scala.actors.threadpool.ThreadPoolExecutor Maven / Gradle / Ivy
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package scala.actors.threadpool;
import scala.actors.threadpool.locks.*;
import scala.actors.threadpool.helpers.Utils;
import java.util.HashSet;
import java.util.List;
import java.util.Iterator;
import java.util.ArrayList;
import java.util.ConcurrentModificationException;
/**
* An {@link ExecutorService} that executes each submitted task using
* one of possibly several pooled threads, normally configured
* using {@link Executors} factory methods.
*
* Thread pools address two different problems: they usually
* provide improved performance when executing large numbers of
* asynchronous tasks, due to reduced per-task invocation overhead,
* and they provide a means of bounding and managing the resources,
* including threads, consumed when executing a collection of tasks.
* Each {@code ThreadPoolExecutor} also maintains some basic
* statistics, such as the number of completed tasks.
*
*
To be useful across a wide range of contexts, this class
* provides many adjustable parameters and extensibility
* hooks. However, programmers are urged to use the more convenient
* {@link Executors} factory methods {@link
* Executors#newCachedThreadPool} (unbounded thread pool, with
* automatic thread reclamation), {@link Executors#newFixedThreadPool}
* (fixed size thread pool) and {@link
* Executors#newSingleThreadExecutor} (single background thread), that
* preconfigure settings for the most common usage
* scenarios. Otherwise, use the following guide when manually
* configuring and tuning this class:
*
*
*
* - Core and maximum pool sizes
*
* - A {@code ThreadPoolExecutor} will automatically adjust the
* pool size (see {@link #getPoolSize})
* according to the bounds set by
* corePoolSize (see {@link #getCorePoolSize}) and
* maximumPoolSize (see {@link #getMaximumPoolSize}).
*
* When a new task is submitted in method {@link #execute}, and fewer
* than corePoolSize threads are running, a new thread is created to
* handle the request, even if other worker threads are idle. If
* there are more than corePoolSize but less than maximumPoolSize
* threads running, a new thread will be created only if the queue is
* full. By setting corePoolSize and maximumPoolSize the same, you
* create a fixed-size thread pool. By setting maximumPoolSize to an
* essentially unbounded value such as {@code Integer.MAX_VALUE}, you
* allow the pool to accommodate an arbitrary number of concurrent
* tasks. Most typically, core and maximum pool sizes are set only
* upon construction, but they may also be changed dynamically using
* {@link #setCorePoolSize} and {@link #setMaximumPoolSize}.
*
* - On-demand construction
*
* - By default, even core threads are initially created and
* started only when new tasks arrive, but this can be overridden
* dynamically using method {@link #prestartCoreThread} or {@link
* #prestartAllCoreThreads}. You probably want to prestart threads if
* you construct the pool with a non-empty queue.
*
* - Creating new threads
*
* - New threads are created using a {@link ThreadFactory}. If not
* otherwise specified, a {@link Executors#defaultThreadFactory} is
* used, that creates threads to all be in the same {@link
* ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
* non-daemon status. By supplying a different ThreadFactory, you can
* alter the thread's name, thread group, priority, daemon status,
* etc. If a {@code ThreadFactory} fails to create a thread when asked
* by returning null from {@code newThread}, the executor will
* continue, but might not be able to execute any tasks. Threads
* should possess the "modifyThread" {@code RuntimePermission}. If
* worker threads or other threads using the pool do not possess this
* permission, service may be degraded: configuration changes may not
* take effect in a timely manner, and a shutdown pool may remain in a
* state in which termination is possible but not completed.
*
* - Keep-alive times
*
* - If the pool currently has more than corePoolSize threads,
* excess threads will be terminated if they have been idle for more
* than the keepAliveTime (see {@link #getKeepAliveTime}). This
* provides a means of reducing resource consumption when the pool is
* not being actively used. If the pool becomes more active later, new
* threads will be constructed. This parameter can also be changed
* dynamically using method {@link #setKeepAliveTime}. Using a value
* of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
* disables idle threads from ever terminating prior to shut down. By
* default, the keep-alive policy applies only when there are more
* than corePoolSizeThreads. But method {@link
* #allowCoreThreadTimeOut(boolean)} can be used to apply this
* time-out policy to core threads as well, so long as the
* keepAliveTime value is non-zero.
*
* - Queuing
*
* - Any {@link BlockingQueue} may be used to transfer and hold
* submitted tasks. The use of this queue interacts with pool sizing:
*
*
*
* - If fewer than corePoolSize threads are running, the Executor
* always prefers adding a new thread
* rather than queuing.
*
* - If corePoolSize or more threads are running, the Executor
* always prefers queuing a request rather than adding a new
* thread.
*
* - If a request cannot be queued, a new thread is created unless
* this would exceed maximumPoolSize, in which case, the task will be
* rejected.
*
*
*
* There are three general strategies for queuing:
*
*
* - Direct handoffs. A good default choice for a work
* queue is a {@link SynchronousQueue} that hands off tasks to threads
* without otherwise holding them. Here, an attempt to queue a task
* will fail if no threads are immediately available to run it, so a
* new thread will be constructed. This policy avoids lockups when
* handling sets of requests that might have internal dependencies.
* Direct handoffs generally require unbounded maximumPoolSizes to
* avoid rejection of new submitted tasks. This in turn admits the
* possibility of unbounded thread growth when commands continue to
* arrive on average faster than they can be processed.
