scala.math.BigDecimal.scala Maven / Gradle / Ivy
The newest version!
/*
* Scala (https://www.scala-lang.org)
*
* Copyright EPFL and Lightbend, Inc.
*
* Licensed under Apache License 2.0
* (http://www.apache.org/licenses/LICENSE-2.0).
*
* See the NOTICE file distributed with this work for
* additional information regarding copyright ownership.
*/
package scala
package math
import scala.language.implicitConversions
import java.math.{
BigDecimal => BigDec,
MathContext,
RoundingMode => JRM,
}
import scala.collection.immutable.NumericRange
object BigDecimal {
private final val maximumHashScale = 4934 // Quit maintaining hash identity with BigInt beyond this scale
private final val hashCodeNotComputed = 0x5D50690F // Magic value (happens to be "BigDecimal" old MurmurHash3 value)
private final val deci2binary = 3.3219280948873626 // Ratio of log(10) to log(2)
private[this] val minCached = -512
private[this] val maxCached = 512
val defaultMathContext = MathContext.DECIMAL128
/** Cache only for defaultMathContext using BigDecimals in a small range. */
private[this] lazy val cache = new Array[BigDecimal](maxCached - minCached + 1)
object RoundingMode extends Enumeration {
// Annoying boilerplate to ensure consistency with java.math.RoundingMode
type RoundingMode = Value
val UP = Value(JRM.UP.ordinal)
val DOWN = Value(JRM.DOWN.ordinal)
val CEILING = Value(JRM.CEILING.ordinal)
val FLOOR = Value(JRM.FLOOR.ordinal)
val HALF_UP = Value(JRM.HALF_UP.ordinal)
val HALF_DOWN = Value(JRM.HALF_DOWN.ordinal)
val HALF_EVEN = Value(JRM.HALF_EVEN.ordinal)
val UNNECESSARY = Value(JRM.UNNECESSARY.ordinal)
}
/** Constructs a `BigDecimal` using the decimal text representation of `Double` value `d`, rounding if necessary. */
def decimal(d: Double, mc: MathContext): BigDecimal =
new BigDecimal(new BigDec(java.lang.Double.toString(d), mc), mc)
/** Constructs a `BigDecimal` using the decimal text representation of `Double` value `d`. */
def decimal(d: Double): BigDecimal = decimal(d, defaultMathContext)
/** Constructs a `BigDecimal` using the decimal text representation of `Float` value `f`, rounding if necessary.
* Note that `BigDecimal.decimal(0.1f) != 0.1f` since equality agrees with the `Double` representation, and
* `0.1 != 0.1f`.
*/
def decimal(f: Float, mc: MathContext): BigDecimal =
new BigDecimal(new BigDec(java.lang.Float.toString(f), mc), mc)
/** Constructs a `BigDecimal` using the decimal text representation of `Float` value `f`.
* Note that `BigDecimal.decimal(0.1f) != 0.1f` since equality agrees with the `Double` representation, and
* `0.1 != 0.1f`.
*/
def decimal(f: Float): BigDecimal = decimal(f, defaultMathContext)
// This exists solely to avoid conversion from Int/Long to Float, screwing everything up.
/** Constructs a `BigDecimal` from a `Long`, rounding if necessary. This is identical to `BigDecimal(l, mc)`. */
def decimal(l: Long, mc: MathContext): BigDecimal = apply(l, mc)
// This exists solely to avoid conversion from Int/Long to Float, screwing everything up.
/** Constructs a `BigDecimal` from a `Long`. This is identical to `BigDecimal(l)`. */
def decimal(l: Long): BigDecimal = apply(l)
/** Constructs a `BigDecimal` using a `java.math.BigDecimal`, rounding if necessary. */
def decimal(bd: BigDec, mc: MathContext): BigDecimal = new BigDecimal(bd.round(mc), mc)
/** Constructs a `BigDecimal` by expanding the binary fraction
* contained by `Double` value `d` into a decimal representation,
* rounding if necessary. When a `Float` is converted to a
* `Double`, the binary fraction is preserved, so this method
* also works for converted `Float`s.
*/
def binary(d: Double, mc: MathContext): BigDecimal = new BigDecimal(new BigDec(d, mc), mc)
/** Constructs a `BigDecimal` by expanding the binary fraction
* contained by `Double` value `d` into a decimal representation.
