
dotty.tools.dotc.cc.CaptureSet.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scala3-compiler_3 Show documentation
Show all versions of scala3-compiler_3 Show documentation
scala3-compiler-bootstrapped
package dotty.tools
package dotc
package cc
import core.*
import Types.*, Symbols.*, Flags.*, Contexts.*, Decorators.*
import config.Printers.{capt, captDebug}
import Annotations.Annotation
import annotation.threadUnsafe
import annotation.constructorOnly
import annotation.internal.sharable
import reporting.trace
import printing.{Showable, Printer}
import printing.Texts.*
import util.{SimpleIdentitySet, Property}
import typer.ErrorReporting.Addenda
import util.common.alwaysTrue
import scala.collection.{mutable, immutable}
import CCState.*
import TypeOps.AvoidMap
import compiletime.uninitialized
/** A class for capture sets. Capture sets can be constants or variables.
* Capture sets support inclusion constraints <:< where <:< is subcapturing.
*
* They also allow
* - mapping with functions from elements to capture sets
* - filtering with predicates on elements
* - intersecting wo capture sets
*
* That is, constraints can be of the forms
*
* cs1 <:< cs2
* cs1 = ∪ {f(x) | x ∈ cs2} where f is a function from capture references to capture sets.
* cs1 = ∪ {x | x ∈ cs2, p(x)} where p is a predicate on capture references
* cs1 = cs2 ∩ cs2
*
* We call the resulting constraint system "monadic set constraints".
* To support capture propagation across maps, mappings are supported only
* if the mapped function is either a bijection or if it is idempotent
* on capture references (c.f. doc comment on `map` below).
*/
sealed abstract class CaptureSet extends Showable:
import CaptureSet.*
/** The elements of this capture set. For capture variables,
* the elements known so far.
*/
def elems: Refs
/** Is this capture set constant (i.e. not an unsolved capture variable)?
* Solved capture variables count as constant.
*/
def isConst(using Context): Boolean
/** Is this capture set always empty? For unsolved capture veriables, returns
* always false.
*/
def isAlwaysEmpty(using Context): Boolean
/** Is this set provisionally solved, so that another cc run might unfreeze it? */
def isProvisionallySolved(using Context): Boolean
/** An optional level limit, or undefinedLevel if none exists. All elements of the set
* must be at levels equal or smaller than the level of the set, if it is defined.
*/
def level: Level
/** An optional owner, or NoSymbol if none exists. Used for diagnstics
*/
def owner: Symbol
/** Is this capture set definitely non-empty? */
final def isNotEmpty: Boolean = !elems.isEmpty
/** Convert to Const. @pre: isConst */
def asConst(using Context): Const = this match
case c: Const => c
case v: Var =>
assert(v.isConst)
Const(v.elems)
/** Cast to variable. @pre: !isConst */
def asVar(using Context): Var =
assert(!isConst)
asInstanceOf[Var]
/** Convert to Const with current elements unconditionally */
def toConst: Const = this match
case c: Const => c
case v: Var => Const(v.elems)
/** Does this capture set contain the root reference `cap` as element? */
final def isUniversal(using Context) =
elems.exists(_.isCap)
/** Does this capture set contain a root reference `cap` or `cap.rd` as element? */
final def containsRootCapability(using Context) =
elems.exists(_.isRootCapability)
final def containsCap(using Context) =
elems.exists(_.stripReadOnly.isCap)
final def isReadOnly(using Context): Boolean =
elems.forall(_.isReadOnly)
final def isExclusive(using Context): Boolean =
elems.exists(_.isExclusive)
final def keepAlways: Boolean = this.isInstanceOf[EmptyWithProvenance]
/** Try to include an element in this capture set.
* @param elem The element to be added
* @param origin The set that originated the request, or `empty` if the request came from outside.
*
* If the set already accounts for the element, return OK.
* Otherwise, try to add a new element to the set. This is OK if
* - the set is a variable, and
* - the element is not at a deeper nesting level than the set, and
* - the element can also be added (in mapped/filtered form) to all
* dependent sets.
* If the `origin` is the same as the `source` of the set variable, the
* element might be filtered or mapped according to the class of the variable.
* Otherwise, the element might have to be back-propagated to the source
* of the variable.
*
* If the element itself cannot be added to the set for some reason, and the
* element is not the root capability, try instead to include its underlying
* capture set.
*/
protected def tryInclude(elem: CaptureRef, origin: CaptureSet)(using Context, VarState): CompareResult =
if accountsFor(elem) then CompareResult.OK
else addNewElem(elem)
/** Try to include all element in `refs` to this capture set. */
protected final def tryInclude(newElems: Refs, origin: CaptureSet)(using Context, VarState): CompareResult =
(CompareResult.OK /: newElems): (r, elem) =>
r.andAlso(tryInclude(elem, origin))
/** Add an element to this capture set, assuming it is not already accounted for,
* and omitting any mapping or filtering.
*
* If the element itself cannot be added to the set for some reason, and the
* element is not the root capability, try instead to include its underlying
* capture set.
*/
protected final def addNewElem(elem: CaptureRef)(using ctx: Context, vs: VarState): CompareResult =
if elem.isRootCapability || !vs.isOpen then
addThisElem(elem)
else
addThisElem(elem).orElse:
val underlying = elem.captureSetOfInfo
tryInclude(underlying.elems, this).andAlso:
underlying.addDependent(this)
CompareResult.OK
/** Add new elements one by one using `addNewElem`, abort on first failure */
protected final def addNewElems(newElems: Refs)(using Context, VarState): CompareResult =
(CompareResult.OK /: newElems): (r, elem) =>
r.andAlso(addNewElem(elem))
/** Add a specific element, assuming it is not already accounted for,
* and omitting any mapping or filtering, without possibility to backtrack
* to the underlying capture set.
*/
protected def addThisElem(elem: CaptureRef)(using Context, VarState): CompareResult
protected def addIfHiddenOrFail(elem: CaptureRef)(using ctx: Context, vs: VarState): CompareResult =
if elems.exists(_.maxSubsumes(elem, canAddHidden = true))
then CompareResult.OK
else CompareResult.Fail(this :: Nil)
/** If this is a variable, add `cs` as a dependent set */
protected def addDependent(cs: CaptureSet)(using Context, VarState): CompareResult
/** If `cs` is a variable, add this capture set as one of its dependent sets */
protected def addAsDependentTo(cs: CaptureSet)(using Context): this.type =
cs.addDependent(this)(using ctx, VarState.Unrecorded)
this
/** {x} <:< this where <:< is subcapturing, but treating all variables
* as frozen.
*/
def accountsFor(x: CaptureRef)(using ctx: Context)(using vs: VarState = VarState.Separate): Boolean =
def debugInfo(using Context) = i"$this accountsFor $x, which has capture set ${x.captureSetOfInfo}"
def test(using Context) = reporting.trace(debugInfo):
elems.exists(_.subsumes(x))
|| // Even though subsumes already follows captureSetOfInfo, this is not enough.