*
* - Unbounded queues. Using an unbounded queue (for
* example a {@link LinkedBlockingQueue} without a predefined
* capacity) will cause new tasks to wait in the queue when all
* corePoolSize threads are busy. Thus, no more than corePoolSize
* threads will ever be created. (And the value of the maximumPoolSize
* therefore doesn't have any effect.) This may be appropriate when
* each task is completely independent of others, so tasks cannot
* affect each others execution; for example, in a web page server.
* While this style of queuing can be useful in smoothing out
* transient bursts of requests, it admits the possibility of
* unbounded work queue growth when commands continue to arrive on
* average faster than they can be processed.
*
* - Bounded queues. A bounded queue (for example, an
* {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
* used with finite maximumPoolSizes, but can be more difficult to
* tune and control. Queue sizes and maximum pool sizes may be traded
* off for each other: Using large queues and small pools minimizes
* CPU usage, OS resources, and context-switching overhead, but can
* lead to artificially low throughput. If tasks frequently block (for
* example if they are I/O bound), a system may be able to schedule
* time for more threads than you otherwise allow. Use of small queues
* generally requires larger pool sizes, which keeps CPUs busier but
* may encounter unacceptable scheduling overhead, which also
* decreases throughput.
*
*
*
*
*
* - Rejected tasks
*
* - New tasks submitted in method {@link #execute} will be
* rejected when the Executor has been shut down, and also
* when the Executor uses finite bounds for both maximum threads and
* work queue capacity, and is saturated. In either case, the {@code
* execute} method invokes the {@link
* RejectedExecutionHandler#rejectedExecution} method of its {@link
* RejectedExecutionHandler}. Four predefined handler policies are
* provided:
*
*
*
* - In the default {@link ThreadPoolExecutor.AbortPolicy}, the
* handler throws a runtime {@link RejectedExecutionException} upon
* rejection.
*
* - In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
* that invokes {@code execute} itself runs the task. This provides a
* simple feedback control mechanism that will slow down the rate that
* new tasks are submitted.
*
* - In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
* cannot be executed is simply dropped.
*
* - In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
* executor is not shut down, the task at the head of the work queue
* is dropped, and then execution is retried (which can fail again,
* causing this to be repeated.)
*
*
*
* It is possible to define and use other kinds of {@link
* RejectedExecutionHandler} classes. Doing so requires some care
* especially when policies are designed to work only under particular
* capacity or queuing policies.
*
* - Hook methods
*
* - This class provides {@code protected} overridable {@link
* #beforeExecute} and {@link #afterExecute} methods that are called
* before and after execution of each task. These can be used to
* manipulate the execution environment; for example, reinitializing
* ThreadLocals, gathering statistics, or adding log
* entries. Additionally, method {@link #terminated} can be overridden
* to perform any special processing that needs to be done once the
* Executor has fully terminated.
*
*
If hook or callback methods throw exceptions, internal worker
* threads may in turn fail and abruptly terminate.
*
* - Queue maintenance
*
* - Method {@link #getQueue} allows access to the work queue for
* purposes of monitoring and debugging. Use of this method for any
* other purpose is strongly discouraged. Two supplied methods,
* {@link #remove} and {@link #purge} are available to assist in
* storage reclamation when large numbers of queued tasks become
* cancelled.
*
* - Finalization
*
* - A pool that is no longer referenced in a program AND
* has no remaining threads will be {@code shutdown} automatically. If
* you would like to ensure that unreferenced pools are reclaimed even
* if users forget to call {@link #shutdown}, then you must arrange
* that unused threads eventually die, by setting appropriate
* keep-alive times, using a lower bound of zero core threads and/or
* setting {@link #allowCoreThreadTimeOut(boolean)}.
*
*
*
* Extension example. Most extensions of this class
* override one or more of the protected hook methods. For example,
* here is a subclass that adds a simple pause/resume feature:
*
*
{@code
* class PausableThreadPoolExecutor extends ThreadPoolExecutor {
* private boolean isPaused;
* private ReentrantLock pauseLock = new ReentrantLock();
* private Condition unpaused = pauseLock.newCondition();
*
* public PausableThreadPoolExecutor(...) { super(...); }
*
* protected void beforeExecute(Thread t, Runnable r) {
* super.beforeExecute(t, r);
* pauseLock.lock();
* try {
* while (isPaused) unpaused.await();
* } catch (InterruptedException ie) {
* t.interrupt();
* } finally {
* pauseLock.unlock();
* }
* }
*
* public void pause() {
* pauseLock.lock();
* try {
* isPaused = true;
* } finally {
* pauseLock.unlock();
* }
* }
*
* public void resume() {
* pauseLock.lock();
* try {
* isPaused = false;
* unpaused.signalAll();
* } finally {
* pauseLock.unlock();
* }
* }
* }}
*
* @since 1.5
* @author Doug Lea
*/
public class ThreadPoolExecutor extends AbstractExecutorService {
/**
* The main pool control state, ctl, is an atomic integer packing
* two conceptual fields
* workerCount, indicating the effective number of threads
* runState, indicating whether running, shutting down etc
*
* In order to pack them into one int, we limit workerCount to
* (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
* billion) otherwise representable. If this is ever an issue in
* the future, the variable can be changed to be an AtomicLong,
* and the shift/mask constants below adjusted. But until the need
* arises, this code is a bit faster and simpler using an int.
