/
@elidable(ASSERTION) @inline
final def assume(assumption: Boolean, message: => Any) {
if (!assumption)
throw new java.lang.AssertionError("assumption failed: "+ message)
}
/** Tests an expression, throwing an `IllegalArgumentException` if false.
* This method is similar to `assert`, but blames the caller of the method
* for violating the condition.
*
* @param requirement the expression to test
*/
def require(requirement: Boolean) {
if (!requirement)
throw new IllegalArgumentException("requirement failed")
}
/** Tests an expression, throwing an `IllegalArgumentException` if false.
* This method is similar to `assert`, but blames the caller of the method
* for violating the condition.
*
* @param requirement the expression to test
* @param message a String to include in the failure message
*/
@inline final def require(requirement: Boolean, message: => Any) {
if (!requirement)
throw new IllegalArgumentException("requirement failed: "+ message)
}
/** `???` can be used for marking methods that remain to be implemented.
* @throws A `NotImplementedError`
*/
def ??? : Nothing = throw new NotImplementedError
// tupling ------------------------------------------------------------
@deprecated("Use built-in tuple syntax or Tuple2 instead", "2.11.0")
type Pair[+A, +B] = Tuple2[A, B]
@deprecated("Use built-in tuple syntax or Tuple2 instead", "2.11.0")
object Pair {
def apply[A, B](x: A, y: B) = Tuple2(x, y)
def unapply[A, B](x: Tuple2[A, B]): Option[Tuple2[A, B]] = Some(x)
}
@deprecated("Use built-in tuple syntax or Tuple3 instead", "2.11.0")
type Triple[+A, +B, +C] = Tuple3[A, B, C]
@deprecated("Use built-in tuple syntax or Tuple3 instead", "2.11.0")
object Triple {
def apply[A, B, C](x: A, y: B, z: C) = Tuple3(x, y, z)
def unapply[A, B, C](x: Tuple3[A, B, C]): Option[Tuple3[A, B, C]] = Some(x)
}
// implicit classes -----------------------------------------------------
implicit final class ArrowAssoc[A](private val self: A) extends AnyVal {
@inline def -> [B](y: B): Tuple2[A, B] = Tuple2(self, y)
def →[B](y: B): Tuple2[A, B] = ->(y)
}
implicit final class Ensuring[A](private val self: A) extends AnyVal {
def ensuring(cond: Boolean): A = { assert(cond); self }
def ensuring(cond: Boolean, msg: => Any): A = { assert(cond, msg); self }
def ensuring(cond: A => Boolean): A = { assert(cond(self)); self }
def ensuring(cond: A => Boolean, msg: => Any): A = { assert(cond(self), msg); self }
}
implicit final class StringFormat[A](private val self: A) extends AnyVal {
/** Returns string formatted according to given `format` string.
* Format strings are as for `String.format`
* (@see java.lang.String.format).
*/
@inline def formatted(fmtstr: String): String = fmtstr format self
}
// TODO: remove, only needed for binary compatibility of 2.11.0-RC1 with 2.11.0-M8
// note that `private[scala]` becomes `public` in bytecode
private[scala] final class StringAdd[A](private val self: A) extends AnyVal {
def +(other: String): String = String.valueOf(self) + other
}
private[scala] def StringAdd(x: Any): Any = new StringAdd(x)
// SI-8229 retaining the pre 2.11 name for source compatibility in shadowing this implicit
implicit final class any2stringadd[A](private val self: A) extends AnyVal {
def +(other: String): String = String.valueOf(self) + other
}
implicit final class RichException(private val self: Throwable) extends AnyVal {
import scala.compat.Platform.EOL
@deprecated("Use Throwable#getStackTrace", "2.11.0") def getStackTraceString = self.getStackTrace().mkString("", EOL, EOL)
}
implicit final class SeqCharSequence(val __sequenceOfChars: scala.collection.IndexedSeq[Char]) extends CharSequence {
def length: Int = __sequenceOfChars.length
def charAt(index: Int): Char = __sequenceOfChars(index)
def subSequence(start: Int, end: Int): CharSequence = new SeqCharSequence(__sequenceOfChars.slice(start, end))
override def toString = __sequenceOfChars mkString ""
}