// For instance x: C^{y, z}. Then neither y nor z subsumes x but {y, z} accounts for x.
!x.isRootCapability
&& !x.derivesFrom(defn.Caps_CapSet)
&& !(vs.isSeparating && x.captureSetOfInfo.containsRootCapability)
// in VarState.Separate, don't try to widen to cap since that might succeed with {cap} <: {cap}
&& x.captureSetOfInfo.subCaptures(this, VarState.Separate).isOK
comparer match
case comparer: ExplainingTypeComparer => comparer.traceIndented(debugInfo)(test)
case _ => test
end accountsFor
/** A more optimistic version of accountsFor, which does not take variable supersets
* of the `x` reference into account. A set might account for `x` if it accounts
* for `x` in a state where we assume all supersets of `x` have just the elements
* known at this point. On the other hand if x's capture set has no known elements,
* a set `cs` might account for `x` only if it subsumes `x` or it contains the
* root capability `cap`.
*/
def mightAccountFor(x: CaptureRef)(using Context): Boolean =
reporting.trace(i"$this mightAccountFor $x, ${x.captureSetOfInfo}?", show = true):
CCState.withCapAsRoot: // OK here since we opportunistically choose an alternative which gets checked later
elems.exists(_.subsumes(x)(using ctx)(using VarState.ClosedUnrecorded))
|| !x.isRootCapability
&& {
val elems = x.captureSetOfInfo.elems
!elems.isEmpty && elems.forall(mightAccountFor)
}
/** A more optimistic version of subCaptures used to choose one of two typing rules
* for selections and applications. `cs1 mightSubcapture cs2` if `cs2` might account for
* every element currently known to be in `cs1`, and the same is not true in reverse
* when we compare elements of cs2 vs cs1.
*/
def mightSubcapture(that: CaptureSet)(using Context): Boolean =
elems.forall(that.mightAccountFor)
&& !that.elems.forall(this.mightAccountFor)
/** The subcapturing test, taking an explicit VarState. */
final def subCaptures(that: CaptureSet, vs: VarState)(using Context): CompareResult =
subCaptures(that)(using ctx, vs)
/** The subcapturing test, using a given VarState */
final def subCaptures(that: CaptureSet)(using ctx: Context, vs: VarState = VarState()): CompareResult =
val result = that.tryInclude(elems, this)
if result.isOK then
addDependent(that)
else
result.levelError.foreach(ccState.addNote)
varState.rollBack()
result
//.showing(i"subcaptures $this <:< $that = ${result.show}", capt)
/** Two capture sets are considered =:= equal if they mutually subcapture each other
* in a frozen state.
*/
def =:= (that: CaptureSet)(using Context): Boolean =
this.subCaptures(that, VarState.Separate).isOK
&& that.subCaptures(this, VarState.Separate).isOK
/** The smallest capture set (via <:<) that is a superset of both
* `this` and `that`
*/
def ++ (that: CaptureSet)(using Context): CaptureSet =
if this.subCaptures(that, VarState.HardSeparate).isOK then
if that.isAlwaysEmpty && this.keepAlways then this else that
else if that.subCaptures(this, VarState.HardSeparate).isOK then this
else if this.isConst && that.isConst then Const(this.elems ++ that.elems)
else Union(this, that)
def ++ (that: CaptureSet.Const)(using Context): CaptureSet.Const =
Const(this.elems ++ that.elems)
/** The smallest superset (via <:<) of this capture set that also contains `ref`.
*/
def + (ref: CaptureRef)(using Context): CaptureSet =
this ++ ref.singletonCaptureSet
/** The largest capture set (via <:<) that is a subset of both `this` and `that`
*/
def **(that: CaptureSet)(using Context): CaptureSet =
if this.subCaptures(that, VarState.Closed()).isOK then this
else if that.subCaptures(this, VarState.Closed()).isOK then that
else if this.isConst && that.isConst then Const(elemIntersection(this, that))
else Intersection(this, that)
/** The largest subset (via <:<) of this capture set that does not account for
* any of the elements in the constant capture set `that`
*/
def -- (that: CaptureSet.Const)(using Context): CaptureSet =
if this.isConst then
val elems1 = elems.filter(!that.accountsFor(_))
if elems1.size == elems.size then this else Const(elems1)
else
if that.isAlwaysEmpty then this else Diff(asVar, that)
/** The largest subset (via <:<) of this capture set that does not account for `ref` */
def - (ref: CaptureRef)(using Context): CaptureSet =
this -- ref.singletonCaptureSet
/** The largest subset (via <:<) of this capture set that only contains elements
* for which `p` is true.
*/
def filter(p: Context ?=> CaptureRef => Boolean)(using Context): CaptureSet =
if this.isConst then
val elems1 = elems.filter(p)
if elems1 == elems then this
else Const(elems.filter(p))
else
this match
case self: Filtered => Filtered(self.source, ref => self.p(ref) && p(ref))
case _ => Filtered(asVar, p)
/** Capture set obtained by applying `tm` to all elements of the current capture set
* and joining the results. If the current capture set is a variable we handle this as
* follows:
* - If the map is a BiTypeMap, the same transformation is applied to all
* future additions of new elements. We try to fuse with previous maps to
* avoid long paths of BiTypeMapped sets.
* - If the map is some other map that maps the current set of elements
* to itself, return the current var. We implicitly assume that the map
* will also map any elements added in the future to themselves. This assumption
* can be tested to hold by setting the ccConfig.checkSkippedMaps setting to true.
* - If the map is some other map that does not map all elements to themselves,
* freeze the current set (i.e. make it porvisionally solved) and return
* the mapped elements as a constant set.
*/
def map(tm: TypeMap)(using Context): CaptureSet =
tm match
case tm: BiTypeMap =>
val mappedElems = elems.map(tm.forward)
if isConst then
if mappedElems == elems then this
else Const(mappedElems)
else if ccState.mapFutureElems then
def unfused = BiMapped(asVar, tm, mappedElems)
this match
case self: BiMapped => self.bimap.fuse(tm) match
case Some(fused: BiTypeMap) => BiMapped(self.source, fused, mappedElems)
case _ => unfused
case _ => unfused
else this
case tm: IdentityCaptRefMap =>
this
case tm: AvoidMap if this.isInstanceOf[HiddenSet] =>
this
case _ =>
val mapped = mapRefs(elems, tm, tm.variance)
if mapped.elems == elems then
if ccConfig.checkSkippedMaps && !isConst then asVar.skippedMaps += tm
this
else
if !isConst then asVar.markSolved(provisional = true)
mapped
/** A mapping resulting from substituting parameters of a BindingType to a list of types */
def substParams(tl: BindingType, to: List[Type])(using Context) =
map(Substituters.SubstParamsMap(tl, to))
def maybe(using Context): CaptureSet = map(MaybeMap())
def readOnly(using Context): CaptureSet = map(ReadOnlyMap())
/** Invoke handler if this set has (or later aquires) the root capability `cap` */
def disallowRootCapability(handler: () => Context ?=> Unit)(using Context): this.type =
if containsRootCapability then handler()
this
/** Invoke handler on the elements to ensure wellformedness of the capture set.