*
* The workerCount is the number of workers that have been
* permitted to start and not permitted to stop. The value may be
* transiently different from the actual number of live threads,
* for example when a ThreadFactory fails to create a thread when
* asked, and when exiting threads are still performing
* bookkeeping before terminating. The user-visible pool size is
* reported as the current size of the workers set.
*
* The runState provides the main lifecyle control, taking on values:
*
* RUNNING: Accept new tasks and process queued tasks
* SHUTDOWN: Don't accept new tasks, but process queued tasks
* STOP: Don't accept new tasks, don't process queued tasks,
* and interrupt in-progress tasks
* TIDYING: All tasks have terminated, workerCount is zero,
* the thread transitioning to state TIDYING
* will run the terminated() hook method
* TERMINATED: terminated() has completed
*
* The numerical order among these values matters, to allow
* ordered comparisons. The runState monotonically increases over
* time, but need not hit each state. The transitions are:
*
* RUNNING -> SHUTDOWN
* On invocation of shutdown(), perhaps implicitly in finalize()
* (RUNNING or SHUTDOWN) -> STOP
* On invocation of shutdownNow()
* SHUTDOWN -> TIDYING
* When both queue and pool are empty
* STOP -> TIDYING
* When pool is empty
* TIDYING -> TERMINATED
* When the terminated() hook method has completed
*
* Threads waiting in awaitTermination() will return when the
* state reaches TERMINATED.
*
* Detecting the transition from SHUTDOWN to TIDYING is less
* straightforward than you'd like because the queue may become
* empty after non-empty and vice versa during SHUTDOWN state, but
* we can only terminate if, after seeing that it is empty, we see
* that workerCount is 0 (which sometimes entails a recheck -- see
* below).
*/
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = 29; // Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
/*
* Bit field accessors that don't require unpacking ctl.
* These depend on the bit layout and on workerCount being never negative.
*/
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
/**
* Attempt to CAS-increment the workerCount field of ctl.
*/
private boolean compareAndIncrementWorkerCount(int expect) {
return ctl.compareAndSet(expect, expect + 1);
}
/**
* Attempt to CAS-decrement the workerCount field of ctl.
*/
private boolean compareAndDecrementWorkerCount(int expect) {
return ctl.compareAndSet(expect, expect - 1);
}
/**
* Decrements the workerCount field of ctl. This is called only on
* abrupt termination of a thread (see processWorkerExit). Other
* decrements are performed within getTask.
*/
private void decrementWorkerCount() {
do {} while (! compareAndDecrementWorkerCount(ctl.get()));
}
/**
* The queue used for holding tasks and handing off to worker
* threads. We do not require that workQueue.poll() returning
* null necessarily means that workQueue.isEmpty(), so rely
* solely on isEmpty to see if the queue is empty (which we must
* do for example when deciding whether to transition from
* SHUTDOWN to TIDYING). This accommodates special-purpose
* queues such as DelayQueues for which poll() is allowed to
* return null even if it may later return non-null when delays
* expire.
*/
private final BlockingQueue workQueue;
// TODO: DK: mainLock is used in lock(); try { ... } finally { unlock(); }
// Consider replacing with synchronized {} if performance reasons exist
/**
* Lock held on access to workers set and related bookkeeping.
* While we could use a concurrent set of some sort, it turns out
* to be generally preferable to use a lock. Among the reasons is
* that this serializes interruptIdleWorkers, which avoids
* unnecessary interrupt storms, especially during shutdown.
* Otherwise exiting threads would concurrently interrupt those
* that have not yet interrupted. It also simplifies some of the
* associated statistics bookkeeping of largestPoolSize etc. We
* also hold mainLock on shutdown and shutdownNow, for the sake of
* ensuring workers set is stable while separately checking
* permission to interrupt and actually interrupting.
*/
public final ReentrantLock mainLock = new ReentrantLock();
/**
* Set containing all worker threads in pool. Accessed only when
* holding mainLock.
*/
public final HashSet workers = new HashSet();
/**
* Wait condition to support awaitTermination
*/
private final Condition termination = mainLock.newCondition();
/**
* Tracks largest attained pool size. Accessed only under
* mainLock.
*/
private int largestPoolSize;
/**
* Counter for completed tasks. Updated only on termination of
* worker threads. Accessed only under mainLock.
*/
private long completedTaskCount;
/*
* All user control parameters are declared as volatiles so that
* ongoing actions are based on freshest values, but without need
* for locking, since no internal invariants depend on them
* changing synchronously with respect to other actions.
*/
/**
* Factory for new threads. All threads are created using this
* factory (via method addWorker). All callers must be prepared
* for addWorker to fail, which may reflect a system or user's
* policy limiting the number of threads. Even though it is not
* treated as an error, failure to create threads may result in
* new tasks being rejected or existing ones remaining stuck in
* the queue. On the other hand, no special precautions exist to
* handle OutOfMemoryErrors that might be thrown while trying to
* create threads, since there is generally no recourse from
* within this class.
*/
private volatile ThreadFactory threadFactory;
/**
* Handler called when saturated or shutdown in execute.
*/
private volatile RejectedExecutionHandler handler;
/**
* Timeout in nanoseconds for idle threads waiting for work.