* Note: this also works correctly on converted `Float`s.
*/
def binary(d: Double): BigDecimal = binary(d, defaultMathContext)
/** Constructs a `BigDecimal` from a `java.math.BigDecimal`. The
* precision is the default for `BigDecimal` or enough to represent
* the `java.math.BigDecimal` exactly, whichever is greater.
*/
def exact(repr: BigDec): BigDecimal = {
val mc =
if (repr.precision <= defaultMathContext.getPrecision) defaultMathContext
else new MathContext(repr.precision, java.math.RoundingMode.HALF_EVEN)
new BigDecimal(repr, mc)
}
/** Constructs a `BigDecimal` by fully expanding the binary fraction
* contained by `Double` value `d`, adjusting the precision as
* necessary. Note: this works correctly on converted `Float`s also.
*/
def exact(d: Double): BigDecimal = exact(new BigDec(d))
/** Constructs a `BigDecimal` that exactly represents a `BigInt`.
*/
def exact(bi: BigInt): BigDecimal = exact(new BigDec(bi.bigInteger))
/** Constructs a `BigDecimal` that exactly represents a `Long`. Note that
* all creation methods for `BigDecimal` that do not take a `MathContext`
* represent a `Long`; this is equivalent to `apply`, `valueOf`, etc..
*/
def exact(l: Long): BigDecimal = apply(l)
/** Constructs a `BigDecimal` that exactly represents the number
* specified in a `String`.
*/
def exact(s: String): BigDecimal = exact(new BigDec(s))
/** Constructs a `BigDecimal` that exactly represents the number
* specified in base 10 in a character array.
*/
def exact(cs: Array[Char]): BigDecimal = exact(new BigDec(cs))
/** Constructs a `BigDecimal` using the java BigDecimal static
* valueOf constructor. Equivalent to `BigDecimal.decimal`.
*
* @param d the specified double value
* @return the constructed `BigDecimal`
*/
def valueOf(d: Double): BigDecimal = apply(BigDec valueOf d)
/** Constructs a `BigDecimal` using the java BigDecimal static
* valueOf constructor.
*
* @param x the specified `Long` value
* @return the constructed `BigDecimal`
*/
def valueOf(x: Long): BigDecimal = apply(x)
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified `Integer` value.
*
* @param i the specified integer value
* @return the constructed `BigDecimal`
*/
def apply(i: Int): BigDecimal = apply(i, defaultMathContext)
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified `Integer` value, rounding if necessary.
*
* @param i the specified integer value
* @param mc the precision and rounding mode for creation of this value and future operations on it
* @return the constructed `BigDecimal`
*/
def apply(i: Int, mc: MathContext): BigDecimal =
if (mc == defaultMathContext && minCached <= i && i <= maxCached) {
val offset = i - minCached
var n = cache(offset)
if (n eq null) { n = new BigDecimal(BigDec.valueOf(i.toLong), mc); cache(offset) = n }
n
}
else apply(i.toLong, mc)
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified long value.
*
* @param l the specified long value
* @return the constructed `BigDecimal`
*/
def apply(l: Long): BigDecimal =
if (minCached <= l && l <= maxCached) apply(l.toInt)
else new BigDecimal(BigDec.valueOf(l), defaultMathContext)
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified long value, but rounded if necessary.
*
* @param l the specified long value
* @param mc the precision and rounding mode for creation of this value and future operations on it
* @return the constructed `BigDecimal`
*/
def apply(l: Long, mc: MathContext): BigDecimal =
new BigDecimal(new BigDec(l, mc), mc)
/** Constructs a `BigDecimal` whose unscaled value is equal to that
* of the specified long value.
*
* @param unscaledVal the value
* @param scale the scale
* @return the constructed `BigDecimal`
*/
def apply(unscaledVal: Long, scale: Int): BigDecimal =
apply(BigInt(unscaledVal), scale)
/** Constructs a `BigDecimal` whose unscaled value is equal to that
* of the specified long value, but rounded if necessary.