* The handler might add additional elements to the capture set.
*/
def ensureWellformed(handler: CaptureRef => Context ?=> Unit)(using Context): this.type =
elems.foreach(handler(_))
this
/** An upper approximation of this capture set, i.e. a constant set that is
* subcaptured by this set. If the current set is a variable
* it is the intersection of all upper approximations of known supersets
* of the variable.
* The upper approximation is meaningful only if it is constant. If not,
* `upperApprox` can return an arbitrary capture set variable.
* `upperApprox` is used in `solve`.
*/
protected def upperApprox(origin: CaptureSet)(using Context): CaptureSet
/** Assuming set this set dependds on was just solved to be constant, propagate this info
* to this set. This might result in the set being solved to be constant
* itself.
*/
protected def propagateSolved(provisional: Boolean)(using Context): Unit = ()
/** This capture set with a description that tells where it comes from */
def withDescription(description: String): CaptureSet
/** The provided description (set via `withDescription`) for this capture set or else "" */
def description: String
/** More info enabled by -Y flags */
def optionalInfo(using Context): String = ""
/** A regular @retains or @retainsByName annotation with the elements of this set as arguments. */
def toRegularAnnotation(cls: Symbol)(using Context): Annotation =
Annotation(CaptureAnnotation(this, boxed = false)(cls).tree)
override def toText(printer: Printer): Text =
printer.toTextCaptureSet(this) ~~ description
/** Apply function `f` to the elements. Typically used for printing.
* Overridden in HiddenSet so that we don't run into infinite recursions
*/
def processElems[T](f: Refs => T): T = f(elems)
object CaptureSet:
type Refs = SimpleIdentitySet[CaptureRef]
type Vars = SimpleIdentitySet[Var]
type Deps = SimpleIdentitySet[CaptureSet]
/** If set to `true`, capture stack traces that tell us where sets are created */
private final val debugSets = false
val emptyRefs: Refs = SimpleIdentitySet.empty
/** The empty capture set `{}` */
val empty: CaptureSet.Const = Const(emptyRefs)
/** The universal capture set `{cap}` */
def universal(using Context): CaptureSet =
root.cap.singletonCaptureSet
/** The same as CaptureSet.universal but generated implicitly for
* references of Capability subtypes
*/
def universalImpliedByCapability(using Context) =
defn.universalCSImpliedByCapability
def fresh(owner: Symbol = NoSymbol)(using Context): CaptureSet =
root.Fresh.withOwner(owner).singletonCaptureSet
/** The shared capture set `{cap.rd}` */
def shared(using Context): CaptureSet =
root.cap.readOnly.singletonCaptureSet
/** Used as a recursion brake */
@sharable private[dotc] val Pending = Const(SimpleIdentitySet.empty)
def apply(elems: CaptureRef*)(using Context): CaptureSet.Const =
if elems.isEmpty then empty
else
for elem <- elems do
assert(elem.isTrackableRef, i"not a trackable ref: $elem")
Const(SimpleIdentitySet(elems*))
def apply(elems: Refs)(using Context): CaptureSet.Const =
if elems.isEmpty then empty else Const(elems)
/** The subclass of constant capture sets with given elements `elems` */
class Const private[CaptureSet] (val elems: Refs, val description: String = "") extends CaptureSet:
def isConst(using Context) = true
def isAlwaysEmpty(using Context) = elems.isEmpty
def isProvisionallySolved(using Context) = false
def addThisElem(elem: CaptureRef)(using Context, VarState): CompareResult =
val res = addIfHiddenOrFail(elem)
if !res.isOK && this.isProvisionallySolved then
println(i"Cannot add $elem to provisionally solved $this")
res
def addDependent(cs: CaptureSet)(using Context, VarState) = CompareResult.OK
def upperApprox(origin: CaptureSet)(using Context): CaptureSet = this
def withDescription(description: String): Const = Const(elems, description)
def level = undefinedLevel
def owner = NoSymbol
override def toString = elems.toString
end Const
case class EmptyWithProvenance(ref: CaptureRef, mapped: Type) extends Const(SimpleIdentitySet.empty):
override def optionalInfo(using Context): String =
if ctx.settings.YccDebug.value
then i" under-approximating the result of mapping $ref to $mapped"
else ""
/** A special capture set that gets added to the types of symbols that were not
* themselves capture checked, in order to admit arbitrary corresponding capture
* sets in subcapturing comparisons. Similar to platform types for explicit
* nulls, this provides more lenient checking against compilation units that
* were not yet compiled with capture checking on.
*/
object Fluid extends Const(emptyRefs):
override def isAlwaysEmpty(using Context) = false
override def addThisElem(elem: CaptureRef)(using Context, VarState) = CompareResult.OK
override def accountsFor(x: CaptureRef)(using Context)(using VarState): Boolean = true
override def mightAccountFor(x: CaptureRef)(using Context): Boolean = true
override def toString = ""
end Fluid
/** The subclass of captureset variables with given initial elements */
class Var(initialOwner: Symbol = NoSymbol, initialElems: Refs = emptyRefs, val level: Level = undefinedLevel, underBox: Boolean = false)(using @constructorOnly ictx: Context) extends CaptureSet:
override def owner = initialOwner
/** A unique identification number for diagnostics */
val id =
val ccs = ccState
ccs.varId += 1
ccs.varId
//assert(id != 40)
/** A variable is solved if it is aproximated to a from-then-on constant set.
* Interpretation:
* 0 not solved
* Int.MaxValue definitively solved
* n > 0 provisionally solved in iteration n
*/
private var solved: Int = 0
/** The elements currently known to be in the set */
protected var myElems: Refs = initialElems
def elems: Refs = myElems
def elems_=(refs: Refs): Unit = myElems = refs
/** The sets currently known to be dependent sets (i.e. new additions to this set
* are propagated to these dependent sets.)
*/
var deps: Deps = SimpleIdentitySet.empty
def isConst(using Context) = solved >= ccState.iterationId
def isAlwaysEmpty(using Context) = isConst && elems.isEmpty
def isProvisionallySolved(using Context): Boolean = solved > 0 && solved != Int.MaxValue
def isMaybeSet = false // overridden in BiMapped
/** A handler to be invoked if the root reference `cap` is added to this set */
var rootAddedHandler: () => Context ?=> Unit = () => ()
private[CaptureSet] var noUniversal = false
/** A handler to be invoked when new elems are added to this set */
var newElemAddedHandler: CaptureRef => Context ?=> Unit = _ => ()
var description: String = ""
/** Record current elements in given VarState provided it does not yet
* contain an entry for this variable.
*/
private def recordElemsState()(using VarState): Boolean =
varState.getElems(this) match
case None => varState.putElems(this, elems)
case _ => true
/** Record current dependent sets in given VarState provided it does not yet
* contain an entry for this variable.