* Threads use this timeout when there are more than corePoolSize
* present or if allowCoreThreadTimeOut. Otherwise they wait
* forever for new work.
*/
private volatile long keepAliveTime;
/**
* If false (default), core threads stay alive even when idle.
* If true, core threads use keepAliveTime to time out waiting
* for work.
*/
private volatile boolean allowCoreThreadTimeOut;
/**
* Core pool size is the minimum number of workers to keep alive
* (and not allow to time out etc) unless allowCoreThreadTimeOut
* is set, in which case the minimum is zero.
*/
private volatile int corePoolSize;
/**
* Maximum pool size. Note that the actual maximum is internally
* bounded by CAPACITY.
*/
private volatile int maximumPoolSize;
/**
* The default rejected execution handler
*/
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
/**
* Permission required for callers of shutdown and shutdownNow.
* We additionally require (see checkShutdownAccess) that callers
* have permission to actually interrupt threads in the worker set
* (as governed by Thread.interrupt, which relies on
* ThreadGroup.checkAccess, which in turn relies on
* SecurityManager.checkAccess). Shutdowns are attempted only if
* these checks pass.
*
* All actual invocations of Thread.interrupt (see
* interruptIdleWorkers and interruptWorkers) ignore
* SecurityExceptions, meaning that the attempted interrupts
* silently fail. In the case of shutdown, they should not fail
* unless the SecurityManager has inconsistent policies, sometimes
* allowing access to a thread and sometimes not. In such cases,
* failure to actually interrupt threads may disable or delay full
* termination. Other uses of interruptIdleWorkers are advisory,
* and failure to actually interrupt will merely delay response to
* configuration changes so is not handled exceptionally.
*/
private static final RuntimePermission shutdownPerm =
new RuntimePermission("modifyThread");
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping. This
* class opportunistically extends ReentrantLock to simplify
* acquiring and releasing a lock surrounding each task execution.
* This protects against interrupts that are intended to wake up a
* worker thread waiting for a task from instead interrupting a
* task being run.
*/
public final class Worker extends ReentrantLock implements Runnable {
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
public final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
}
/*
* Methods for setting control state
*/
/**
* Transitions runState to given target, or leaves it alone if
* already at least the given target.
*
* @param targetState the desired state, either SHUTDOWN or STOP
* (but not TIDYING or TERMINATED -- use tryTerminate for that)
*/
private void advanceRunState(int targetState) {
for (;;) {
int c = ctl.get();
if (runStateAtLeast(c, targetState) ||
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
break;
}
}
/**
* Transitions to TERMINATED state if either (SHUTDOWN and pool
* and queue empty) or (STOP and pool empty). If otherwise
* eligible to terminate but workerCount is nonzero, interrupts an
* idle worker to ensure that shutdown signals propagate. This
* method must be called following any action that might make
* termination possible -- reducing worker count or removing tasks
* from the queue during shutdown. The method is non-private to
* allow access from ScheduledThreadPoolExecutor.
*/
final void tryTerminate() {
for (;;) {
int c = ctl.get();
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
if (workerCountOf(c) != 0) { // Eligible to terminate
interruptIdleWorkers(ONLY_ONE);
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
terminated();
} finally {
ctl.set(ctlOf(TERMINATED, 0));
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
/*
* Methods for controlling interrupts to worker threads.
*/
/**
* If there is a security manager, makes sure caller has
* permission to shut down threads in general (see shutdownPerm).
* If this passes, additionally makes sure the caller is allowed
* to interrupt each worker thread. This might not be true even if
* first check passed, if the SecurityManager treats some threads
* specially.
*/
private void checkShutdownAccess() {
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkPermission(shutdownPerm);
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Iterator itr = workers.iterator(); itr.hasNext();) {
Worker w = (Worker)itr.next();
security.checkAccess(w.thread);
}
} finally {
mainLock.unlock();
}
}
}
/**
* Interrupts all threads, even if active. Ignores SecurityExceptions
* (in which case some threads may remain uninterrupted).
*/
private void interruptWorkers() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Iterator itr = workers.iterator(); itr.hasNext();) {
Worker w = (Worker)itr.next();
try {
w.thread.interrupt();
} catch (SecurityException ignore) {
}
}
} finally {
mainLock.unlock();
}
}
/**
* Interrupts threads that might be waiting for tasks (as
* indicated by not being locked) so they can check for
* termination or configuration changes. Ignores
* SecurityExceptions (in which case some threads may remain
* uninterrupted).
*
* @param onlyOne If true, interrupt at most one worker. This is
* called only from tryTerminate when termination is otherwise
* enabled but there are still other workers. In this case, at
* most one waiting worker is interrupted to propagate shutdown
* signals in case all threads are currently waiting.
* Interrupting any arbitrary thread ensures that newly arriving
* workers since shutdown began will also eventually exit.
* To guarantee eventual termination, it suffices to always
* interrupt only one idle worker, but shutdown() interrupts all
* idle workers so that redundant workers exit promptly, not
* waiting for a straggler task to finish.
*/
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
Iterator it = workers.iterator();
while (it.hasNext()) {
Worker w = (Worker)it.next();
Thread t = w.thread;
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
/**
* Common form of interruptIdleWorkers, to avoid having to
* remember what the boolean argument means.