*
* @param unscaledVal the value
* @param scale the scale
* @param mc the precision and rounding mode for creation of this value and future operations on it
* @return the constructed `BigDecimal`
*/
def apply(unscaledVal: Long, scale: Int, mc: MathContext): BigDecimal =
apply(BigInt(unscaledVal), scale, mc)
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified double value. Equivalent to `BigDecimal.decimal`.
*
* @param d the specified `Double` value
* @return the constructed `BigDecimal`
*/
def apply(d: Double): BigDecimal = decimal(d, defaultMathContext)
// note we don't use the static valueOf because it doesn't let us supply
// a MathContext, but we should be duplicating its logic, modulo caching.
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified double value, but rounded if necessary. Equivalent to
* `BigDecimal.decimal`.
*
* @param d the specified `Double` value
* @param mc the precision and rounding mode for creation of this value and future operations on it
* @return the constructed `BigDecimal`
*/
def apply(d: Double, mc: MathContext): BigDecimal = decimal(d, mc)
/** Translates a character array representation of a `BigDecimal`
* into a `BigDecimal`.
*/
def apply(x: Array[Char]): BigDecimal = exact(x)
/** Translates a character array representation of a `BigDecimal`
* into a `BigDecimal`, rounding if necessary.
*/
def apply(x: Array[Char], mc: MathContext): BigDecimal =
new BigDecimal(new BigDec(x, mc), mc)
/** Translates the decimal String representation of a `BigDecimal`
* into a `BigDecimal`.
*/
def apply(x: String): BigDecimal = exact(x)
/** Translates the decimal String representation of a `BigDecimal`
* into a `BigDecimal`, rounding if necessary.
*/
def apply(x: String, mc: MathContext): BigDecimal =
new BigDecimal(new BigDec(x, mc), mc)
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified `BigInt` value.
*
* @param x the specified `BigInt` value
* @return the constructed `BigDecimal`
*/
def apply(x: BigInt): BigDecimal = exact(x)
/** Constructs a `BigDecimal` whose value is equal to that of the
* specified `BigInt` value, rounding if necessary.
*
* @param x the specified `BigInt` value
* @param mc the precision and rounding mode for creation of this value and future operations on it
* @return the constructed `BigDecimal`
*/
def apply(x: BigInt, mc: MathContext): BigDecimal =
new BigDecimal(new BigDec(x.bigInteger, mc), mc)
/** Constructs a `BigDecimal` whose unscaled value is equal to that
* of the specified `BigInt` value.
*
* @param unscaledVal the specified `BigInt` value
* @param scale the scale
* @return the constructed `BigDecimal`
*/
def apply(unscaledVal: BigInt, scale: Int): BigDecimal =
exact(new BigDec(unscaledVal.bigInteger, scale))
/** Constructs a `BigDecimal` whose unscaled value is equal to that
* of the specified `BigInt` value.
*
* @param unscaledVal the specified `BigInt` value
* @param scale the scale
* @param mc the precision and rounding mode for creation of this value and future operations on it
* @return the constructed `BigDecimal`
*/
def apply(unscaledVal: BigInt, scale: Int, mc: MathContext): BigDecimal =
new BigDecimal(new BigDec(unscaledVal.bigInteger, scale, mc), mc)
/** Constructs a `BigDecimal` from a `java.math.BigDecimal`. */
def apply(bd: BigDec): BigDecimal = new BigDecimal(bd, defaultMathContext)
/** Implicit conversion from `Int` to `BigDecimal`. */
implicit def int2bigDecimal(i: Int): BigDecimal = apply(i)
/** Implicit conversion from `Long` to `BigDecimal`. */
implicit def long2bigDecimal(l: Long): BigDecimal = apply(l)
/** Implicit conversion from `Double` to `BigDecimal`. */
implicit def double2bigDecimal(d: Double): BigDecimal = decimal(d)
/** Implicit conversion from `java.math.BigDecimal` to `scala.BigDecimal`. */
implicit def javaBigDecimal2bigDecimal(x: BigDec): BigDecimal = if (x == null) null else apply(x)
}
/**
* `BigDecimal` represents decimal floating-point numbers of arbitrary precision.