implicit final class ArrayCharSequence(val __arrayOfChars: Array[Char]) extends CharSequence {
def length: Int = __arrayOfChars.length
def charAt(index: Int): Char = __arrayOfChars(index)
def subSequence(start: Int, end: Int): CharSequence = new runtime.ArrayCharSequence(__arrayOfChars, start, end)
override def toString = __arrayOfChars mkString ""
}
implicit val StringCanBuildFrom: CanBuildFrom[String, Char, String] = new CanBuildFrom[String, Char, String] {
def apply(from: String) = apply()
def apply() = mutable.StringBuilder.newBuilder
}
@inline implicit def augmentString(x: String): StringOps = new StringOps(x)
@inline implicit def unaugmentString(x: StringOps): String = x.repr
// printing and reading -----------------------------------------------
def print(x: Any) = Console.print(x)
def println() = Console.println()
def println(x: Any) = Console.println(x)
def printf(text: String, xs: Any*) = Console.print(text.format(xs: _*))
// views --------------------------------------------------------------
implicit def tuple2ToZippedOps[T1, T2](x: (T1, T2)) = new runtime.Tuple2Zipped.Ops(x)
implicit def tuple3ToZippedOps[T1, T2, T3](x: (T1, T2, T3)) = new runtime.Tuple3Zipped.Ops(x)
implicit def genericArrayOps[T](xs: Array[T]): ArrayOps[T] = (xs match {
case x: Array[AnyRef] => refArrayOps[AnyRef](x)
case x: Array[Boolean] => booleanArrayOps(x)
case x: Array[Byte] => byteArrayOps(x)
case x: Array[Char] => charArrayOps(x)
case x: Array[Double] => doubleArrayOps(x)
case x: Array[Float] => floatArrayOps(x)
case x: Array[Int] => intArrayOps(x)
case x: Array[Long] => longArrayOps(x)
case x: Array[Short] => shortArrayOps(x)
case x: Array[Unit] => unitArrayOps(x)
case null => null
}).asInstanceOf[ArrayOps[T]]
implicit def booleanArrayOps(xs: Array[Boolean]): ArrayOps[Boolean] = new ArrayOps.ofBoolean(xs)
implicit def byteArrayOps(xs: Array[Byte]): ArrayOps[Byte] = new ArrayOps.ofByte(xs)
implicit def charArrayOps(xs: Array[Char]): ArrayOps[Char] = new ArrayOps.ofChar(xs)
implicit def doubleArrayOps(xs: Array[Double]): ArrayOps[Double] = new ArrayOps.ofDouble(xs)
implicit def floatArrayOps(xs: Array[Float]): ArrayOps[Float] = new ArrayOps.ofFloat(xs)
implicit def intArrayOps(xs: Array[Int]): ArrayOps[Int] = new ArrayOps.ofInt(xs)
implicit def longArrayOps(xs: Array[Long]): ArrayOps[Long] = new ArrayOps.ofLong(xs)
implicit def refArrayOps[T <: AnyRef](xs: Array[T]): ArrayOps[T] = new ArrayOps.ofRef[T](xs)
implicit def shortArrayOps(xs: Array[Short]): ArrayOps[Short] = new ArrayOps.ofShort(xs)
implicit def unitArrayOps(xs: Array[Unit]): ArrayOps[Unit] = new ArrayOps.ofUnit(xs)
// "Autoboxing" and "Autounboxing" ---------------------------------------------------
implicit def byte2Byte(x: Byte) = java.lang.Byte.valueOf(x)
implicit def short2Short(x: Short) = java.lang.Short.valueOf(x)
implicit def char2Character(x: Char) = java.lang.Character.valueOf(x)
implicit def int2Integer(x: Int) = java.lang.Integer.valueOf(x)
implicit def long2Long(x: Long) = java.lang.Long.valueOf(x)
implicit def float2Float(x: Float) = java.lang.Float.valueOf(x)
implicit def double2Double(x: Double) = java.lang.Double.valueOf(x)
implicit def boolean2Boolean(x: Boolean) = java.lang.Boolean.valueOf(x)
implicit def Byte2byte(x: java.lang.Byte): Byte = x.byteValue
implicit def Short2short(x: java.lang.Short): Short = x.shortValue
implicit def Character2char(x: java.lang.Character): Char = x.charValue
implicit def Integer2int(x: java.lang.Integer): Int = x.intValue
implicit def Long2long(x: java.lang.Long): Long = x.longValue
implicit def Float2float(x: java.lang.Float): Float = x.floatValue
implicit def Double2double(x: java.lang.Double): Double = x.doubleValue
implicit def Boolean2boolean(x: java.lang.Boolean): Boolean = x.booleanValue
// Type Constraints --------------------------------------------------------------
/**
* An instance of `A <:< B` witnesses that `A` is a subtype of `B`.