*/
private void interruptIdleWorkers() {
interruptIdleWorkers(false);
}
private static final boolean ONLY_ONE = true;
/**
* Ensures that unless the pool is stopping, the current thread
* does not have its interrupt set. This requires a double-check
* of state in case the interrupt was cleared concurrently with a
* shutdownNow -- if so, the interrupt is re-enabled.
*/
private void clearInterruptsForTaskRun() {
if (runStateLessThan(ctl.get(), STOP) &&
Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))
Thread.currentThread().interrupt();
}
/*
* Misc utilities, most of which are also exported to
* ScheduledThreadPoolExecutor
*/
/**
* Invokes the rejected execution handler for the given command.
* Package-protected for use by ScheduledThreadPoolExecutor.
*/
final void reject(Runnable command) {
handler.rejectedExecution(command, this);
}
/**
* Performs any further cleanup following run state transition on
* invocation of shutdown. A no-op here, but used by
* ScheduledThreadPoolExecutor to cancel delayed tasks.
*/
void onShutdown() {
}
/**
* State check needed by ScheduledThreadPoolExecutor to
* enable running tasks during shutdown.
*
* @param shutdownOK true if should return true if SHUTDOWN
*/
final boolean isRunningOrShutdown(boolean shutdownOK) {
int rs = runStateOf(ctl.get());
return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
}
/**
* Drains the task queue into a new list, normally using
* drainTo. But if the queue is a DelayQueue or any other kind of
* queue for which poll or drainTo may fail to remove some
* elements, it deletes them one by one.
*/
private List drainQueue() {
BlockingQueue q = workQueue;
List taskList = new ArrayList();
q.drainTo(taskList);
if (!q.isEmpty()) {
Runnable[] arr = (Runnable[])q.toArray(new Runnable[0]);
for (int i=0; i= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
Worker w = new Worker(firstTask);
Thread t = w.thread;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf(c);
if (t == null ||
(rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null))) {
decrementWorkerCount();
tryTerminate();
return false;
}
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
} finally {
mainLock.unlock();
}
t.start();
// It is possible (but unlikely) for a thread to have been
// added to workers, but not yet started, during transition to
// STOP, which could result in a rare missed interrupt,
// because Thread.interrupt is not guaranteed to have any effect
// on a non-yet-started Thread (see Thread#interrupt).
if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
t.interrupt();
return true;
}
/**
* Performs cleanup and bookkeeping for a dying worker. Called
* only from worker threads. Unless completedAbruptly is set,
* assumes that workerCount has already been adjusted to account
* for exit. This method removes thread from worker set, and
* possibly terminates the pool or replaces the worker if either
* it exited due to user task exception or if fewer than
* corePoolSize workers are running or queue is non-empty but
* there are no workers.
*
* @param w the worker
* @param completedAbruptly if the worker died due to user exception
*/
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);
} finally {
mainLock.unlock();
}
tryTerminate();
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
boolean timed; // Are workers subject to culling?
for (;;) {
int wc = workerCountOf(c);
timed = allowCoreThreadTimeOut || wc > corePoolSize;
if (wc <= maximumPoolSize && ! (timedOut && timed))
break;
if (compareAndDecrementWorkerCount(c))
return null;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
try {
Runnable r = timed ?
(Runnable)workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
(Runnable)workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and
* clearInterruptsForTaskRun called to ensure that unless pool is
* stopping, this thread does not have its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to
* afterExecute. We separately handle RuntimeException, Error
* (both of which the specs guarantee that we trap) and arbitrary
* Throwables. Because we cannot rethrow Throwables within
* Runnable.run, we wrap them within Errors on the way out (to the
* thread's UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Runnable task = w.firstTask;
w.firstTask = null;
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
clearInterruptsForTaskRun();
try {
beforeExecute(w.thread, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
// Public constructors and methods
/**
* Creates a new {@code ThreadPoolExecutor} with the given initial
* parameters and default thread factory and rejected execution handler.
* It may be more convenient to use one of the {@link Executors} factory
* methods instead of this general purpose constructor.
*
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @throws IllegalArgumentException if one of the following holds:
* {@code corePoolSize < 0}
* {@code keepAliveTime < 0}
* {@code maximumPoolSize <= 0}
* {@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
/**
* Creates a new {@code ThreadPoolExecutor} with the given initial
* parameters and default rejected execution handler.
*
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @param threadFactory the factory to use when the executor
* creates a new thread
* @throws IllegalArgumentException if one of the following holds:
* {@code corePoolSize < 0}
* {@code keepAliveTime < 0}
* {@code maximumPoolSize <= 0}
* {@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code threadFactory} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue,
ThreadFactory threadFactory) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
threadFactory, defaultHandler);
}
/**
* Creates a new {@code ThreadPoolExecutor} with the given initial
* parameters and default thread factory.
*
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
* @throws IllegalArgumentException if one of the following holds:
* {@code corePoolSize < 0}
* {@code keepAliveTime < 0}
* {@code maximumPoolSize <= 0}
* {@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue,
RejectedExecutionHandler handler) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), handler);
}
/**
* Creates a new {@code ThreadPoolExecutor} with the given initial
* parameters.
