scala.actors.threadpool.Executors Maven / Gradle / Ivy
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package scala.actors.threadpool;
//import edu.emory.mathcs.backport.java.util.*;
import java.security.AccessControlContext;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction;
import java.security.AccessControlException;
import java.util.List;
import java.util.Collection;
/**
* Factory and utility methods for {@link Executor}, {@link
* ExecutorService}, {@link ScheduledExecutorService}, {@link
* ThreadFactory}, and {@link Callable} classes defined in this
* package. This class supports the following kinds of methods:
*
*
* - Methods that create and return an {@link ExecutorService}
* set up with commonly useful configuration settings.
*
- Methods that create and return a {@link ScheduledExecutorService}
* set up with commonly useful configuration settings.
*
- Methods that create and return a "wrapped" ExecutorService, that
* disables reconfiguration by making implementation-specific methods
* inaccessible.
*
- Methods that create and return a {@link ThreadFactory}
* that sets newly created threads to a known state.
*
- Methods that create and return a {@link Callable}
* out of other closure-like forms, so they can be used
* in execution methods requiring Callable.
*
*
* @since 1.5
* @author Doug Lea
*/
public class Executors {
/**
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue. At any point, at most
* nThreads threads will be active processing tasks.
* If additional tasks are submitted when all threads are active,
* they will wait in the queue until a thread is available.
* If any thread terminates due to a failure during execution
* prior to shutdown, a new one will take its place if needed to
* execute subsequent tasks. The threads in the pool will exist
* until it is explicitly {@link ExecutorService#shutdown shutdown}.
*
* @param nThreads the number of threads in the pool
* @return the newly created thread pool
* @throws IllegalArgumentException if nThreads <= 0
*/
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue());
}
/**
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue, using the provided
* ThreadFactory to create new threads when needed. At any point,
* at most nThreads threads will be active processing
* tasks. If additional tasks are submitted when all threads are
* active, they will wait in the queue until a thread is
* available. If any thread terminates due to a failure during
* execution prior to shutdown, a new one will take its place if
* needed to execute subsequent tasks. The threads in the pool will
* exist until it is explicitly {@link ExecutorService#shutdown
* shutdown}.
*
* @param nThreads the number of threads in the pool
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
* @throws IllegalArgumentException if nThreads <= 0
*/
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(),
threadFactory);
}
/**
* Creates an Executor that uses a single worker thread operating
* off an unbounded queue. (Note however that if this single
* thread terminates due to a failure during execution prior to
* shutdown, a new one will take its place if needed to execute
* subsequent tasks.) Tasks are guaranteed to execute
* sequentially, and no more than one task will be active at any
* given time. Unlike the otherwise equivalent
* newFixedThreadPool(1) the returned executor is
* guaranteed not to be reconfigurable to use additional threads.
*
* @return the newly created single-threaded Executor
*/
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue()));
}
/**
* Creates an Executor that uses a single worker thread operating
* off an unbounded queue, and uses the provided ThreadFactory to
* create a new thread when needed. Unlike the otherwise
* equivalent newFixedThreadPool(1, threadFactory) the
* returned executor is guaranteed not to be reconfigurable to use
* additional threads.
*
* @param threadFactory the factory to use when creating new
* threads
*
* @return the newly created single-threaded Executor
* @throws NullPointerException if threadFactory is null
*/
public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(),
threadFactory));
}
/**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available. These pools will typically improve the performance
* of programs that execute many short-lived asynchronous tasks.
* Calls to execute will reuse previously constructed
* threads if available. If no existing thread is available, a new
* thread will be created and added to the pool. Threads that have
* not been used for sixty seconds are terminated and removed from
* the cache. Thus, a pool that remains idle for long enough will
* not consume any resources. Note that pools with similar
* properties but different details (for example, timeout parameters)
* may be created using {@link ThreadPoolExecutor} constructors.
*
* @return the newly created thread pool
*/
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue());
}
/**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available, and uses the provided
* ThreadFactory to create new threads when needed.
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
*/
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue(),
threadFactory);
}
/**
* Creates a single-threaded executor that can schedule commands
* to run after a given delay, or to execute periodically.