* By default, the precision approximately matches that of IEEE 128-bit floating
* point numbers (34 decimal digits, `HALF_EVEN` rounding mode). Within the range
* of IEEE binary128 numbers, `BigDecimal` will agree with `BigInt` for both
* equality and hash codes (and will agree with primitive types as well). Beyond
* that range--numbers with more than 4934 digits when written out in full--the
* `hashCode` of `BigInt` and `BigDecimal` is allowed to diverge due to difficulty
* in efficiently computing both the decimal representation in `BigDecimal` and the
* binary representation in `BigInt`.
*
* When creating a `BigDecimal` from a `Double` or `Float`, care must be taken as
* the binary fraction representation of `Double` and `Float` does not easily
* convert into a decimal representation. Three explicit schemes are available
* for conversion. `BigDecimal.decimal` will convert the floating-point number
* to a decimal text representation, and build a `BigDecimal` based on that.
* `BigDecimal.binary` will expand the binary fraction to the requested or default
* precision. `BigDecimal.exact` will expand the binary fraction to the
* full number of digits, thus producing the exact decimal value corresponding to
* the binary fraction of that floating-point number. `BigDecimal` equality
* matches the decimal expansion of `Double`: `BigDecimal.decimal(0.1) == 0.1`.
* Note that since `0.1f != 0.1`, the same is not true for `Float`. Instead,
* `0.1f == BigDecimal.decimal((0.1f).toDouble)`.
*
* To test whether a `BigDecimal` number can be converted to a `Double` or
* `Float` and then back without loss of information by using one of these
* methods, test with `isDecimalDouble`, `isBinaryDouble`, or `isExactDouble`
* or the corresponding `Float` versions. Note that `BigInt`'s `isValidDouble`
* will agree with `isExactDouble`, not the `isDecimalDouble` used by default.
*
* `BigDecimal` uses the decimal representation of binary floating-point numbers
* to determine equality and hash codes. This yields different answers than
* conversion between `Long` and `Double` values, where the exact form is used.
* As always, since floating-point is a lossy representation, it is advisable to
* take care when assuming identity will be maintained across multiple conversions.
*
* `BigDecimal` maintains a `MathContext` that determines the rounding that
* is applied to certain calculations. In most cases, the value of the
* `BigDecimal` is also rounded to the precision specified by the `MathContext`.
* To create a `BigDecimal` with a different precision than its `MathContext`,
* use `new BigDecimal(new java.math.BigDecimal(...), mc)`. Rounding will
* be applied on those mathematical operations that can dramatically change the
* number of digits in a full representation, namely multiplication, division,
* and powers. The left-hand argument's `MathContext` always determines the
* degree of rounding, if any, and is the one propagated through arithmetic
* operations that do not apply rounding themselves.
*/
final class BigDecimal(val bigDecimal: BigDec, val mc: MathContext)
extends ScalaNumber with ScalaNumericConversions with Serializable with Ordered[BigDecimal] {
def this(bigDecimal: BigDec) = this(bigDecimal, BigDecimal.defaultMathContext)
import BigDecimal.RoundingMode._
import BigDecimal.{decimal, binary, exact}
if (bigDecimal eq null) throw new IllegalArgumentException("null value for BigDecimal")
if (mc eq null) throw new IllegalArgumentException("null MathContext for BigDecimal")
// There was an implicit to cut down on the wrapper noise for BigDec -> BigDecimal.
// However, this may mask introduction of surprising behavior (e.g. lack of rounding
// where one might expect it). Wrappers should be applied explicitly with an
// eye to correctness.
// Sane hash code computation (which is surprisingly hard).
// Note--not lazy val because we can't afford the extra space.
private final var computedHashCode: Int = BigDecimal.hashCodeNotComputed
private final def computeHashCode(): Unit = {
computedHashCode =
if (isWhole && (precision - scale) < BigDecimal.maximumHashScale) toBigInt.hashCode
else if (isDecimalDouble) doubleValue.##
else {
val temp = bigDecimal.stripTrailingZeros
scala.util.hashing.MurmurHash3.mixLast( temp.scaleByPowerOfTen(temp.scale).toBigInteger.hashCode, temp.scale )
}
}
/** Returns the hash code for this BigDecimal.