*/
private[CaptureSet] def recordDepsState()(using VarState): Boolean =
varState.getDeps(this) match
case None => varState.putDeps(this, deps)
case _ => true
/** Reset elements to what was recorded in `state` */
def resetElems()(using state: VarState): Unit =
elems = state.elems(this)
/** Reset dependent sets to what was recorded in `state` */
def resetDeps()(using state: VarState): Unit =
deps = state.deps(this)
/** Check that all maps recorded in skippedMaps map `elem` to itself
* or something subsumed by it.
*/
private def checkSkippedMaps(elem: CaptureRef)(using Context): Unit =
for tm <- skippedMaps do
val elem1 = tm(elem)
for elem1 <- tm(elem).captureSet.elems do
assert(elem.subsumes(elem1),
i"Skipped map ${tm.getClass} maps newly added $elem to $elem1 in $this")
final def addThisElem(elem: CaptureRef)(using Context, VarState): CompareResult =
if isConst || !recordElemsState() then // Fail if variable is solved or given VarState is frozen
addIfHiddenOrFail(elem)
else if !levelOK(elem) then
CompareResult.LevelError(this, elem) // or `elem` is not visible at the level of the set.
else
// id == 108 then assert(false, i"trying to add $elem to $this")
assert(elem.isTrackableRef, elem)
assert(!this.isInstanceOf[HiddenSet] || summon[VarState].isSeparating, summon[VarState])
elems += elem
if elem.isRootCapability then
rootAddedHandler()
newElemAddedHandler(elem)
val normElem = if isMaybeSet then elem else elem.stripMaybe
// assert(id != 5 || elems.size != 3, this)
val res = (CompareResult.OK /: deps): (r, dep) =>
r.andAlso(dep.tryInclude(normElem, this))
if ccConfig.checkSkippedMaps && res.isOK then checkSkippedMaps(elem)
res.orElse:
elems -= elem
res.addToTrace(this)
private def isPartOf(binder: Type)(using Context): Boolean =
val find = new TypeAccumulator[Boolean]:
def apply(b: Boolean, t: Type) =
b || t.match
case CapturingType(p, refs) => (refs eq Var.this) || this(b, p)
case _ => foldOver(b, t)
find(false, binder)
// TODO: Also track allowable TermParamRefs and root.Results in capture sets
private def levelOK(elem: CaptureRef)(using Context): Boolean =
if elem.isRootCapability then
!noUniversal
else elem match
case elem @ root.Result(mt) =>
!noUniversal && isPartOf(mt.resType)
case elem: TermRef if level.isDefined =>
elem.prefix match
case prefix: CaptureRef =>
levelOK(prefix)
case _ =>
ccState.symLevel(elem.symbol) <= level
case elem: ThisType if level.isDefined =>
ccState.symLevel(elem.cls).nextInner <= level
case elem: ParamRef if !this.isInstanceOf[BiMapped] =>
isPartOf(elem.binder.resType)
|| {
capt.println(
i"""LEVEL ERROR $elem for $this
|elem binder = ${elem.binder}""")
false
}
case ReachCapability(elem1) =>
levelOK(elem1)
case ReadOnlyCapability(elem1) =>
levelOK(elem1)
case MaybeCapability(elem1) =>
levelOK(elem1)
case _ =>
true
def addDependent(cs: CaptureSet)(using Context, VarState): CompareResult =
if (cs eq this) || cs.isUniversal || isConst then
CompareResult.OK
else if recordDepsState() then
deps += cs
CompareResult.OK
else
CompareResult.Fail(this :: Nil)
override def disallowRootCapability(handler: () => Context ?=> Unit)(using Context): this.type =
noUniversal = true
rootAddedHandler = handler
super.disallowRootCapability(handler)
override def ensureWellformed(handler: CaptureRef => (Context) ?=> Unit)(using Context): this.type =
newElemAddedHandler = handler
super.ensureWellformed(handler)
private var computingApprox = false
/** Roughly: the intersection of all constant known supersets of this set.
* The aim is to find an as-good-as-possible constant set that is a superset
* of this set. The universal set {cap} is a sound fallback.
*/
final def upperApprox(origin: CaptureSet)(using Context): CaptureSet =
if isConst then
this
else if isUniversal || computingApprox then
universal
else if containsCap && isReadOnly then
shared
else
computingApprox = true
try
val approx = computeApprox(origin).ensuring(_.isConst)
if approx.elems.exists:
case root.Result(_) => true
case _ => false
then
ccState.approxWarnings +=
em"""Capture set variable $this gets upper-approximated
|to existential variable from $approx, using {cap} instead."""
universal
else approx
finally computingApprox = false
/** The intersection of all upper approximations of dependent sets */
protected def computeApprox(origin: CaptureSet)(using Context): CaptureSet =
(universal /: deps) { (acc, sup) => acc ** sup.upperApprox(this) }
/** Widen the variable's elements to its upper approximation and
* mark it as constant from now on. This is used for contra-variant type variables
* in the results of defs and vals.
*/
def solve()(using Context): Unit =
CCState.withCapAsRoot: // // OK here since we infer parameter types that get checked later
val approx = upperApprox(empty)
.map(root.CapToFresh(NoSymbol).inverse) // Fresh --> cap
.showing(i"solve $this = $result", capt)
//println(i"solving var $this $approx ${approx.isConst} deps = ${deps.toList}")
val newElems = approx.elems -- elems
given VarState()
if tryInclude(newElems, empty).isOK then
markSolved(provisional = false)
/** Mark set as solved and propagate this info to all dependent sets */
def markSolved(provisional: Boolean)(using Context): Unit =
solved = if provisional then ccState.iterationId else Int.MaxValue
deps.foreach(_.propagateSolved(provisional))
var skippedMaps: Set[TypeMap] = Set.empty
def withDescription(description: String): this.type =
this.description = this.description.join(" and ", description)
this
/** Adds variables to the ShownVars context property if that exists, which
* establishes a record of all variables printed in an error message.
* Returns variable `ids` under -Ycc-debug, and owner/nesting level info
* under -Yprint-level.
*/
override def optionalInfo(using Context): String =
for vars <- ctx.property(ShownVars) do vars += this
val debugInfo =
if !ctx.settings.YccDebug.value then ""
else if isConst then ids ++ "(solved)"
else ids
val limitInfo =
if ctx.settings.YprintLevel.value && level.isDefined
then i""
else ""
debugInfo ++ limitInfo
/** Used for diagnostics and debugging: A string that traces the creation
* history of a variable by following source links. Each variable on the
* path is characterized by the variable's id and the first letter of the
* variable's class name. The path ends in a plain variable with letter `V` that
* is not derived from some other variable.
*/
protected def ids(using Context): String =
def descr = getClass.getSimpleName.nn.take(1)
val trail = this.match
case dv: DerivedVar =>
def summary = if ctx.settings.YccVerbose.value then dv.summarize else descr
s"$summary${dv.source.ids}"
case _ => descr
s"$id$trail"
override def toString = s"Var$id$elems"
end Var
/** Variables that represent refinements of class parameters can have the universal
* capture set, since they represent only what is the result of the constructor.