* (Note however that if this single
* thread terminates due to a failure during execution prior to
* shutdown, a new one will take its place if needed to execute
* subsequent tasks.) Tasks are guaranteed to execute
* sequentially, and no more than one task will be active at any
* given time. Unlike the otherwise equivalent
* newScheduledThreadPool(1) the returned executor is
* guaranteed not to be reconfigurable to use additional threads.
* @return the newly created scheduled executor
*/
/* public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1));
}
*/
/**
* Creates a single-threaded executor that can schedule commands
* to run after a given delay, or to execute periodically. (Note
* however that if this single thread terminates due to a failure
* during execution prior to shutdown, a new one will take its
* place if needed to execute subsequent tasks.) Tasks are
* guaranteed to execute sequentially, and no more than one task
* will be active at any given time. Unlike the otherwise
* equivalent newScheduledThreadPool(1, threadFactory)
* the returned executor is guaranteed not to be reconfigurable to
* use additional threads.
* @param threadFactory the factory to use when creating new
* threads
* @return a newly created scheduled executor
* @throws NullPointerException if threadFactory is null
*/
/* public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1, threadFactory));
}
*/
/**
* Creates a thread pool that can schedule commands to run after a
* given delay, or to execute periodically.
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle.
* @return a newly created scheduled thread pool
* @throws IllegalArgumentException if corePoolSize < 0
*/
/* public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
*/
/**
* Creates a thread pool that can schedule commands to run after a
* given delay, or to execute periodically.
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle.
* @param threadFactory the factory to use when the executor
* creates a new thread.
* @return a newly created scheduled thread pool
* @throws IllegalArgumentException if corePoolSize < 0
* @throws NullPointerException if threadFactory is null
*/
/* public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
*/
/**
* Returns an object that delegates all defined {@link
* ExecutorService} methods to the given executor, but not any
* other methods that might otherwise be accessible using
* casts. This provides a way to safely "freeze" configuration and
* disallow tuning of a given concrete implementation.
* @param executor the underlying implementation
* @return an ExecutorService instance
* @throws NullPointerException if executor null
*/
public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
if (executor == null)
throw new NullPointerException();
return new DelegatedExecutorService(executor);
}
/**
* Returns an object that delegates all defined {@link
* ScheduledExecutorService} methods to the given executor, but
* not any other methods that might otherwise be accessible using
* casts. This provides a way to safely "freeze" configuration and
* disallow tuning of a given concrete implementation.
* @param executor the underlying implementation
* @return a ScheduledExecutorService instance
* @throws NullPointerException if executor null
*/
/* public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {
if (executor == null)
throw new NullPointerException();
return new DelegatedScheduledExecutorService(executor);
}
*/
/**
* Returns a default thread factory used to create new threads.
* This factory creates all new threads used by an Executor in the
* same {@link ThreadGroup}. If there is a {@link
* java.lang.SecurityManager}, it uses the group of {@link
* System#getSecurityManager}, else the group of the thread
* invoking this defaultThreadFactory method. Each new
* thread is created as a non-daemon thread with priority set to
* the smaller of Thread.NORM_PRIORITY and the maximum
* priority permitted in the thread group. New threads have names
* accessible via {@link Thread#getName} of
* pool-N-thread-M, where N is the sequence
* number of this factory, and M is the sequence number
* of the thread created by this factory.
* @return a thread factory
*/
public static ThreadFactory defaultThreadFactory() {
return new DefaultThreadFactory();
}
/**
* Returns a thread factory used to create new threads that
* have the same permissions as the current thread.
* This factory creates threads with the same settings as {@link
* Executors#defaultThreadFactory}, additionally setting the
* AccessControlContext and contextClassLoader of new threads to
* be the same as the thread invoking this
* privilegedThreadFactory method. A new
* privilegedThreadFactory can be created within an
* {@link AccessController#doPrivileged} action setting the
* current thread's access control context to create threads with
* the selected permission settings holding within that action.
*
* Note that while tasks running within such threads will have
* the same access control and class loader settings as the
* current thread, they need not have the same {@link
* java.lang.ThreadLocal} or {@link
* java.lang.InheritableThreadLocal} values. If necessary,
* particular values of thread locals can be set or reset before
* any task runs in {@link ThreadPoolExecutor} subclasses using
* {@link ThreadPoolExecutor#beforeExecute}. Also, if it is
* necessary to initialize worker threads to have the same
* InheritableThreadLocal settings as some other designated
* thread, you can create a custom ThreadFactory in which that
* thread waits for and services requests to create others that
* will inherit its values.