* Note that this does not merely use the underlying java object's
* `hashCode` because we compare `BigDecimal`s with `compareTo`
* which deems 2 == 2.00, whereas in java these are unequal
* with unequal `hashCode`s. These hash codes agree with `BigInt`
* for whole numbers up ~4934 digits (the range of IEEE 128 bit floating
* point). Beyond this, hash codes will disagree; this prevents the
* explicit representation of the `BigInt` form for `BigDecimal` values
* with large exponents.
*/
override def hashCode(): Int = {
if (computedHashCode == BigDecimal.hashCodeNotComputed) computeHashCode()
computedHashCode
}
/** Compares this BigDecimal with the specified value for equality. Where `Float` and `Double`
* disagree, `BigDecimal` will agree with the `Double` value
*/
override def equals (that: Any): Boolean = that match {
case that: BigDecimal => this equals that
case that: BigInt =>
that.bitLength > (precision-scale-2)*BigDecimal.deci2binary &&
this.toBigIntExact.exists(that equals _)
case that: Double =>
!that.isInfinity && {
val d = toDouble
!d.isInfinity && d == that && equals(decimal(d))
}
case that: Float =>
!that.isInfinity && {
val f = toFloat
!f.isInfinity && f == that && equals(decimal(f.toDouble))
}
case _ => isValidLong && unifiedPrimitiveEquals(that)
}
override def isValidByte = noArithmeticException(toByteExact)
override def isValidShort = noArithmeticException(toShortExact)
override def isValidChar = isValidInt && toIntExact >= Char.MinValue && toIntExact <= Char.MaxValue
override def isValidInt = noArithmeticException(toIntExact)
def isValidLong = noArithmeticException(toLongExact)
/** Tests whether this `BigDecimal` holds the decimal representation of a `Double`. */
def isDecimalDouble = {
val d = toDouble
!d.isInfinity && equals(decimal(d))
}
/** Tests whether this `BigDecimal` holds the decimal representation of a `Float`. */
def isDecimalFloat = {
val f = toFloat
!f.isInfinity && equals(decimal(f))
}
/** Tests whether this `BigDecimal` holds, to within precision, the binary representation of a `Double`. */
def isBinaryDouble = {
val d = toDouble
!d.isInfinity && equals(binary(d,mc))
}
/** Tests whether this `BigDecimal` holds, to within precision, the binary representation of a `Float`. */
def isBinaryFloat = {
val f = toFloat
!f.isInfinity && equals(binary(f,mc))
}
/** Tests whether this `BigDecimal` holds the exact expansion of a `Double`'s binary fractional form into base 10. */
def isExactDouble = {
val d = toDouble
!d.isInfinity && equals(exact(d))
}
/** Tests whether this `BigDecimal` holds the exact expansion of a `Float`'s binary fractional form into base 10. */
def isExactFloat = {
val f = toFloat
!f.isInfinity && equals(exact(f.toDouble))
}
private def noArithmeticException(body: => Unit): Boolean = {
try { body ; true }
catch { case _: ArithmeticException => false }
}
def isWhole = scale <= 0 || bigDecimal.stripTrailingZeros.scale <= 0
def underlying: java.math.BigDecimal = bigDecimal
/** Compares this BigDecimal with the specified BigDecimal for equality.
*/
def equals (that: BigDecimal): Boolean = compare(that) == 0
/** Compares this BigDecimal with the specified BigDecimal
*/
def compare (that: BigDecimal): Int = this.bigDecimal compareTo that.bigDecimal
/** Addition of BigDecimals
*/
def + (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal.add(that.bigDecimal, mc), mc)
/** Subtraction of BigDecimals
*/
def - (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal.subtract(that.bigDecimal, mc), mc)
/** Multiplication of BigDecimals
*/
def * (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal.multiply(that.bigDecimal, mc), mc)
/** Division of BigDecimals
*/
def / (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal.divide(that.bigDecimal, mc), mc)
/** Division and Remainder - returns tuple containing the result of
* divideToIntegralValue and the remainder. The computation is exact: no rounding is applied.
*/
def /% (that: BigDecimal): (BigDecimal, BigDecimal) = {
val qr = this.bigDecimal.divideAndRemainder(that.bigDecimal, mc)
(new BigDecimal(qr(0), mc), new BigDecimal(qr(1), mc))
}
/** Divide to Integral value.