* Test case: Without that tweak, logger.scala would not compile.
*/
class RefiningVar(owner: Symbol)(using Context) extends Var(owner):
override def disallowRootCapability(handler: () => Context ?=> Unit)(using Context) = this
/** A variable that is derived from some other variable via a map or filter. */
abstract class DerivedVar(owner: Symbol, initialElems: Refs)(using @constructorOnly ctx: Context)
extends Var(owner, initialElems):
// For debugging: A trace where a set was created. Note that logically it would make more
// sense to place this variable in BiMapped, but that runs afoul of the initializatuon checker.
// val stack = if debugSets && this.isInstanceOf[BiMapped] then (new Throwable).getStackTrace().nn.take(20) else null
/** The variable from which this variable is derived */
def source: Var
addAsDependentTo(source)
override def propagateSolved(provisional: Boolean)(using Context) =
if source.isConst && !isConst then markSolved(provisional)
// ----------- Longest path recording -------------------------
/** Summarize for set displaying in a path */
def summarize: String = getClass.toString
/** The length of the path of DerivedVars ending in this set */
def pathLength: Int = source match
case source: DerivedVar => source.pathLength + 1
case _ => 1
/** The path of DerivedVars ending in this set */
def path: List[DerivedVar] = source match
case source: DerivedVar => this :: source.path
case _ => this :: Nil
if ctx.settings.YccLog.value || util.Stats.enabled then
ctx.run.nn.recordPath(pathLength, path)
end DerivedVar
/** A mapping where the type map is required to be a bijection.
* Parameters as in Mapped.
*/
final class BiMapped private[CaptureSet]
(val source: Var, val bimap: BiTypeMap, initialElems: Refs)(using @constructorOnly ctx: Context)
extends DerivedVar(source.owner, initialElems):
override def tryInclude(elem: CaptureRef, origin: CaptureSet)(using Context, VarState): CompareResult =
if origin eq source then
val mappedElem = bimap.forward(elem)
if accountsFor(mappedElem) then CompareResult.OK
else addNewElem(mappedElem)
else if accountsFor(elem) then
CompareResult.OK
else
try
source.tryInclude(bimap.backward(elem), this)
.showing(i"propagating new elem $elem backward from $this to $source = $result", captDebug)
.andAlso(addNewElem(elem))
catch case ex: AssertionError =>
println(i"fail while tryInclude $elem of ${elem.getClass} in $this / ${this.summarize}")
throw ex
/** For a BiTypeMap, supertypes of the mapped type also constrain
* the source via the inverse type mapping and vice versa. That is, if
* B = f(A) and B <: C, then A <: f^-1(C), so C should flow into
* the upper approximation of A.
* Conversely if A <: C2, then we also know that B <: f(C2).
* These situations are modeled by the two branches of the conditional below.
*/
override def computeApprox(origin: CaptureSet)(using Context): CaptureSet =
val supApprox = super.computeApprox(this)
if source eq origin then supApprox.map(bimap.inverse)
else source.upperApprox(this).map(bimap) ** supApprox
override def isMaybeSet: Boolean = bimap.isInstanceOf[MaybeMap]
override def toString = s"BiMapped$id($source, elems = $elems)"
override def summarize = bimap.getClass.toString
end BiMapped
/** A variable with elements given at any time as { x <- source.elems | p(x) } */
class Filtered private[CaptureSet]
(val source: Var, val p: Context ?=> CaptureRef => Boolean)(using @constructorOnly ctx: Context)
extends DerivedVar(source.owner, source.elems.filter(p)):
override def tryInclude(elem: CaptureRef, origin: CaptureSet)(using Context, VarState): CompareResult =
if accountsFor(elem) then
CompareResult.OK
else if origin eq source then
if p(elem) then addNewElem(elem)
else CompareResult.OK
else
// Filtered elements have to be back-propagated to source.
// Elements that don't satisfy `p` are not allowed.
if p(elem) then source.tryInclude(elem, this)
else CompareResult.Fail(this :: Nil)
override def computeApprox(origin: CaptureSet)(using Context): CaptureSet =
if source eq origin then
// it's a filter of origin, so not a superset of `origin`,
// therefore don't contribute to the intersection.
universal
else
source.upperApprox(this).filter(p)
override def toString = s"${getClass.getSimpleName}$id($source, elems = $elems)"
end Filtered
/** A variable with elements given at any time as { x <- source.elems | !other.accountsFor(x) } */
class Diff(source: Var, other: Const)(using Context)
extends Filtered(source, !other.accountsFor(_))
class Union(cs1: CaptureSet, cs2: CaptureSet)(using Context)
extends Var(initialElems = cs1.elems ++ cs2.elems):
addAsDependentTo(cs1)
addAsDependentTo(cs2)
override def tryInclude(elem: CaptureRef, origin: CaptureSet)(using Context, VarState): CompareResult =
if accountsFor(elem) then CompareResult.OK
else
val res = super.tryInclude(elem, origin)
// If this is the union of a constant and a variable,
// propagate `elem` to the variable part to avoid slack
// between the operands and the union.
if res.isOK && (origin ne cs1) && (origin ne cs2) then
if cs1.isConst then cs2.tryInclude(elem, origin)
else if cs2.isConst then cs1.tryInclude(elem, origin)
else res
else res
override def propagateSolved(provisional: Boolean)(using Context) =
if cs1.isConst && cs2.isConst && !isConst then markSolved(provisional)
end Union
class Intersection(cs1: CaptureSet, cs2: CaptureSet)(using Context)
extends Var(initialElems = elemIntersection(cs1, cs2)):
addAsDependentTo(cs1)
addAsDependentTo(cs2)
deps += cs1
deps += cs2
override def tryInclude(elem: CaptureRef, origin: CaptureSet)(using Context, VarState): CompareResult =
val present =
if origin eq cs1 then cs2.accountsFor(elem)
else if origin eq cs2 then cs1.accountsFor(elem)
else true
if present && !accountsFor(elem) then addNewElem(elem)
else CompareResult.OK
override def computeApprox(origin: CaptureSet)(using Context): CaptureSet =
if (origin eq cs1) || (origin eq cs2) then
// it's a combination of origin with some other set, so not a superset of `origin`,
// therefore don't contribute to the intersection.
universal
else
CaptureSet(elemIntersection(cs1.upperApprox(this), cs2.upperApprox(this)))
override def propagateSolved(provisional: Boolean)(using Context) =
if cs1.isConst && cs2.isConst && !isConst then markSolved(provisional)
end Intersection
def elemIntersection(cs1: CaptureSet, cs2: CaptureSet)(using Context): Refs =
cs1.elems.filter(cs2.accountsFor) ++ cs2.elems.filter(cs1.accountsFor)
/** A capture set variable used to record the references hidden by a Fresh instance,
* The elems and deps members are repurposed as follows:
* elems: Set of hidden references
* deps : Set of hidden sets for which the Fresh instance owning this set
* is a hidden element.
