Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Scala (https://www.scala-lang.org)
*
* Copyright EPFL and Lightbend, Inc.
*
* Licensed under Apache License 2.0
* (http://www.apache.org/licenses/LICENSE-2.0).
*
* See the NOTICE file distributed with this work for
* additional information regarding copyright ownership.
*/
package scala
package collection
package immutable
import generic._
import mutable.{Builder, ListBuffer}
import scala.annotation.tailrec
import java.io.{ObjectInputStream, ObjectOutputStream}
import scala.runtime.AbstractFunction1
/** A class for immutable linked lists representing ordered collections
* of elements of type `A`.
*
* This class comes with two implementing case classes `scala.Nil`
* and `scala.::` that implement the abstract members `isEmpty`,
* `head` and `tail`.
*
* This class is optimal for last-in-first-out (LIFO), stack-like access patterns. If you need another access
* pattern, for example, random access or FIFO, consider using a collection more suited to this than `List`.
*
* $usesMutableState
*
* ==Performance==
* '''Time:''' `List` has `O(1)` prepend and head/tail access. Most other operations are `O(n)` on the number of elements in the list.
* This includes the index-based lookup of elements, `length`, `append` and `reverse`.
*
* '''Space:''' `List` implements '''structural sharing''' of the tail list. This means that many operations are either
* zero- or constant-memory cost.
* {{{
* val mainList = List(3, 2, 1)
* val with4 = 4 :: mainList // re-uses mainList, costs one :: instance
* val with42 = 42 :: mainList // also re-uses mainList, cost one :: instance
* val shorter = mainList.tail // costs nothing as it uses the same 2::1::Nil instances as mainList
* }}}
*
* @example {{{
* // Make a list via the companion object factory
* val days = List("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
*
* // Make a list element-by-element
* val when = "AM" :: "PM" :: List()
*
* // Pattern match
* days match {
* case firstDay :: otherDays =>
* println("The first day of the week is: " + firstDay)
* case List() =>
* println("There don't seem to be any week days.")
* }
* }}}
*
* @note The functional list is characterized by persistence and structural sharing, thus offering considerable
* performance and space consumption benefits in some scenarios if used correctly.
* However, note that objects having multiple references into the same functional list (that is,
* objects that rely on structural sharing), will be serialized and deserialized with multiple lists, one for
* each reference to it. I.e. structural sharing is lost after serialization/deserialization.
*
* @author Martin Odersky and others
* @since 1.0
* @see [[http://docs.scala-lang.org/overviews/collections/concrete-immutable-collection-classes.html#lists "Scala's Collection Library overview"]]
* section on `Lists` for more information.
*
* @define coll list
* @define Coll `List`
* @define thatinfo the class of the returned collection. In the standard library configuration,
* `That` is always `List[B]` because an implicit of type `CanBuildFrom[List, B, That]`
* is defined in object `List`.
* @define bfinfo an implicit value of class `CanBuildFrom` which determines the
* result class `That` from the current representation type `Repr`
* and the new element type `B`. This is usually the `canBuildFrom` value
* defined in object `List`.
* @define orderDependent
* @define orderDependentFold
* @define mayNotTerminateInf
* @define willNotTerminateInf
*/
@SerialVersionUID(-6084104484083858598L) // value computed by serialver for 2.11.2, annotation added in 2.11.4
sealed abstract class List[+A] extends AbstractSeq[A]
with LinearSeq[A]
with Product
with GenericTraversableTemplate[A, List]
with LinearSeqOptimized[A, List[A]]
with scala.Serializable {
override def companion: GenericCompanion[List] = List
def isEmpty: Boolean
def head: A
def tail: List[A]
// New methods in List
/** Adds an element at the beginning of this list.
* @param x the element to prepend.
* @return a list which contains `x` as first element and
* which continues with this list.
*
* @usecase def ::(x: A): List[A]
* @inheritdoc
*
* Example:
* {{{1 :: List(2, 3) = List(2, 3).::(1) = List(1, 2, 3)}}}
*/
def ::[B >: A] (x: B): List[B] =
new scala.collection.immutable.::(x, this)
/** Adds the elements of a given list in front of this list.
* @param prefix The list elements to prepend.
* @return a list resulting from the concatenation of the given
* list `prefix` and this list.