* Requiring an implicit argument of the type `A <:< B` encodes
* the generalized constraint `A <: B`.
*
* @note we need a new type constructor `<:<` and evidence `conforms`,
* as reusing `Function1` and `identity` leads to ambiguities in
* case of type errors (`any2stringadd` is inferred)
*
* To constrain any abstract type T that's in scope in a method's
* argument list (not just the method's own type parameters) simply
* add an implicit argument of type `T <:< U`, where `U` is the required
* upper bound; or for lower-bounds, use: `L <:< T`, where `L` is the
* required lower bound.
*
* In part contributed by Jason Zaugg.
*/
@implicitNotFound(msg = "Cannot prove that ${From} <:< ${To}.")
sealed abstract class <:<[-From, +To] extends (From => To) with Serializable
private[this] final val singleton_<:< = new <:<[Any,Any] { def apply(x: Any): Any = x }
// The dollar prefix is to dodge accidental shadowing of this method
// by a user-defined method of the same name (SI-7788).
// The collections rely on this method.
implicit def $conforms[A]: A <:< A = singleton_<:<.asInstanceOf[A <:< A]
@deprecated("Use `implicitly[T <:< U]` or `identity` instead.", "2.11.0")
def conforms[A]: A <:< A = $conforms[A]
/** An instance of `A =:= B` witnesses that the types `A` and `B` are equal.
*
* @see `<:<` for expressing subtyping constraints
*/
@implicitNotFound(msg = "Cannot prove that ${From} =:= ${To}.")
sealed abstract class =:=[From, To] extends (From => To) with Serializable
private[this] final val singleton_=:= = new =:=[Any,Any] { def apply(x: Any): Any = x }
object =:= {
implicit def tpEquals[A]: A =:= A = singleton_=:=.asInstanceOf[A =:= A]
}
/** A type for which there is always an implicit value.
* @see [[scala.Array$]], method `fallbackCanBuildFrom`
*/
class DummyImplicit
object DummyImplicit {
/** An implicit value yielding a `DummyImplicit`.
* @see [[scala.Array$]], method `fallbackCanBuildFrom`
*/
implicit def dummyImplicit: DummyImplicit = new DummyImplicit
}
}
private[scala] trait DeprecatedPredef {
self: Predef.type =>
// Deprecated stubs for any who may have been calling these methods directly.
@deprecated("Use `ArrowAssoc`", "2.11.0") def any2ArrowAssoc[A](x: A): ArrowAssoc[A] = new ArrowAssoc(x)
@deprecated("Use `Ensuring`", "2.11.0") def any2Ensuring[A](x: A): Ensuring[A] = new Ensuring(x)
@deprecated("Use `StringFormat`", "2.11.0") def any2stringfmt(x: Any): StringFormat[Any] = new StringFormat(x)
@deprecated("Use `Throwable` directly", "2.11.0") def exceptionWrapper(exc: Throwable) = new RichException(exc)
@deprecated("Use `SeqCharSequence`", "2.11.0") def seqToCharSequence(xs: scala.collection.IndexedSeq[Char]): CharSequence = new SeqCharSequence(xs)
@deprecated("Use `ArrayCharSequence`", "2.11.0") def arrayToCharSequence(xs: Array[Char]): CharSequence = new ArrayCharSequence(xs)
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readLine(): String = StdIn.readLine()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readLine(text: String, args: Any*) = StdIn.readLine(text, args: _*)
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readBoolean() = StdIn.readBoolean()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readByte() = StdIn.readByte()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readShort() = StdIn.readShort()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readChar() = StdIn.readChar()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readInt() = StdIn.readInt()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readLong() = StdIn.readLong()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readFloat() = StdIn.readFloat()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readDouble() = StdIn.readDouble()
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readf(format: String) = StdIn.readf(format)
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readf1(format: String) = StdIn.readf1(format)
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readf2(format: String) = StdIn.readf2(format)
@deprecated("Use the method in `scala.io.StdIn`", "2.11.0") def readf3(format: String) = StdIn.readf3(format)
}
/** The `LowPriorityImplicits` class provides implicit values that
* are valid in all Scala compilation units without explicit qualification,
* but that are partially overridden by higher-priority conversions in object
* `Predef`.