* Hidden sets may become aliases of other hidden sets, which means that
* reads and writes of elems go to the alias.
* If H is an alias of R.hidden for some Fresh instance R then:
* H.elems == {R}
* H.deps = {R.hidden}
* This encoding was chosen because it relies only on the elems and deps fields
* which are already subject through snapshotting and rollbacks in VarState.
* It's advantageous if we don't need to deal with other pieces of state there.
*/
class HiddenSet(initialOwner: Symbol)(using @constructorOnly ictx: Context)
extends Var(initialOwner):
var owningCap: AnnotatedType = uninitialized
var givenOwner: Symbol = initialOwner
override def owner = givenOwner
// assert(id != 34, i"$initialHidden")
private def aliasRef: AnnotatedType | Null =
if myElems.size == 1 then
myElems.nth(0) match
case al @ root.Fresh(hidden) if deps.contains(hidden) => al
case _ => null
else null
private def aliasSet: HiddenSet =
if myElems.size == 1 then
myElems.nth(0) match
case root.Fresh(hidden) if deps.contains(hidden) => hidden
case _ => this
else this
def superCaps: List[AnnotatedType] =
deps.toList.map(_.asInstanceOf[HiddenSet].owningCap)
override def elems: Refs =
val al = aliasSet
if al eq this then super.elems else al.elems
override def elems_=(refs: Refs) =
val al = aliasSet
if al eq this then super.elems_=(refs) else al.elems_=(refs)
/** Add element to hidden set. Also add it to all supersets (as indicated by
* deps of this set). Follow aliases on both hidden set and added element
* before adding. If the added element is also a Fresh instance with
* hidden set H which is a superset of this set, then make this set an
* alias of H.
*/
def add(elem: CaptureRef)(using ctx: Context, vs: VarState): Unit =
val alias = aliasSet
if alias ne this then alias.add(elem)
else
def addToElems() =
elems += elem
deps.foreach: dep =>
assert(dep != this)
vs.addHidden(dep.asInstanceOf[HiddenSet], elem)
elem match
case root.Fresh(hidden) =>
if this ne hidden then
val alias = hidden.aliasRef
if alias != null then
add(alias)
else if deps.contains(hidden) then // make this an alias of elem
capt.println(i"Alias $this to $hidden")
elems = SimpleIdentitySet(elem)
deps = SimpleIdentitySet(hidden)
else
addToElems()
hidden.deps += this
case _ =>
addToElems()
/** Apply function `f` to `elems` while setting `elems` to empty for the
* duration. This is used to escape infinite recursions if two Freshs
* refer to each other in their hidden sets.
*/
override def processElems[T](f: Refs => T): T =
val savedElems = elems
elems = emptyRefs
try f(savedElems)
finally elems = savedElems
end HiddenSet
/** Extrapolate tm(r) according to `variance`. Let r1 be the result of tm(r).
* - If r1 is a tracked CaptureRef, return {r1}
* - If r1 has an empty capture set, return {}
* - Otherwise,
* - if the variance is covariant, return r1's capture set
* - if the variance is contravariant, return {}
* - Otherwise assertion failure
*/
def extrapolateCaptureRef(r: CaptureRef, tm: TypeMap, variance: Int)(using Context): CaptureSet =
val r1 = tm(r)
val upper = r1.captureSet
def isExact =
upper.isAlwaysEmpty
|| upper.isConst && upper.elems.size == 1 && upper.elems.contains(r1)
|| r.derivesFrom(defn.Caps_CapSet)
if variance > 0 || isExact then upper
else if variance < 0 then CaptureSet.EmptyWithProvenance(r, r1)
else upper.maybe
/** Apply `f` to each element in `xs`, and join result sets with `++` */
def mapRefs(xs: Refs, f: CaptureRef => CaptureSet)(using Context): CaptureSet =
((empty: CaptureSet) /: xs)((cs, x) => cs ++ f(x))
/** Apply extrapolated `tm` to each element in `xs`, and join result sets with `++` */
def mapRefs(xs: Refs, tm: TypeMap, variance: Int)(using Context): CaptureSet =
mapRefs(xs, extrapolateCaptureRef(_, tm, variance))
/** Return true iff
* - arg1 is a TypeBounds >: CL T <: CH T of two capturing types with equal parents.
* - arg2 is a capturing type CA U
* - CH <: CA <: CL
* In other words, we can unify CL, CH and CA.
*/
def subCapturesRange(arg1: TypeBounds, arg2: Type)(using Context): Boolean = arg1 match
case TypeBounds(CapturingType(lo, loRefs), CapturingType(hi, hiRefs)) if lo =:= hi =>
given VarState()
val cs2 = arg2.captureSet
hiRefs.subCaptures(cs2).isOK && cs2.subCaptures(loRefs).isOK
case _ =>
false
/** A TypeMap that is the identity on capture references */
trait IdentityCaptRefMap extends TypeMap
/** A value of this class is produced and added as a note to ccState
* when a subsumes check decides that an existential variable `ex` cannot be
* instantiated to the other capability `other`.
*/
case class ExistentialSubsumesFailure(val ex: root.Result, val other: CaptureRef) extends ErrorNote
trait CompareFailure:
private var myErrorNotes: List[ErrorNote] = Nil
def errorNotes: List[ErrorNote] = myErrorNotes
def withNotes(notes: List[ErrorNote]): this.type =
myErrorNotes = notes
this
enum CompareResult extends Showable:
case OK
case Fail(trace: List[CaptureSet]) extends CompareResult, CompareFailure
case LevelError(cs: CaptureSet, elem: CaptureRef) extends CompareResult, CompareFailure, ErrorNote
override def toText(printer: Printer): Text =
inContext(printer.printerContext):
this match
case OK => Str("OK")
case Fail(trace) =>
if ctx.settings.YccDebug.value then printer.toText(trace, ", ")
else blocking.show
case LevelError(cs: CaptureSet, elem: CaptureRef) =>
Str(i"($elem at wrong level for $cs at level ${cs.level.toString})")
/** The result is OK */
def isOK: Boolean = this == OK
/** If not isOK, the blocking capture set */
def blocking: CaptureSet = (this: @unchecked) match
case Fail(cs) => cs.last
case LevelError(cs, _) => cs
/** Optionally, this result if it is a level error */
def levelError: Option[LevelError] = this match
case result: LevelError => Some(result)
case _ => None
inline def andAlso(op: Context ?=> CompareResult)(using Context): CompareResult =
if isOK then op else this
inline def orElse(op: Context ?=> CompareResult)(using Context): CompareResult =
if isOK then this
else
val alt = op
if alt.isOK then alt
else this
inline def addToTrace(cs: CaptureSet): CompareResult = this match
case Fail(trace) => Fail(cs :: trace)
case _ => this
end CompareResult
/** A VarState serves as a snapshot mechanism that can undo
* additions of elements or super sets if an operation fails
*/
class VarState:
/** A map from captureset variables to their elements at the time of the snapshot. */
private val elemsMap: util.EqHashMap[Var, Refs] = new util.EqHashMap
/** A map from captureset variables to their dependent sets at the time of the snapshot. */
private val depsMap: util.EqHashMap[Var, Deps] = new util.EqHashMap
/** A map from root.Result values to other such values. If two result values
* `a` and `b` are unified, then `eqResultMap(a) = b` and `eqResultMap(b) = a`.