*
* @return a thread factory
* @throws AccessControlException if the current access control
* context does not have permission to both get and set context
* class loader.
*/
public static ThreadFactory privilegedThreadFactory() {
return new PrivilegedThreadFactory();
}
/**
* Returns a {@link Callable} object that, when
* called, runs the given task and returns the given result. This
* can be useful when applying methods requiring a
* Callable to an otherwise resultless action.
* @param task the task to run
* @param result the result to return
* @return a callable object
* @throws NullPointerException if task null
*/
public static Callable callable(Runnable task, Object result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter(task, result);
}
/**
* Returns a {@link Callable} object that, when
* called, runs the given task and returns null.
* @param task the task to run
* @return a callable object
* @throws NullPointerException if task null
*/
public static Callable callable(Runnable task) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter(task, null);
}
/**
* Returns a {@link Callable} object that, when
* called, runs the given privileged action and returns its result.
* @param action the privileged action to run
* @return a callable object
* @throws NullPointerException if action null
*/
public static Callable callable(final PrivilegedAction action) {
if (action == null)
throw new NullPointerException();
return new Callable() {
public Object call() { return action.run(); }};
}
/**
* Returns a {@link Callable} object that, when
* called, runs the given privileged exception action and returns
* its result.
* @param action the privileged exception action to run
* @return a callable object
* @throws NullPointerException if action null
*/
public static Callable callable(final PrivilegedExceptionAction action) {
if (action == null)
throw new NullPointerException();
return new Callable() {
public Object call() throws Exception { return action.run(); }};
}
/**
* Returns a {@link Callable} object that will, when
* called, execute the given callable under the current
* access control context. This method should normally be
* invoked within an {@link AccessController#doPrivileged} action
* to create callables that will, if possible, execute under the
* selected permission settings holding within that action; or if
* not possible, throw an associated {@link
* AccessControlException}.
* @param callable the underlying task
* @return a callable object
* @throws NullPointerException if callable null
*
*/
public static Callable privilegedCallable(Callable callable) {
if (callable == null)
throw new NullPointerException();
return new PrivilegedCallable(callable);
}
/**
* Returns a {@link Callable} object that will, when
* called, execute the given callable under the current
* access control context, with the current context class loader
* as the context class loader. This method should normally be
* invoked within an {@link AccessController#doPrivileged} action
* to create callables that will, if possible, execute under the
* selected permission settings holding within that action; or if
* not possible, throw an associated {@link
* AccessControlException}.
* @param callable the underlying task
*
* @return a callable object
* @throws NullPointerException if callable null
* @throws AccessControlException if the current access control
* context does not have permission to both set and get context
* class loader.
*/
public static Callable privilegedCallableUsingCurrentClassLoader(Callable callable) {
if (callable == null)
throw new NullPointerException();
return new PrivilegedCallableUsingCurrentClassLoader(callable);
}
// Non-public classes supporting the public methods
/**
* A callable that runs given task and returns given result
*/
static final class RunnableAdapter implements Callable {
final Runnable task;
final Object result;
RunnableAdapter(Runnable task, Object result) {
this.task = task;
this.result = result;
}
public Object call() {
task.run();
return result;
}
}
/**
* A callable that runs under established access control settings
*/
static final class PrivilegedCallable implements Callable {
private final AccessControlContext acc;
private final Callable task;
private Object result;
private Exception exception;
PrivilegedCallable(Callable task) {
this.task = task;
this.acc = AccessController.getContext();
}
public Object call() throws Exception {
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
try {
result = task.call();
} catch (Exception ex) {
exception = ex;
}
return null;
}
}, acc);
if (exception != null)
throw exception;
else
return result;
}
}
/**
* A callable that runs under established access control settings and
