![JAR search and dependency download from the Maven repository](/logo.png)
scala.math.PartialOrdering.scala Maven / Gradle / Ivy
/*
* Scala (https://www.scala-lang.org)
*
* Copyright EPFL and Lightbend, Inc.
*
* Licensed under Apache License 2.0
* (http://www.apache.org/licenses/LICENSE-2.0).
*
* See the NOTICE file distributed with this work for
* additional information regarding copyright ownership.
*/
package scala
package math
/** A trait for representing partial orderings. It is important to
* distinguish between a type that has a partial order and a representation
* of partial ordering on some type. This trait is for representing the
* latter.
*
* A [[http://en.wikipedia.org/wiki/Partially_ordered_set partial ordering]] is a
* binary relation on a type `T`, exposed as the `lteq` method of this trait.
* This relation must be:
*
* - reflexive: `lteq(x, x) == '''true'''`, for any `x` of type `T`.
* - anti-symmetric: if `lteq(x, y) == '''true'''` and
* `lteq(y, x) == '''true'''`
* then `equiv(x, y) == '''true'''`, for any `x` and `y` of type `T`.
* - transitive: if `lteq(x, y) == '''true'''` and
* `lteq(y, z) == '''true'''` then `lteq(x, z) == '''true'''`,
* for any `x`, `y`, and `z` of type `T`.
*
* Additionally, a partial ordering induces an
* [[http://en.wikipedia.org/wiki/Equivalence_relation equivalence relation]]
* on a type `T`: `x` and `y` of type `T` are equivalent if and only if
* `lteq(x, y) && lteq(y, x) == '''true'''`. This equivalence relation is
* exposed as the `equiv` method, inherited from the
* [[scala.math.Equiv Equiv]] trait.
*/
trait PartialOrdering[T] extends Equiv[T] {
outer =>
/** Result of comparing `x` with operand `y`.
* Returns `None` if operands are not comparable.
* If operands are comparable, returns `Some(r)` where
* - `r < 0` iff `x < y`
* - `r == 0` iff `x == y`
* - `r > 0` iff `x > y`
*/
def tryCompare(x: T, y: T): Option[Int]
/** Returns `'''true'''` iff `x` comes before `y` in the ordering.
*/
def lteq(x: T, y: T): Boolean
/** Returns `'''true'''` iff `y` comes before `x` in the ordering.
*/
def gteq(x: T, y: T): Boolean = lteq(y, x)
/** Returns `'''true'''` iff `x` comes before `y` in the ordering
* and is not the same as `y`.
*/
def lt(x: T, y: T): Boolean = lteq(x, y) && !equiv(x, y)
/** Returns `'''true'''` iff `y` comes before `x` in the ordering
* and is not the same as `x`.
*/
def gt(x: T, y: T): Boolean = gteq(x, y) && !equiv(x, y)
/** Returns `'''true'''` iff `x` is equivalent to `y` in the ordering.
*/
def equiv(x: T, y: T): Boolean = lteq(x,y) && lteq(y,x)
def reverse : PartialOrdering[T] = new PartialOrdering[T] {
override def reverse = outer
def tryCompare(x: T, y: T) = outer.tryCompare(y, x)
def lteq(x: T, y: T) = outer.lteq(y, x)
override def gteq(x: T, y: T) = outer.gteq(y, x)
override def lt(x: T, y: T) = outer.lt(y, x)
override def gt(x: T, y: T) = outer.gt(y, x)
override def equiv(x: T, y: T) = outer.equiv(y, x)
}
}
object PartialOrdering {
@inline def apply[T](implicit ev: PartialOrdering[T]): PartialOrdering[T] = ev
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy