scala.scalanative.nscplugin.NirGenExpr.scala Maven / Gradle / Ivy
package scala.scalanative
package nscplugin
import scala.language.implicitConversions
import scala.annotation.{tailrec, switch}
import dotty.tools.dotc.ast
import ast.tpd._
import dotty.tools.backend.ScalaPrimitivesOps._
import dotty.tools.dotc.core
import core.Contexts._
import core.Symbols._
import core.Names._
import core.Types._
import core.Constants._
import core.StdNames._
import core.Flags._
import core.Denotations._
import core.SymDenotations._
import core.TypeErasure.ErasedValueType
import core._
import dotty.tools.FatalError
import dotty.tools.dotc.report
import dotty.tools.dotc.transform
import dotty.tools.dotc.util.Spans.*
import transform.{ValueClasses, Erasure}
import dotty.tools.backend.jvm.DottyBackendInterface.symExtensions
import scala.scalanative.nscplugin.CompilerCompat.SymUtilsCompat.*
import scala.scalanative.nir.Defn.Define.DebugInfo
import scala.scalanative.util.ScopedVar.scoped
import scala.scalanative.util.unsupported
import scala.scalanative.util.StringUtils
import dotty.tools.dotc.ast.desugar
import dotty.tools.dotc.util.Property
import scala.scalanative.nscplugin.NirDefinitions.NonErasedType
import scala.scalanative.util.unreachable
trait NirGenExpr(using Context) {
self: NirCodeGen =>
import positionsConversions.fromSpan
sealed case class ValTree(value: nir.Val)(
span: Span = NoSpan
) extends Tree { this.span = span }
def ValTree(from: Tree)(value: nir.Val) =
new ValTree(value = value)(span = from.span)
sealed case class ContTree(f: ExprBuffer => nir.Val)(
span: Span = NoSpan
) extends Tree { this.span = span }
def ContTree(from: Tree)(build: ExprBuffer => nir.Val) =
new ContTree(f = build)(span = from.span)
def fallbackSourcePosition: nir.SourcePosition = curMethodSym.get.span
class ExprBuffer(using fresh: nir.Fresh) extends FixupBuffer {
buf =>
def genExpr(tree: Tree): nir.Val = {
tree match {
case EmptyTree => nir.Val.Unit
case ValTree(value) => value
case ContTree(f) => f(this)
case tree: Apply =>
val updatedTree = lazyValsAdapter.transformApply(tree)
genApply(updatedTree)
case tree: Assign => genAssign(tree)
case tree: Block => genBlock(tree)
case tree: Closure => genClosure(tree)
case tree: Labeled => genLabelDef(tree)
case tree: Ident => genIdent(tree)
case tree: If => genIf(tree)
case tree: JavaSeqLiteral => genJavaSeqLiteral(tree)
case tree: Literal => genLiteral(tree)
case tree: Match => genMatch(tree)
case tree: Return => genReturn(tree)
case tree: Select => genSelect(tree)
case tree: This => genThis(tree)
case tree: Try => genTry(tree)
case tree: Typed => genTyped(tree)
case tree: TypeApply => genTypeApply(tree)
case tree: ValDef => genValDef(tree)
case tree: WhileDo => genWhileDo(tree)
case _ =>
throw FatalError(
s"""Unexpected tree in genExpr: `${tree}`
raw=$tree
pos=${tree.span}
"""
)
}
}
object SafeZoneInstance extends Property.Key[nir.Val]
def genApply(app: Apply): nir.Val = {
given nir.SourcePosition = app.span.orElse(fallbackSourcePosition)
val Apply(fun, args) = app
val sym = fun.symbol
def isStatic = sym.owner.isStaticOwner
def qualifier0 = qualifierOf(fun)
def qualifier = qualifier0.withSpan(qualifier0.span.orElse(fun.span))