*
* @usecase def :::(prefix: List[A]): List[A]
* @inheritdoc
*
* Example:
* {{{List(1, 2) ::: List(3, 4) = List(3, 4).:::(List(1, 2)) = List(1, 2, 3, 4)}}}
*/
def :::[B >: A](prefix: List[B]): List[B] =
if (isEmpty) prefix
else if (prefix.isEmpty) this
else (new ListBuffer[B] ++= prefix).prependToList(this)
/** Adds the elements of a given list in reverse order in front of this list.
* `xs reverse_::: ys` is equivalent to
* `xs.reverse ::: ys` but is more efficient.
*
* @param prefix the prefix to reverse and then prepend
* @return the concatenation of the reversed prefix and the current list.
*
* @usecase def reverse_:::(prefix: List[A]): List[A]
* @inheritdoc
*/
def reverse_:::[B >: A](prefix: List[B]): List[B] = {
var these: List[B] = this
var pres = prefix
while (!pres.isEmpty) {
these = pres.head :: these
pres = pres.tail
}
these
}
/** Builds a new list by applying a function to all elements of this list.
* Like `xs map f`, but returns `xs` unchanged if function
* `f` maps all elements to themselves (as determined by `eq`).
*
* @param f the function to apply to each element.
* @tparam B the element type of the returned collection.
* @return a list resulting from applying the given function
* `f` to each element of this list and collecting the results.
*
* @usecase def mapConserve(f: A => A): List[A]
* @inheritdoc
*/
@inline final def mapConserve[B >: A <: AnyRef](f: A => B): List[B] = {
// Note to developers: there exists a duplication between this function and `reflect.internal.util.Collections#map2Conserve`.
// If any successful optimization attempts or other changes are made, please rehash them there too.
@tailrec
def loop(mappedHead: List[B] = Nil, mappedLast: ::[B], unchanged: List[A], pending: List[A]): List[B] =
if (pending.isEmpty) {
if (mappedHead eq null) unchanged
else {
mappedLast.tl = unchanged
mappedHead
}
}
else {
val head0 = pending.head
val head1 = f(head0)
if (head1 eq head0.asInstanceOf[AnyRef])
loop(mappedHead, mappedLast, unchanged, pending.tail)
else {
var xc = unchanged
var mappedHead1: List[B] = mappedHead
var mappedLast1: ::[B] = mappedLast
while (xc ne pending) {
val next = new ::[B](xc.head, Nil)
if (mappedHead1 eq null) mappedHead1 = next
if (mappedLast1 ne null) mappedLast1.tl = next
mappedLast1 = next
xc = xc.tail
}
val next = new ::(head1, Nil)
if (mappedHead1 eq null) mappedHead1 = next
if (mappedLast1 ne null) mappedLast1.tl = next
mappedLast1 = next
val tail0 = pending.tail
loop(mappedHead1, mappedLast1, tail0, tail0)
}
}
loop(null, null, this, this)
}
private def isLikeListReusableCBF( bf: CanBuildFrom[_,_,_]): Boolean = {
(bf eq List.ReusableCBF) ||
(bf eq immutable.LinearSeq.ReusableCBF) || (bf eq collection.LinearSeq.ReusableCBF) ||
(bf eq immutable.Seq.ReusableCBF) ||(bf eq collection.Seq.ReusableCBF)
}
// Overridden methods from IterableLike and SeqLike or overloaded variants of such methods
override def ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[List[A], B, That]): That =
if (isLikeListReusableCBF(bf)) (this ::: that.seq.toList).asInstanceOf[That]
else super.++(that)
override def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[List[A], B, That]): That = bf match {
case _: List.GenericCanBuildFrom[_] => (elem :: this).asInstanceOf[That]
case _ => super.+:(elem)(bf)
}
override def toList: List[A] = this
override def take(n: Int): List[A] = if (isEmpty || n <= 0) Nil else {
val h = new ::(head, Nil)
var t = h
var rest = tail
var i = 1
while ({if (rest.isEmpty) return this; i < n}) {
i += 1
val nx = new ::(rest.head, Nil)
t.tl = nx
t = nx
rest = rest.tail
}
h
}
override def drop(n: Int): List[A] = {
var these = this
var count = n
while (!these.isEmpty && count > 0) {
these = these.tail
count -= 1
}
these
}
/**
* @example {{{
* // Given a list
* val letters = List('a','b','c','d','e')
*
* // `slice` returns all elements beginning at index `from` and afterwards,
* // up until index `until` (excluding index `until`.)