*/
def quot (that: BigDecimal): BigDecimal =
new BigDecimal(this.bigDecimal.divideToIntegralValue(that.bigDecimal, mc), mc)
/** Returns the minimum of this and that, or this if the two are equal
*/
def min (that: BigDecimal): BigDecimal = (this compare that) match {
case x if x <= 0 => this
case _ => that
}
/** Returns the maximum of this and that, or this if the two are equal
*/
def max (that: BigDecimal): BigDecimal = (this compare that) match {
case x if x >= 0 => this
case _ => that
}
/** Remainder after dividing this by that.
*/
def remainder (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal.remainder(that.bigDecimal, mc), mc)
/** Remainder after dividing this by that.
*/
def % (that: BigDecimal): BigDecimal = this.remainder(that)
/** Returns a BigDecimal whose value is this ** n.
*/
def pow (n: Int): BigDecimal = new BigDecimal(this.bigDecimal.pow(n, mc), mc)
/** Returns a BigDecimal whose value is the negation of this BigDecimal
*/
def unary_- : BigDecimal = new BigDecimal(this.bigDecimal.negate(mc), mc)
/** Returns the absolute value of this BigDecimal
*/
def abs: BigDecimal = if (signum < 0) unary_- else this
/** Returns the sign of this BigDecimal;
* -1 if it is less than 0,
* +1 if it is greater than 0,
* 0 if it is equal to 0.
*/
def signum: Int = this.bigDecimal.signum()
/** Returns the sign of this BigDecimal;
* -1 if it is less than 0,
* +1 if it is greater than 0,
* 0 if it is equal to 0.
*/
def sign: BigDecimal = signum
/** Returns the precision of this `BigDecimal`.
*/
def precision: Int = this.bigDecimal.precision
/** Returns a BigDecimal rounded according to the supplied MathContext settings, but
* preserving its own MathContext for future operations.
*/
def round(mc: MathContext): BigDecimal = {
val r = this.bigDecimal round mc
if (r eq bigDecimal) this else new BigDecimal(r, this.mc)
}
/** Returns a `BigDecimal` rounded according to its own `MathContext` */
def rounded: BigDecimal = {
val r = bigDecimal round mc
if (r eq bigDecimal) this else new BigDecimal(r, mc)
}
/** Returns the scale of this `BigDecimal`.
*/
def scale: Int = this.bigDecimal.scale
/** Returns the size of an ulp, a unit in the last place, of this BigDecimal.
*/
def ulp: BigDecimal = new BigDecimal(this.bigDecimal.ulp, mc)
/** Returns a new BigDecimal based on the supplied MathContext, rounded as needed.
*/
def apply(mc: MathContext): BigDecimal = new BigDecimal(this.bigDecimal round mc, mc)
/** Returns a `BigDecimal` whose scale is the specified value, and whose value is
* numerically equal to this BigDecimal's.
*/
def setScale(scale: Int): BigDecimal =
if (this.scale == scale) this
else new BigDecimal(this.bigDecimal.setScale(scale), mc)
def setScale(scale: Int, mode: RoundingMode): BigDecimal =
if (this.scale == scale) this
else new BigDecimal(this.bigDecimal.setScale(scale, JRM.valueOf(mode.id)), mc)
/** Converts this BigDecimal to a Byte.
* If the BigDecimal is too big to fit in a Byte, only the low-order 8 bits are returned.
* Note that this conversion can lose information about the overall magnitude of the
* BigDecimal value as well as return a result with the opposite sign.
*/
override def byteValue = intValue.toByte
/** Converts this BigDecimal to a Short.
* If the BigDecimal is too big to fit in a Short, only the low-order 16 bits are returned.
* Note that this conversion can lose information about the overall magnitude of the
* BigDecimal value as well as return a result with the opposite sign.
*/
override def shortValue = intValue.toShort
/** Converts this BigDecimal to a Char.
* If the BigDecimal is too big to fit in a Char, only the low-order 16 bits are returned.
* Note that this conversion can lose information about the overall magnitude of the
* BigDecimal value and that it always returns a positive result.
*/
def charValue = intValue.toChar
/** Converts this BigDecimal to an Int.
* If the BigDecimal is too big to fit in an Int, only the low-order 32 bits
* are returned. Note that this conversion can lose information about the
* overall magnitude of the BigDecimal value as well as return a result with
* the opposite sign.