*
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @param threadFactory the factory to use when the executor
* creates a new thread
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
* @throws IllegalArgumentException if one of the following holds:
* {@code corePoolSize < 0}
* {@code keepAliveTime < 0}
* {@code maximumPoolSize <= 0}
* {@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code threadFactory} or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
/**
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
/**
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
*
* @throws SecurityException {@inheritDoc}
*/
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(SHUTDOWN);
interruptIdleWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
tryTerminate();
}
/**
* Attempts to stop all actively executing tasks, halts the
* processing of waiting tasks, and returns a list of the tasks
* that were awaiting execution. These tasks are drained (removed)
* from the task queue upon return from this method.
*
* There are no guarantees beyond best-effort attempts to stop
* processing actively executing tasks. This implementation
* cancels tasks via {@link Thread#interrupt}, so any task that
* fails to respond to interrupts may never terminate.
*
* @throws SecurityException {@inheritDoc}
*/
public List shutdownNow() {
List tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(STOP);
interruptWorkers();
tasks = drainQueue();
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}
public boolean isShutdown() {
return ! isRunning(ctl.get());
}
/**
* Returns true if this executor is in the process of terminating
* after {@link #shutdown} or {@link #shutdownNow} but has not
* completely terminated. This method may be useful for
* debugging. A return of {@code true} reported a sufficient
* period after shutdown may indicate that submitted tasks have
* ignored or suppressed interruption, causing this executor not
* to properly terminate.
*
* @return true if terminating but not yet terminated
*/
public boolean isTerminating() {
int c = ctl.get();
return ! isRunning(c) && runStateLessThan(c, TERMINATED);
}
public boolean isTerminated() {
return runStateAtLeast(ctl.get(), TERMINATED);
}
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
long deadline = Utils.nanoTime() + nanos;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (runStateAtLeast(ctl.get(), TERMINATED))
return true;
while (nanos > 0) {
termination.await(nanos, TimeUnit.NANOSECONDS);
if (runStateAtLeast(ctl.get(), TERMINATED))
return true;
nanos = deadline - Utils.nanoTime();
}
return false;
} finally {
mainLock.unlock();
}
}
/**
* Invokes {@code shutdown} when this executor is no longer
* referenced and it has no threads.
*/
protected void finalize() {
shutdown();
}
/**
* Sets the thread factory used to create new threads.
*
* @param threadFactory the new thread factory
* @throws NullPointerException if threadFactory is null
* @see #getThreadFactory
*/
public void setThreadFactory(ThreadFactory threadFactory) {
if (threadFactory == null)
throw new NullPointerException();
this.threadFactory = threadFactory;
}
/**
* Returns the thread factory used to create new threads.
*
* @return the current thread factory
* @see #setThreadFactory
*/
public ThreadFactory getThreadFactory() {
return threadFactory;
}
/**
* Sets a new handler for unexecutable tasks.
*
* @param handler the new handler
* @throws NullPointerException if handler is null
* @see #getRejectedExecutionHandler
*/
public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
if (handler == null)
throw new NullPointerException();
this.handler = handler;
}
/**
* Returns the current handler for unexecutable tasks.
*
* @return the current handler
* @see #setRejectedExecutionHandler
*/
public RejectedExecutionHandler getRejectedExecutionHandler() {
return handler;
}
/**
* Sets the core number of threads. This overrides any value set
* in the constructor. If the new value is smaller than the
* current value, excess existing threads will be terminated when
* they next become idle. If larger, new threads will, if needed,
* be started to execute any queued tasks.
*
* @param corePoolSize the new core size
* @throws IllegalArgumentException if {@code corePoolSize < 0}
* @see #getCorePoolSize
*/
public void setCorePoolSize(int corePoolSize) {
if (corePoolSize < 0)
throw new IllegalArgumentException();
int delta = corePoolSize - this.corePoolSize;
this.corePoolSize = corePoolSize;
if (workerCountOf(ctl.get()) > corePoolSize)
interruptIdleWorkers();
else if (delta > 0) {
// We don't really know how many new threads are "needed".
// As a heuristic, prestart enough new workers (up to new
// core size) to handle the current number of tasks in
// queue, but stop if queue becomes empty while doing so.
int k = Math.min(delta, workQueue.size());
while (k-- > 0 && addWorker(null, true)) {
if (workQueue.isEmpty())
break;
}
}
}
/**
* Returns the core number of threads.
*
* @return the core number of threads
* @see #setCorePoolSize
*/
public int getCorePoolSize() {
return corePoolSize;
}
/**
* Starts a core thread, causing it to idly wait for work. This
* overrides the default policy of starting core threads only when
* new tasks are executed. This method will return {@code false}
* if all core threads have already been started.
*
* @return {@code true} if a thread was started
*/
public boolean prestartCoreThread() {
return workerCountOf(ctl.get()) < corePoolSize &&
addWorker(null, true);
}
/**
* Starts all core threads, causing them to idly wait for work. This
* overrides the default policy of starting core threads only when
* new tasks are executed.
*
* @return the number of threads started
*/
public int prestartAllCoreThreads() {
int n = 0;
while (addWorker(null, true))
++n;
return n;
}
/**
* Returns true if this pool allows core threads to time out and
* terminate if no tasks arrive within the keepAlive time, being
* replaced if needed when new tasks arrive. When true, the same
* keep-alive policy applying to non-core threads applies also to
* core threads. When false (the default), core threads are never
* terminated due to lack of incoming tasks.