* letters.slice(1,3) // Returns List('b','c')
* }}}
*/
override def slice(from: Int, until: Int): List[A] = {
val lo = scala.math.max(from, 0)
if (until <= lo || isEmpty) Nil
else this drop lo take (until - lo)
}
override def takeRight(n: Int): List[A] = {
@tailrec
def loop(lead: List[A], lag: List[A]): List[A] = lead match {
case Nil => lag
case _ :: tail => loop(tail, lag.tail)
}
loop(drop(n), this)
}
// dropRight is inherited from LinearSeq
override def splitAt(n: Int): (List[A], List[A]) = {
val b = new ListBuffer[A]
var i = 0
var these = this
while (!these.isEmpty && i < n) {
i += 1
b += these.head
these = these.tail
}
(b.toList, these)
}
final override def map[B, That](f: A => B)(implicit bf: CanBuildFrom[List[A], B, That]): That = {
if (isLikeListReusableCBF(bf)) {
if (this eq Nil) Nil.asInstanceOf[That] else {
val h = new ::[B](f(head), Nil)
var t: ::[B] = h
var rest = tail
while (rest ne Nil) {
val nx = new ::(f(rest.head), Nil)
t.tl = nx
t = nx
rest = rest.tail
}
h.asInstanceOf[That]
}
}
else super.map(f)
}
final override def collect[B, That](pf: PartialFunction[A, B])(implicit bf: CanBuildFrom[List[A], B, That]): That = {
if (isLikeListReusableCBF(bf)) {
if (this eq Nil) Nil.asInstanceOf[That] else {
var rest = this
var h: ::[B] = null
// Special case for first element
do {
val x: Any = pf.applyOrElse(rest.head, List.partialNotApplied)
if (x.asInstanceOf[AnyRef] ne List.partialNotApplied) h = new ::(x.asInstanceOf[B], Nil)
rest = rest.tail
if (rest eq Nil) return (if (h eq null ) Nil else h).asInstanceOf[That]
} while (h eq null)
var t = h
// Remaining elements
do {
val x: Any = pf.applyOrElse(rest.head, List.partialNotApplied)
if (x.asInstanceOf[AnyRef] ne List.partialNotApplied) {
val nx = new ::(x.asInstanceOf[B], Nil)
t.tl = nx
t = nx
}
rest = rest.tail
} while (rest ne Nil)
h.asInstanceOf[That]
}
}
else super.collect(pf)
}
final override def flatMap[B, That](f: A => GenTraversableOnce[B])(implicit bf: CanBuildFrom[List[A], B, That]): That = {
if (isLikeListReusableCBF(bf)) {
if (this eq Nil) Nil.asInstanceOf[That] else {
var rest = this
class Appender extends AbstractFunction1[B, Unit] {
var h: ::[B] = null
var t: ::[B] = null
override def apply(b: B): Unit = {
if (h eq null) {
h = new ::(b, Nil)
t = h
}
else {
val nx = new ::(b, Nil)
t.tl = nx
t = nx
}
}
//where flatMap generates a List, we can reuse the last non-empty one
def appendLast(last: ::[B]): Unit = {
if (h eq null) h = last
else t.tl = last
}
}
// we only build an appender if we have to, to reduce allocations. It's a commom case that we have
// short lists to map over and often flatMap may provide only zero or one segment that is non empty
var appender: Appender = null
var lastList: ::[B] = null
while (rest ne Nil) {
val c = f(rest.head).seq
rest = rest.tail
if (c.asInstanceOf[AnyRef] ne Nil) {
if (lastList ne null) {
if (appender eq null)
appender = new Appender
lastList foreach appender
lastList = null
}
if (c.isInstanceOf[::[B]])
lastList = c.asInstanceOf[::[B]]
else {
if (appender eq null)
appender = new Appender
c foreach appender
}
}
}
val result = if ((appender eq null) || (appender.h eq null))
if (lastList eq null) Nil else lastList
else {
if (lastList ne null)
appender.appendLast(lastList)
appender.h
}
result.asInstanceOf[That]
}
}
else super.flatMap(f)
}
@inline final override def takeWhile(p: A => Boolean): List[A] = {
val b = new ListBuffer[A]
var these = this
while (!these.isEmpty && p(these.head)) {
b += these.head
these = these.tail
}
b.toList
}
@inline final override def dropWhile(p: A => Boolean): List[A] = {
@tailrec
def loop(xs: List[A]): List[A] =
if (xs.isEmpty || !p(xs.head)) xs
else loop(xs.tail)
loop(this)
}
@inline final override def span(p: A => Boolean): (List[A], List[A]) = {
val b = new ListBuffer[A]
var these = this
while (!these.isEmpty && p(these.head)) {
b += these.head
these = these.tail
}
(b.toList, these)
}
// Overridden with an implementation identical to the inherited one (at this time)
// solely so it can be finalized and thus inlinable.