*/
private var eqResultMap: util.SimpleIdentityMap[root.Result, root.Result] = util.SimpleIdentityMap.empty
/** A snapshot of the `eqResultMap` value at the start of a VarState transaction */
private var eqResultSnapshot: util.SimpleIdentityMap[root.Result, root.Result] | Null = null
/** The recorded elements of `v` (it's required that a recording was made) */
def elems(v: Var): Refs = elemsMap(v)
/** Optionally the recorded elements of `v`, None if nothing was recorded for `v` */
def getElems(v: Var): Option[Refs] = elemsMap.get(v)
/** Record elements, return whether this was allowed.
* By default, recording is allowed in regular but not in frozen states.
*/
def putElems(v: Var, elems: Refs): Boolean = { elemsMap(v) = elems; true }
/** The recorded dependent sets of `v` (it's required that a recording was made) */
def deps(v: Var): Deps = depsMap(v)
/** Optionally the recorded dependent sets of `v`, None if nothing was recorded for `v` */
def getDeps(v: Var): Option[Deps] = depsMap.get(v)
/** Record dependent sets, return whether this was allowed.
* By default, recording is allowed in regular but not in frozen states.
*/
def putDeps(v: Var, deps: Deps): Boolean = { depsMap(v) = deps; true }
/** Does this state allow additions of elements to capture set variables? */
def isOpen = true
def isSeparating = false
/** Add element to hidden set, recording it in elemsMap,
* return whether this was allowed. By default, recording is allowed
* but the special state VarState.Separate overrides this.
*/
def addHidden(hidden: HiddenSet, elem: CaptureRef)(using Context): Boolean =
elemsMap.get(hidden) match
case None =>
elemsMap(hidden) = hidden.elems
depsMap(hidden) = hidden.deps
case _ =>
hidden.add(elem)(using ctx, this)
true
/** If root1 and root2 belong to the same binder but have different originalBinders
* it means that one of the roots was mapped to the binder of the other by a
* substBinder when comparing two method types. In that case we can unify
* the two roots1, provided none of the two roots have already been unified
* themselves. So unification must be 1-1.
*/
def unify(root1: root.Result, root2: root.Result)(using Context): Boolean =
(root1, root2) match
case (root1 @ root.Result(binder1), root2 @ root.Result(binder2))
if (binder1 eq binder2)
&& (root1.rootAnnot.originalBinder ne root2.rootAnnot.originalBinder)
&& eqResultMap(root1) == null
&& eqResultMap(root2) == null
=>
if eqResultSnapshot == null then eqResultSnapshot = eqResultMap
eqResultMap = eqResultMap.updated(root1, root2).updated(root2, root1)
true
case _ =>
false
/** Roll back global state to what was recorded in this VarState */
def rollBack(): Unit =
elemsMap.keysIterator.foreach(_.resetElems()(using this))
depsMap.keysIterator.foreach(_.resetDeps()(using this))
if eqResultSnapshot != null then eqResultMap = eqResultSnapshot.nn
private var seen: util.EqHashSet[CaptureRef] = new util.EqHashSet
/** Run test `pred` unless `ref` was seen in an enclosing `ifNotSeen` operation */
def ifNotSeen(ref: CaptureRef)(pred: => Boolean): Boolean =
if seen.add(ref) then
try pred finally seen -= ref
else false
override def toString = "open varState"
object VarState:
/** A class for states that do not allow to record elements or dependent sets.
* In effect this means that no new elements or dependent sets can be added
* in these states (since the previous state cannot be recorded in a snapshot)
* On the other hand, these states do allow by default Fresh instances to
* subsume arbitary types, which are then recorded in their hidden sets.
*/
class Closed extends VarState:
override def putElems(v: Var, refs: Refs) = false
override def putDeps(v: Var, deps: Deps) = false
override def isOpen = false
override def toString = "closed varState"
/** A closed state that allows a Fresh instance to subsume a
* reference `r` only if `r` is already present in the hidden set of the instance.
* No new references can be added.
*/
class Separating extends Closed:
override def addHidden(hidden: HiddenSet, elem: CaptureRef)(using Context): Boolean = false
override def toString = "separating varState"
override def isSeparating = true
/** A closed state that allows a Fresh instance to subsume a
* reference `r` only if `r` is already present in the hidden set of the instance.
* No new references can be added.
*/
def Separate(using Context): Separating = ccState.Separate
/** Like Separate but in addition we assume that `cap` never subsumes anything else.
* Used in `++` to not lose track of dependencies between function parameters.
*/
def HardSeparate(using Context): Separating = ccState.HardSeparate
/** A special state that turns off recording of elements. Used only
* in `addSub` to prevent cycles in recordings. Instantiated in ccState.Unrecorded.
*/
class Unrecorded extends VarState:
override def putElems(v: Var, refs: Refs) = true
override def putDeps(v: Var, deps: Deps) = true
override def rollBack(): Unit = ()
override def addHidden(hidden: HiddenSet, elem: CaptureRef)(using Context): Boolean = true
override def toString = "unrecorded varState"
def Unrecorded(using Context): Unrecorded = ccState.Unrecorded
/** A closed state that turns off recording of hidden elements (but allows
* adding them). Used in `mightAccountFor`. Instantiated in ccState.ClosedUnrecorded.