*
* @author Martin Odersky
* @since 2.8
*/
// SI-7335 Parents of Predef are defined in the same compilation unit to avoid
// cyclic reference errors compiling the standard library *without* a previously
// compiled copy on the classpath.
private[scala] abstract class LowPriorityImplicits extends EmbeddedControls {
import mutable.WrappedArray
import immutable.WrappedString
/** We prefer the java.lang.* boxed types to these wrappers in
* any potential conflicts. Conflicts do exist because the wrappers
* need to implement ScalaNumber in order to have a symmetric equals
* method, but that implies implementing java.lang.Number as well.
*
* Note - these are inlined because they are value classes, but
* the call to xxxWrapper is not eliminated even though it does nothing.
* Even inlined, every call site does a no-op retrieval of Predef's MODULE$
* because maybe loading Predef has side effects!
*/
@inline implicit def byteWrapper(x: Byte) = new runtime.RichByte(x)
@inline implicit def shortWrapper(x: Short) = new runtime.RichShort(x)
@inline implicit def intWrapper(x: Int) = new runtime.RichInt(x)
@inline implicit def charWrapper(c: Char) = new runtime.RichChar(c)
@inline implicit def longWrapper(x: Long) = new runtime.RichLong(x)
@inline implicit def floatWrapper(x: Float) = new runtime.RichFloat(x)
@inline implicit def doubleWrapper(x: Double) = new runtime.RichDouble(x)
@inline implicit def booleanWrapper(x: Boolean) = new runtime.RichBoolean(x)
implicit def genericWrapArray[T](xs: Array[T]): WrappedArray[T] =
if (xs eq null) null
else WrappedArray.make(xs)
// Since the JVM thinks arrays are covariant, one 0-length Array[AnyRef]
// is as good as another for all T <: AnyRef. Instead of creating 100,000,000
// unique ones by way of this implicit, let's share one.
implicit def wrapRefArray[T <: AnyRef](xs: Array[T]): WrappedArray[T] = {
if (xs eq null) null
else if (xs.length == 0) WrappedArray.empty[T]
else new WrappedArray.ofRef[T](xs)
}
implicit def wrapIntArray(xs: Array[Int]): WrappedArray[Int] = if (xs ne null) new WrappedArray.ofInt(xs) else null
implicit def wrapDoubleArray(xs: Array[Double]): WrappedArray[Double] = if (xs ne null) new WrappedArray.ofDouble(xs) else null
implicit def wrapLongArray(xs: Array[Long]): WrappedArray[Long] = if (xs ne null) new WrappedArray.ofLong(xs) else null
implicit def wrapFloatArray(xs: Array[Float]): WrappedArray[Float] = if (xs ne null) new WrappedArray.ofFloat(xs) else null
implicit def wrapCharArray(xs: Array[Char]): WrappedArray[Char] = if (xs ne null) new WrappedArray.ofChar(xs) else null
implicit def wrapByteArray(xs: Array[Byte]): WrappedArray[Byte] = if (xs ne null) new WrappedArray.ofByte(xs) else null
implicit def wrapShortArray(xs: Array[Short]): WrappedArray[Short] = if (xs ne null) new WrappedArray.ofShort(xs) else null
implicit def wrapBooleanArray(xs: Array[Boolean]): WrappedArray[Boolean] = if (xs ne null) new WrappedArray.ofBoolean(xs) else null
implicit def wrapUnitArray(xs: Array[Unit]): WrappedArray[Unit] = if (xs ne null) new WrappedArray.ofUnit(xs) else null
implicit def wrapString(s: String): WrappedString = if (s ne null) new WrappedString(s) else null
implicit def unwrapString(ws: WrappedString): String = if (ws ne null) ws.self else null
implicit def fallbackStringCanBuildFrom[T]: CanBuildFrom[String, T, immutable.IndexedSeq[T]] =
new CanBuildFrom[String, T, immutable.IndexedSeq[T]] {
def apply(from: String) = immutable.IndexedSeq.newBuilder[T]
def apply() = immutable.IndexedSeq.newBuilder[T]
}
}
/** The EmbeddedControls
object provides method definitions
* where calls to the methods are treated by the compiler in a special way.