@inline final override def foreach[U](f: A => U) {
var these = this
while (!these.isEmpty) {
f(these.head)
these = these.tail
}
}
override def reverse: List[A] = {
var result: List[A] = Nil
var these = this
while (!these.isEmpty) {
result = these.head :: result
these = these.tail
}
result
}
override def foldRight[B](z: B)(op: (A, B) => B): B =
reverse.foldLeft(z)((right, left) => op(left, right))
override def stringPrefix = "List"
override def toStream : Stream[A] =
if (isEmpty) Stream.Empty
else new Stream.Cons(head, tail.toStream)
// Create a proxy for Java serialization that allows us to avoid mutation
// during deserialization. This is the Serialization Proxy Pattern.
protected final def writeReplace(): AnyRef = new List.SerializationProxy(this)
}
/** The empty list.
*
* @author Martin Odersky
* @since 2.8
*/
@SerialVersionUID(0 - 8256821097970055419L)
case object Nil extends List[Nothing] {
override def isEmpty = true
override def head: Nothing =
throw new NoSuchElementException("head of empty list")
override def tail: List[Nothing] =
throw new UnsupportedOperationException("tail of empty list")
// Removal of equals method here might lead to an infinite recursion similar to IntMap.equals.
override def equals(that: Any) = that match {
case that1: scala.collection.GenSeq[_] => that1.isEmpty
case _ => false
}
}
/** A non empty list characterized by a head and a tail.
* @param head the first element of the list
* @param tl the list containing the remaining elements of this list after the first one.
* @tparam B the type of the list elements.
* @author Martin Odersky
* @since 2.8
*/
@SerialVersionUID(509929039250432923L) // value computed by serialver for 2.11.2, annotation added in 2.11.4
final case class ::[B](override val head: B, private[scala] var tl: List[B]) extends List[B] {
override def tail : List[B] = tl
override def isEmpty: Boolean = false
}
/** $factoryInfo
* @define coll list
* @define Coll `List`
*/
object List extends SeqFactory[List] {
/** $genericCanBuildFromInfo */
implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, List[A]] =
ReusableCBF.asInstanceOf[GenericCanBuildFrom[A]]
def newBuilder[A]: Builder[A, List[A]] = new ListBuffer[A]
override def empty[A]: List[A] = Nil
override def apply[A](xs: A*): List[A] = xs.toList
private[collection] val partialNotApplied = new Function1[Any, Any] { def apply(x: Any): Any = this }
@SerialVersionUID(1L)
private class SerializationProxy[A](@transient private var orig: List[A]) extends Serializable {
private def writeObject(out: ObjectOutputStream) {
out.defaultWriteObject()
var xs: List[A] = orig
while (!xs.isEmpty) {
out.writeObject(xs.head)
xs = xs.tail
}
out.writeObject(ListSerializeEnd)
}
// Java serialization calls this before readResolve during deserialization.
// Read the whole list and store it in `orig`.
private def readObject(in: ObjectInputStream) {
in.defaultReadObject()
val builder = List.newBuilder[A]
while (true) in.readObject match {
case ListSerializeEnd =>
orig = builder.result()
return
case a =>
builder += a.asInstanceOf[A]
}
}
// Provide the result stored in `orig` for Java serialization
private def readResolve(): AnyRef = orig
}
}
/** Only used for list serialization */
@SerialVersionUID(0L - 8476791151975527571L)
private[scala] case object ListSerializeEnd