*/
class ClosedUnrecorded extends Closed:
override def addHidden(hidden: HiddenSet, elem: CaptureRef)(using Context): Boolean = true
override def toString = "closed unrecorded varState"
def ClosedUnrecorded(using Context): ClosedUnrecorded = ccState.ClosedUnrecorded
end VarState
/** The current VarState, as passed by the implicit context */
def varState(using state: VarState): VarState = state
/** A template for maps on capabilities where f(c) <: c and f(f(c)) = c */
private abstract class NarrowingCapabilityMap(using Context) extends BiTypeMap:
def mapRef(ref: CaptureRef): CaptureRef
def apply(t: Type) = t match
case t: CaptureRef if t.isTrackableRef => mapRef(t)
case _ => mapOver(t)
override def fuse(next: BiTypeMap)(using Context) = next match
case next: Inverse if next.inverse.getClass == getClass => assert(false); Some(IdentityTypeMap)
case next: NarrowingCapabilityMap if next.getClass == getClass => assert(false)
case _ => None
class Inverse extends BiTypeMap:
def apply(t: Type) = t // since f(c) <: c, this is the best inverse
def inverse = NarrowingCapabilityMap.this
override def toString = NarrowingCapabilityMap.this.toString ++ ".inverse"
override def fuse(next: BiTypeMap)(using Context) = next match
case next: NarrowingCapabilityMap if next.inverse.getClass == getClass => assert(false); Some(IdentityTypeMap)
case next: NarrowingCapabilityMap if next.getClass == getClass => assert(false)
case _ => None
lazy val inverse = Inverse()
end NarrowingCapabilityMap
/** Maps `x` to `x?` */
private class MaybeMap(using Context) extends NarrowingCapabilityMap:
def mapRef(ref: CaptureRef): CaptureRef = ref.maybe
override def toString = "Maybe"
/** Maps `x` to `x.rd` */
private class ReadOnlyMap(using Context) extends NarrowingCapabilityMap:
def mapRef(ref: CaptureRef): CaptureRef = ref.readOnly
override def toString = "ReadOnly"
/* Not needed:
def ofClass(cinfo: ClassInfo, argTypes: List[Type])(using Context): CaptureSet =
CaptureSet.empty
def captureSetOf(tp: Type): CaptureSet = tp match
case tp: TypeRef if tp.symbol.is(ParamAccessor) =>
def mapArg(accs: List[Symbol], tps: List[Type]): CaptureSet = accs match
case acc :: accs1 if tps.nonEmpty =>
if acc == tp.symbol then tps.head.captureSet
else mapArg(accs1, tps.tail)
case _ =>
empty
mapArg(cinfo.cls.paramAccessors, argTypes)
case _ =>
tp.captureSet
val css =
for
parent <- cinfo.parents if parent.classSymbol == defn.RetainingClass
arg <- parent.argInfos
yield captureSetOf(arg)
css.foldLeft(empty)(_ ++ _)
*/
/** The capture set of the type underlying CaptureRef */
def ofInfo(ref: CaptureRef)(using Context): CaptureSet = ref match
case ReachCapability(ref1) =>
ref1.widen.deepCaptureSet(includeTypevars = true)
.showing(i"Deep capture set of $ref: ${ref1.widen} = ${result}", capt)
case ReadOnlyCapability(ref1) =>
ref1.captureSetOfInfo.map(ReadOnlyMap())
case ref: ParamRef if !ref.underlying.exists =>
// might happen during construction of lambdas, assume `{cap}` in this case so that
// `ref` will not seem subsumed by other capabilities in a `++`.
universal
case _ =>
if ref.isRootCapability then ref.singletonCaptureSet
else ofType(ref.underlying, followResult = false)
/** Capture set of a type
* @param followResult If true, also include capture sets of function results.
* This mode is currently not used. It could be interesting
* when we change the system so that the capture set of a function
* is the union of the capture sets if its span.
* In this case we should use `followResult = true` in the call in ofInfo above.
*/
def ofType(tp: Type, followResult: Boolean)(using Context): CaptureSet =
def recur(tp: Type): CaptureSet = trace(i"ofType $tp, ${tp.getClass} $followResult", show = true):
tp.dealiasKeepAnnots match
case tp: TermRef =>
tp.captureSet
case tp: TermParamRef =>
tp.captureSet
case tp: (TypeRef | TypeParamRef) =>
if tp.derivesFrom(defn.Caps_CapSet) then tp.captureSet
else empty
case tp @ root.Result(_) =>
tp.captureSet
case CapturingType(parent, refs) =>
recur(parent) ++ refs
case tp @ AnnotatedType(parent, ann) if ann.hasSymbol(defn.ReachCapabilityAnnot) =>
// Note: we don't use the `ReachCapability(parent)` extractor here since that
// only works if `parent` is a CaptureRef, but in illegal programs it might not be.
// And then we do not want to fall back to empty.
parent match
case parent: SingletonCaptureRef if parent.isTrackableRef =>
tp.singletonCaptureSet
case _ =>
CaptureSet.ofTypeDeeply(parent.widen)
case tpd @ defn.RefinedFunctionOf(rinfo: MethodType) if followResult =>
ofType(tpd.parent, followResult = false) // pick up capture set from parent type
++ recur(rinfo.resType) // add capture set of result
.filter:
case TermParamRef(binder, _) => binder ne rinfo
case root.Result(binder) => binder ne rinfo
case _ => true
case tpd @ AppliedType(tycon, args) =>
if followResult && defn.isNonRefinedFunction(tpd) then
recur(args.last)
// must be (pure) FunctionN type since ImpureFunctions have already
// been eliminated in selector's dealias. Use capture set of result.
else
val cs = recur(tycon)
tycon.typeParams match
case tparams @ (LambdaParam(tl, _) :: _) => cs.substParams(tl, args)
case _ => cs
case tp: TypeProxy =>
recur(tp.superType)
case AndType(tp1, tp2) =>
recur(tp1) ** recur(tp2)
case OrType(tp1, tp2) =>
recur(tp1) ++ recur(tp2)
case _ =>
empty
recur(tp)
//.showing(i"capture set of $tp = $result", captDebug)
/** The deep capture set of a type is the union of all covariant occurrences of
* capture sets. Nested existential sets are approximated with `cap`.
*/
def ofTypeDeeply(tp: Type, includeTypevars: Boolean = false)(using Context): CaptureSet =
val collect = new DeepTypeAccumulator[CaptureSet]:
def capturingCase(acc: CaptureSet, parent: Type, refs: CaptureSet) =
this(acc, parent) ++ refs
def abstractTypeCase(acc: CaptureSet, t: TypeRef, upperBound: Type) =
if includeTypevars && upperBound.isExactlyAny then CaptureSet.fresh(t.symbol)
else this(acc, upperBound)
collect(CaptureSet.empty, tp)
type AssumedContains = immutable.Map[TypeRef, SimpleIdentitySet[CaptureRef]]
val AssumedContains: Property.Key[AssumedContains] = Property.Key()
def assumedContains(using Context): AssumedContains =
ctx.property(AssumedContains).getOrElse(immutable.Map.empty)
private val ShownVars: Property.Key[mutable.Set[Var]] = Property.Key()
/** Perform `op`. Under -Ycc-debug, collect and print info about all variables reachable
* via `(_.deps)*` from the variables that were shown in `op`.
*/
def withCaptureSetsExplained[T](op: Context ?=> T)(using ctx: Context): T =
if ctx.settings.YccDebug.value then
val shownVars = mutable.Set[Var]()
inContext(ctx.withProperty(ShownVars, Some(shownVars))) {
try op
finally
val reachable = mutable.Set[Var]()
val todo = mutable.Queue[Var]() ++= shownVars
def incl(cv: Var): Unit =
if !reachable.contains(cv) then todo += cv
while todo.nonEmpty do
val cv = todo.dequeue()
if !reachable.contains(cv) then
reachable += cv
cv.deps.foreach {
case cv: Var => incl(cv)
case _ =>
}
cv match
case cv: DerivedVar => incl(cv.source)
case _ =>
val allVars = reachable.toArray.sortBy(_.id)
println(i"Capture set dependencies:")
for cv <- allVars do
println(i" ${cv.show.padTo(20, ' ')} :: ${cv.deps.toList}%, %")
}
else op
end CaptureSet
© 2015 - 2025 Weber Informatics LLC | Privacy Policy