def arg = args.head
inline def fail(msg: String)(using Context) = {
report.error(msg, app.srcPos)
nir.Val.Null
}
fun match {
case _ if sym == defnNir.UnsafePackage_extern =>
fail(s"extern can be used only from non-inlined extern methods")
case _: TypeApply => genApplyTypeApply(app)
case Select(Super(_, _), _) =>
genApplyMethod(
sym,
statically = true,
curMethodThis.get.get,
args
)
case Select(New(_), nme.CONSTRUCTOR) =>
genApplyNew(app)
case _ if sym == defn.newArrayMethod =>
val Seq(
Literal(componentType: Constant),
arrayType,
SeqLiteral(dimensions, _)
) = args: @unchecked
if (dimensions.size == 1)
val length = genExpr(dimensions.head)
buf.arrayalloc(
genType(componentType.typeValue),
length,
unwind,
zone = app.getAttachment(SafeZoneInstance)
)
else genApplyMethod(sym, statically = isStatic, qualifier, args)
case _ =>
if (nirPrimitives.isPrimitive(fun)) genApplyPrimitive(app)
else if (Erasure.Boxing.isBox(sym)) genApplyBox(arg.tpe, arg)
else if (Erasure.Boxing.isUnbox(sym)) genApplyUnbox(app.tpe, arg)
else genApplyMethod(sym, statically = false, qualifier, args)
}
}
def genAssign(tree: Assign): nir.Val = {
val Assign(lhsp, rhsp) = tree
given nir.SourcePosition = tree.span
desugarTree(lhsp) match {
case sel @ Select(qualp, _) =>
def rhs = genExpr(rhsp)
val sym = sel.symbol
val name = genFieldName(sym)
if (sym.isExtern) {
// Ignore intrinsic call to extern in class constructor
// It would always present and would lead to undefined behaviour otherwise
val shouldIgnoreAssign =
curMethodSym.get.isClassConstructor &&
rhsp.symbol == defnNir.UnsafePackage_extern
if (shouldIgnoreAssign) nir.Val.Unit
else {
val externTy = genExternType(sel.tpe)
genStoreExtern(externTy, sym, rhs)
}
} else {
val qual =
if (sym.isStaticMember) genModule(qualp.symbol)
else genExpr(qualp)
val ty = genType(sel.tpe)
buf.fieldstore(ty, qual, name, rhs, unwind)
}
case id: Ident =>
val rhs = genExpr(rhsp)
val slot = curMethodEnv.resolve(id.symbol)
buf.varstore(slot, rhs, unwind)
}
}
def genBlock(block: Block): nir.Val = {
val Block(stats, last) = block
def isCaseLabelDef(tree: Tree) =
tree.isInstanceOf[Labeled] && tree.symbol.isAllOf(SyntheticCase)
def translateMatch(last: Labeled) = {
val (prologue, cases) = stats.span(!isCaseLabelDef(_))
val labels = cases.asInstanceOf[List[Labeled]]
genMatch(prologue, labels :+ last)
}
withFreshBlockScope(block.span) { parentScope =>
last match {
case label: Labeled if isCaseLabelDef(label) =>
translateMatch(label)
case Apply(
TypeApply(Select(label: Labeled, nme.asInstanceOf_), _),
_
) if isCaseLabelDef(label) =>
translateMatch(label)
case _ =>
stats.foreach(genExpr)
genExpr(last)
}
}
}
// Scala Native does not have any special treatment for closures.
// We reimplement the anonymous class generation which was originally used on
// Scala 2.11 and earlier.
//
// Each anonymous function gets a generated class for it,
// similarly to closure encoding on Scala 2.11 and earlier:
//
// class AnonFunX extends java.lang.Object with FunctionalInterface {
// var capture1: T1
// ...
// var captureN: TN
// def (this, v1: T1, ..., vN: TN): Unit = {
// java.lang.Object.(this)
// this.capture1 = v1
// ...