*/
def intValue = this.bigDecimal.intValue
/** Converts this BigDecimal to a Long.
* If the BigDecimal is too big to fit in a Long, only the low-order 64 bits
* are returned. Note that this conversion can lose information about the
* overall magnitude of the BigDecimal value as well as return a result with
* the opposite sign.
*/
def longValue = this.bigDecimal.longValue
/** Converts this BigDecimal to a Float.
* if this BigDecimal has too great a magnitude to represent as a float,
* it will be converted to `Float.NEGATIVE_INFINITY` or
* `Float.POSITIVE_INFINITY` as appropriate.
*/
def floatValue = this.bigDecimal.floatValue
/** Converts this BigDecimal to a Double.
* if this BigDecimal has too great a magnitude to represent as a double,
* it will be converted to `Double.NEGATIVE_INFINITY` or
* `Double.POSITIVE_INFINITY` as appropriate.
*/
def doubleValue = this.bigDecimal.doubleValue
/** Converts this `BigDecimal` to a [[scala.Byte]], checking for lost information.
* If this `BigDecimal` has a nonzero fractional part, or is out of the possible
* range for a [[scala.Byte]] result, then a `java.lang.ArithmeticException` is
* thrown.
*/
def toByteExact = bigDecimal.byteValueExact
/** Converts this `BigDecimal` to a [[scala.Short]], checking for lost information.
* If this `BigDecimal` has a nonzero fractional part, or is out of the possible
* range for a [[scala.Short]] result, then a `java.lang.ArithmeticException` is
* thrown.
*/
def toShortExact = bigDecimal.shortValueExact
/** Converts this `BigDecimal` to a [[scala.Int]], checking for lost information.
* If this `BigDecimal` has a nonzero fractional part, or is out of the possible
* range for an [[scala.Int]] result, then a `java.lang.ArithmeticException` is
* thrown.
*/
def toIntExact = bigDecimal.intValueExact
/** Converts this `BigDecimal` to a [[scala.Long]], checking for lost information.
* If this `BigDecimal` has a nonzero fractional part, or is out of the possible
* range for a [[scala.Long]] result, then a `java.lang.ArithmeticException` is
* thrown.
*/
def toLongExact = bigDecimal.longValueExact
/** Creates a partially constructed NumericRange[BigDecimal] in range
* `[start;end)`, where start is the target BigDecimal. The step
* must be supplied via the "by" method of the returned object in order
* to receive the fully constructed range. For example:
* {{{
* val partial = BigDecimal(1.0) to 2.0 // not usable yet
* val range = partial by 0.01 // now a NumericRange
* val range2 = BigDecimal(0) to 1.0 by 0.01 // all at once of course is fine too
* }}}
*
* @param end the end value of the range (exclusive)
* @return the partially constructed NumericRange
*/
def until(end: BigDecimal): Range.Partial[BigDecimal, NumericRange.Exclusive[BigDecimal]] =
new Range.Partial(until(end, _))
/** Same as the one-argument `until`, but creates the range immediately. */
def until(end: BigDecimal, step: BigDecimal): NumericRange.Exclusive[BigDecimal] = Range.BigDecimal(this, end, step)
/** Like `until`, but inclusive of the end value. */
def to(end: BigDecimal): Range.Partial[BigDecimal, NumericRange.Inclusive[BigDecimal]] =
new Range.Partial(to(end, _))
/** Like `until`, but inclusive of the end value. */
def to(end: BigDecimal, step: BigDecimal) = Range.BigDecimal.inclusive(this, end, step)
/** Converts this `BigDecimal` to a scala.BigInt.
*/
def toBigInt: BigInt = new BigInt(this.bigDecimal.toBigInteger)
/** Converts this `BigDecimal` to a scala.BigInt if it
* can be done losslessly, returning Some(BigInt) or None.
*/
def toBigIntExact: Option[BigInt] =
if (isWhole) {
try Some(new BigInt(this.bigDecimal.toBigIntegerExact))
catch { case _: ArithmeticException => None }
}
else None
/** Returns the decimal String representation of this BigDecimal.
*/
override def toString: String = this.bigDecimal.toString
}