*
* @return {@code true} if core threads are allowed to time out,
* else {@code false}
*
* @since 1.6
*/
public boolean allowsCoreThreadTimeOut() {
return allowCoreThreadTimeOut;
}
/**
* Sets the policy governing whether core threads may time out and
* terminate if no tasks arrive within the keep-alive time, being
* replaced if needed when new tasks arrive. When false, core
* threads are never terminated due to lack of incoming
* tasks. When true, the same keep-alive policy applying to
* non-core threads applies also to core threads. To avoid
* continual thread replacement, the keep-alive time must be
* greater than zero when setting {@code true}. This method
* should in general be called before the pool is actively used.
*
* @param value {@code true} if should time out, else {@code false}
* @throws IllegalArgumentException if value is {@code true}
* and the current keep-alive time is not greater than zero
*
* @since 1.6
*/
public void allowCoreThreadTimeOut(boolean value) {
if (value && keepAliveTime <= 0)
throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
if (value != allowCoreThreadTimeOut) {
allowCoreThreadTimeOut = value;
if (value)
interruptIdleWorkers();
}
}
/**
* Sets the maximum allowed number of threads. This overrides any
* value set in the constructor. If the new value is smaller than
* the current value, excess existing threads will be
* terminated when they next become idle.
*
* @param maximumPoolSize the new maximum
* @throws IllegalArgumentException if the new maximum is
* less than or equal to zero, or
* less than the {@linkplain #getCorePoolSize core pool size}
* @see #getMaximumPoolSize
*/
public void setMaximumPoolSize(int maximumPoolSize) {
if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
throw new IllegalArgumentException();
this.maximumPoolSize = maximumPoolSize;
if (workerCountOf(ctl.get()) > maximumPoolSize)
interruptIdleWorkers();
}
/**
* Returns the maximum allowed number of threads.
*
* @return the maximum allowed number of threads
* @see #setMaximumPoolSize
*/
public int getMaximumPoolSize() {
return maximumPoolSize;
}
/**
* Sets the time limit for which threads may remain idle before
* being terminated. If there are more than the core number of
* threads currently in the pool, after waiting this amount of
* time without processing a task, excess threads will be
* terminated. This overrides any value set in the constructor.
*
* @param time the time to wait. A time value of zero will cause
* excess threads to terminate immediately after executing tasks.
* @param unit the time unit of the {@code time} argument
* @throws IllegalArgumentException if {@code time} less than zero or
* if {@code time} is zero and {@code allowsCoreThreadTimeOut}
* @see #getKeepAliveTime
*/
public void setKeepAliveTime(long time, TimeUnit unit) {
if (time < 0)
throw new IllegalArgumentException();
if (time == 0 && allowsCoreThreadTimeOut())
throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
long keepAliveTime = unit.toNanos(time);
long delta = keepAliveTime - this.keepAliveTime;
this.keepAliveTime = keepAliveTime;
if (delta < 0)
interruptIdleWorkers();
}
/**
* Returns the thread keep-alive time, which is the amount of time
* that threads in excess of the core pool size may remain
* idle before being terminated.
*
* @param unit the desired time unit of the result
* @return the time limit
* @see #setKeepAliveTime
*/
public long getKeepAliveTime(TimeUnit unit) {
return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
}
/* User-level queue utilities */
/**
* Returns the task queue used by this executor. Access to the
* task queue is intended primarily for debugging and monitoring.
* This queue may be in active use. Retrieving the task queue
* does not prevent queued tasks from executing.
*
* @return the task queue
*/
public BlockingQueue getQueue() {
return workQueue;
}
/**
* Removes this task from the executor's internal queue if it is
* present, thus causing it not to be run if it has not already
* started.
*
*
This method may be useful as one part of a cancellation
* scheme. It may fail to remove tasks that have been converted
* into other forms before being placed on the internal queue. For
* example, a task entered using {@code submit} might be
* converted into a form that maintains {@code Future} status.
* However, in such cases, method {@link #purge} may be used to
* remove those Futures that have been cancelled.
*
* @param task the task to remove
* @return true if the task was removed
*/
public boolean remove(Runnable task) {
boolean removed = workQueue.remove(task);
tryTerminate(); // In case SHUTDOWN and now empty
return removed;
}
/**
* Tries to remove from the work queue all {@link Future}
* tasks that have been cancelled. This method can be useful as a
* storage reclamation operation, that has no other impact on
* functionality. Cancelled tasks are never executed, but may
* accumulate in work queues until worker threads can actively
* remove them. Invoking this method instead tries to remove them now.
* However, this method may fail to remove tasks in
* the presence of interference by other threads.
*/
public void purge() {
final BlockingQueue q = workQueue;
try {
Iterator it = q.iterator();
while (it.hasNext()) {
Runnable r = (Runnable)it.next();
if (r instanceof Future && ((Future)r).isCancelled())
it.remove();
}
} catch (ConcurrentModificationException fallThrough) {
// Take slow path if we encounter interference during traversal.
// Make copy for traversal and call remove for cancelled entries.
// The slow path is more likely to be O(N*N).
Object[] arr = q.toArray();
for (int i=0; i 0
return runStateAtLeast(ctl.get(), TIDYING) ? 0
: workers.size();
} finally {
mainLock.unlock();
}
}
/**
* Returns the approximate number of threads that are actively
* executing tasks.