* current ClassLoader
*/
static final class PrivilegedCallableUsingCurrentClassLoader implements Callable {
private final ClassLoader ccl;
private final AccessControlContext acc;
private final Callable task;
private Object result;
private Exception exception;
PrivilegedCallableUsingCurrentClassLoader(Callable task) {
this.task = task;
this.ccl = Thread.currentThread().getContextClassLoader();
this.acc = AccessController.getContext();
acc.checkPermission(new RuntimePermission("getContextClassLoader"));
acc.checkPermission(new RuntimePermission("setContextClassLoader"));
}
public Object call() throws Exception {
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
ClassLoader savedcl = null;
Thread t = Thread.currentThread();
try {
ClassLoader cl = t.getContextClassLoader();
if (ccl != cl) {
t.setContextClassLoader(ccl);
savedcl = cl;
}
result = task.call();
} catch (Exception ex) {
exception = ex;
} finally {
if (savedcl != null)
t.setContextClassLoader(savedcl);
}
return null;
}
}, acc);
if (exception != null)
throw exception;
else
return result;
}
}
/**
* The default thread factory
*/
static class DefaultThreadFactory implements ThreadFactory {
static final AtomicInteger poolNumber = new AtomicInteger(1);
final ThreadGroup group;
final AtomicInteger threadNumber = new AtomicInteger(1);
final String namePrefix;
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null)? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
}
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}
/**
* Thread factory capturing access control and class loader
*/
static class PrivilegedThreadFactory extends DefaultThreadFactory {
private final ClassLoader ccl;
private final AccessControlContext acc;
PrivilegedThreadFactory() {
super();
this.ccl = Thread.currentThread().getContextClassLoader();
this.acc = AccessController.getContext();
acc.checkPermission(new RuntimePermission("setContextClassLoader"));
}
public Thread newThread(final Runnable r) {
return super.newThread(new Runnable() {
public void run() {
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
Thread.currentThread().setContextClassLoader(ccl);
r.run();
return null;
}
}, acc);
}
});
}
}
/**
* A wrapper class that exposes only the ExecutorService methods
* of an ExecutorService implementation.
*/
static class DelegatedExecutorService extends AbstractExecutorService {
private final ExecutorService e;
DelegatedExecutorService(ExecutorService executor) { e = executor; }
public void execute(Runnable command) { e.execute(command); }
public void shutdown() { e.shutdown(); }
public List shutdownNow() { return e.shutdownNow(); }
public boolean isShutdown() { return e.isShutdown(); }
public boolean isTerminated() { return e.isTerminated(); }
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
return e.awaitTermination(timeout, unit);
}
public Future submit(Runnable task) {
return e.submit(task);
}
public Future submit(Callable task) {
return e.submit(task);
}
public Future submit(Runnable task, Object result) {
return e.submit(task, result);
}
public List invokeAll(Collection tasks)
throws InterruptedException {
return e.invokeAll(tasks);
}
public List invokeAll(Collection tasks,
long timeout, TimeUnit unit)
throws InterruptedException {
return e.invokeAll(tasks, timeout, unit);
}
public Object invokeAny(Collection tasks)
throws InterruptedException, ExecutionException {
return e.invokeAny(tasks);
}
public Object invokeAny(Collection tasks,
long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
return e.invokeAny(tasks, timeout, unit);
}
}
static class FinalizableDelegatedExecutorService
extends DelegatedExecutorService {
FinalizableDelegatedExecutorService(ExecutorService executor) {
super(executor);
}
protected void finalize() {
super.shutdown();
}
}
/**
* A wrapper class that exposes only the ScheduledExecutorService
* methods of a ScheduledExecutorService implementation.
*/
/* static class DelegatedScheduledExecutorService
extends DelegatedExecutorService
implements ScheduledExecutorService {
private final ScheduledExecutorService e;
DelegatedScheduledExecutorService(ScheduledExecutorService executor) {
super(executor);
e = executor;
}
public ScheduledFuture schedule(Runnable command, long delay, TimeUnit unit) {
return e.schedule(command, delay, unit);
}
public ScheduledFuture schedule(Callable callable, long delay, TimeUnit unit) {
return e.schedule(callable, delay, unit);
}
public ScheduledFuture scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
return e.scheduleAtFixedRate(command, initialDelay, period, unit);
}
public ScheduledFuture scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);
}
}
*/
/** Cannot instantiate. */
private Executors() {}
}