* The reason to express these calls as methods is to give embedded DSLs a chance
* to provide their own definitions and thereby override the standard
* interpretation of the compiler.
*
* Example: When faces with an `if` construct, the parser will generate
*
* a method call: __ifThenElse(cond, thenp, elsep)
*
* This method call will be bound to an implementation based on normal rules of scoping.
* If it binds to the standard one in this trait, the type checker will
* replace it by an `If` tree node. If not, the call will be left as it is
* and a staging or interpreting DSL can take over.
*
* @NOTE: This is experimental.
* None of the above will happen unless you compile with -Yvirtualize.
*/
trait EmbeddedControls {
/** Note why types are by-value
*/
def __whileDo(cond: Boolean, body: Unit): Unit =
throw new UnsupportedOperationException("__whileDo")
def __doWhile(body: Unit, cond: Boolean): Unit =
throw new UnsupportedOperationException("__doWhile")
def __ifThenElse[T](cond: => Boolean, thenp: => T, elsep: => T): T =
throw new UnsupportedOperationException("__ifThenElse")
def __newVar[T](init: T): T =
throw new UnsupportedOperationException("__newVar")
def __assign[T](lhs: T, rhs: T): Unit =
throw new UnsupportedOperationException("__assign")
def __return(expr: Any): Nothing =
throw new UnsupportedOperationException("__return")
def __equal(expr1: Any, expr2: Any): Boolean =
throw new UnsupportedOperationException("__equal")
/** Struct is a marker trait used to indicate that `new C { ... }` should be reified.
*
* Selections on the result `e` of the reified object creation, `e.x_i`,
* are treated specially, as outlined below.
*
* If there's a type constructor `Rep` (of kind `* -> *`) so that `C <:< Struct`,
* the expression `new C { (val x_i: T_i = v_i)* }` is turned into
* the call `__new(("x_i", (self_i: Rep[C{ (val x_i: T_i')* }]) => v_i')*)`,
* which is typed with expected type `Rep[C{ (val x_i: T_i')* }]`
*
* For all i,
* - there must be some T_i' so that T_i = Rep[T_i'] -- or, if that previous equality is not unifiable, T_i = T_i'
* - the v_i' result from retyping v_i with expected type Rep[T_i'],
* after replacing `this` by a fresh variable `self_i` (with type `Rep[C{ (val x_i: T_i')* }]`)
*
* This assumes there is a method in scope similar to: `def __new[T](args: (String, Rep[T] => Rep[_])*): Rep[T]`
*
* When a selection `e.x_i` does not type check according to the normal typing rules,
* and `e` has type `Rep[C{ (val x_i: T_i')* }]` (where `C` meets the criteria outlined above),
* `e.x_i` is turned into `e.selectDynamic[T_i]("x_i")`
*/
trait Struct
/**
* given `def OptiML[R](b: => R) = new Scope[OptiML, OptiMLExp, R](b)`
*
* `OptiML { body }` is expanded to:
*
* trait DSLprog$ extends OptiML {
* def apply = body
* }
* (new DSLprog$ with OptiMLExp): OptiML with OptiMLExp
*
*
*/
class Scope[Interface, Implementation, Result](body: => Result)
}
trait ProxyControlsBase extends EmbeddedControls {
type TransparentProxy[+T]
def __forward[A,B,C](self: TransparentProxy[A], method: String, x: TransparentProxy[B]*): TransparentProxy[C] =
throw new UnsupportedOperationException("__forward")
}
trait ProxyControls extends ProxyControlsBase
© 2015 - 2024 Weber Informatics LLC | Privacy Policy