*
* @return the number of threads
*/
public int getActiveCount() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
int n = 0;
for (Iterator itr = workers.iterator(); itr.hasNext();) {
Worker w = (Worker)itr.next();
if (w.isLocked())
++n;
}
return n;
} finally {
mainLock.unlock();
}
}
/**
* Returns the largest number of threads that have ever
* simultaneously been in the pool.
*
* @return the number of threads
*/
public int getLargestPoolSize() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
return largestPoolSize;
} finally {
mainLock.unlock();
}
}
/**
* Returns the approximate total number of tasks that have ever been
* scheduled for execution. Because the states of tasks and
* threads may change dynamically during computation, the returned
* value is only an approximation.
*
* @return the number of tasks
*/
public long getTaskCount() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
long n = completedTaskCount;
for (Iterator itr = workers.iterator(); itr.hasNext();) {
Worker w = (Worker)itr.next();
n += w.completedTasks;
if (w.isLocked())
++n;
}
return n + workQueue.size();
} finally {
mainLock.unlock();
}
}
/**
* Returns the approximate total number of tasks that have
* completed execution. Because the states of tasks and threads
* may change dynamically during computation, the returned value
* is only an approximation, but one that does not ever decrease
* across successive calls.
*
* @return the number of tasks
*/
public long getCompletedTaskCount() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
long n = completedTaskCount;
for (Iterator itr = workers.iterator(); itr.hasNext();) {
Worker w = (Worker)itr.next();
n += w.completedTasks;
}
return n;
} finally {
mainLock.unlock();
}
}
/* Extension hooks */
/**
* Method invoked prior to executing the given Runnable in the
* given thread. This method is invoked by thread {@code t} that
* will execute task {@code r}, and may be used to re-initialize
* ThreadLocals, or to perform logging.
*
* This implementation does nothing, but may be customized in
* subclasses. Note: To properly nest multiple overridings, subclasses
* should generally invoke {@code super.beforeExecute} at the end of
* this method.
*
* @param t the thread that will run task {@code r}
* @param r the task that will be executed
*/
protected void beforeExecute(Thread t, Runnable r) { }
/**
* Method invoked upon completion of execution of the given Runnable.
* This method is invoked by the thread that executed the task. If
* non-null, the Throwable is the uncaught {@code RuntimeException}
* or {@code Error} that caused execution to terminate abruptly.
*
*
This implementation does nothing, but may be customized in
* subclasses. Note: To properly nest multiple overridings, subclasses
* should generally invoke {@code super.afterExecute} at the
* beginning of this method.
*
*
Note: When actions are enclosed in tasks (such as
* {@link FutureTask}) either explicitly or via methods such as
* {@code submit}, these task objects catch and maintain
* computational exceptions, and so they do not cause abrupt
* termination, and the internal exceptions are not
* passed to this method. If you would like to trap both kinds of
* failures in this method, you can further probe for such cases,
* as in this sample subclass that prints either the direct cause
* or the underlying exception if a task has been aborted:
*
*
{@code
* class ExtendedExecutor extends ThreadPoolExecutor {
* // ...
* protected void afterExecute(Runnable r, Throwable t) {
* super.afterExecute(r, t);
* if (t == null && r instanceof Future>) {
* try {
* Object result = ((Future>) r).get();
* } catch (CancellationException ce) {
* t = ce;
* } catch (ExecutionException ee) {
* t = ee.getCause();
* } catch (InterruptedException ie) {
* Thread.currentThread().interrupt(); // ignore/reset
* }
* }
* if (t != null)
* System.out.println(t);
* }
* }}
*
* @param r the runnable that has completed
* @param t the exception that caused termination, or null if
* execution completed normally
*/
protected void afterExecute(Runnable r, Throwable t) { }
/**
* Method invoked when the Executor has terminated. Default
* implementation does nothing. Note: To properly nest multiple
* overridings, subclasses should generally invoke
* {@code super.terminated} within this method.
*/
protected void terminated() { }
/* Predefined RejectedExecutionHandlers */
/**
* A handler for rejected tasks that runs the rejected task
* directly in the calling thread of the {@code execute} method,
* unless the executor has been shut down, in which case the task
* is discarded.
*/
public static class CallerRunsPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code CallerRunsPolicy}.
*/
public CallerRunsPolicy() { }
/**
* Executes task r in the caller's thread, unless the executor
* has been shut down, in which case the task is discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
}
/**
* A handler for rejected tasks that throws a
* {@code RejectedExecutionException}.
*/
public static class AbortPolicy implements RejectedExecutionHandler {
/**
* Creates an {@code AbortPolicy}.
*/
public AbortPolicy() { }
/**
* Always throws RejectedExecutionException.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
* @throws RejectedExecutionException always.
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException();
}
}
/**
* A handler for rejected tasks that silently discards the
* rejected task.
*/
public static class DiscardPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardPolicy}.
*/
public DiscardPolicy() { }
/**
* Does nothing, which has the effect of discarding task r.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
}
/**
* A handler for rejected tasks that discards the oldest unhandled
* request and then retries {@code execute}, unless the executor
* is shut down, in which case the task is discarded.
*/
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardOldestPolicy} for the given executor.
*/
public DiscardOldestPolicy() { }
/**
* Obtains and ignores the next task that the executor
* would otherwise execute, if one is immediately available,
* and then retries execution of task r, unless the executor
* is shut down, in which case task r is instead discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}
}