// this.captureN = vN
// }
// def samMethod(param1: Tp1, ..., paramK: TpK): Tret = {
// EnclsoingClass.this.staticMethod(param1, ..., paramK, this.capture1, ..., this.captureN)
// }
// }
//
// Bridges might require multiple samMethod variants to be created.
def genClosure(tree: Closure): nir.Val = {
given nir.SourcePosition = tree.span
val Closure(env, fun, functionalInterface) = tree
val treeTpe = tree.tpe.typeSymbol
val funSym = fun.symbol
val funInterfaceSym = functionalInterface.tpe.typeSymbol
val anonClassName = {
val nir.Global.Top(className) = genTypeName(curClassSym)
val suffix = "$$Lambda$" + curClassFresh.get.apply().id
nir.Global.Top(className + suffix)
}
val isStaticCall = funSym.isStaticInNIR
val allCaptureValues =
if (isStaticCall) env
else qualifierOf(fun) :: env
val captureSyms = allCaptureValues.map(_.symbol)
val captureTypesAndNames = {
for
(tree, idx) <- allCaptureValues.zipWithIndex
tpe = tree match {
case This(iden) => genType(fun.symbol.owner)
case _ => genType(tree.tpe)
}
name = anonClassName.member(nir.Sig.Field(s"capture$idx"))
yield (tpe, name)
}
val (captureTypes, captureNames) = captureTypesAndNames.unzip
def genAnonymousClass: nir.Defn = {
val traits =
if (functionalInterface.isEmpty) genTypeName(treeTpe) :: Nil
else {
val parents = funInterfaceSym.info.parents
genTypeName(funInterfaceSym) +: parents.collect {
case tpe if tpe.typeSymbol.isTraitOrInterface =>
genTypeName(tpe.typeSymbol)
}
}
nir.Defn.Class(
attrs = nir.Attrs.None,
name = anonClassName,
parent = Some(nir.Rt.Object.name),
traits = traits
)
}
def genCaptureFields: List[nir.Defn] = {
for (tpe, name) <- captureTypesAndNames
yield nir.Defn.Var(
attrs = nir.Attrs.None,
name = name,
ty = tpe,
rhs = nir.Val.Zero(tpe)
)
}
val ctorName = anonClassName.member(nir.Sig.Ctor(captureTypes))
val ctorTy = nir.Type.Function(
nir.Type.Ref(anonClassName) +: captureTypes,
nir.Type.Unit
)
def genAnonymousClassCtor: nir.Defn = {
val body = {
scoped(
curScopeId := nir.ScopeId.TopLevel
) {
val fresh = nir.Fresh()
val buf = new nir.InstructionBuilder()(fresh)
val superTy = nir.Type.Function(Seq(nir.Rt.Object), nir.Type.Unit)
val superName = nir.Rt.Object.name.member(nir.Sig.Ctor(Seq.empty))
val superCtor = nir.Val.Global(superName, nir.Type.Ptr)
val self = nir.Val.Local(fresh(), nir.Type.Ref(anonClassName))
val captureFormals = captureTypes.map(nir.Val.Local(fresh(), _))
buf.label(fresh(), self +: captureFormals)
buf.call(superTy, superCtor, Seq(self), nir.Next.None)
captureNames.zip(captureFormals).foreach { (name, capture) =>
buf.fieldstore(capture.ty, self, name, capture, nir.Next.None)
}
buf.ret(nir.Val.Unit)
buf.toSeq
}
}
new nir.Defn.Define(nir.Attrs.None, ctorName, ctorTy, body)
}
def resolveAnonClassMethods: List[Symbol] = {
val samMethods =
if (funInterfaceSym.exists) funInterfaceSym.info.possibleSamMethods
else treeTpe.info.possibleSamMethods
samMethods
.map(_.symbol)
.toList
}
def genAnonClassMethod(sym: Symbol): nir.Defn = {
val nir.Global.Member(_, funSig) = genName(sym): @unchecked
val nir.Sig.Method(_, sigTypes :+ retType, _) =
funSig.unmangled: @unchecked
val selfType = nir.Type.Ref(anonClassName)
val methodName = anonClassName.member(funSig)
val paramTypes = selfType +: sigTypes
val paramSyms = funSym.paramSymss.flatten
def genBody = {
given fresh: nir.Fresh = nir.Fresh()
val freshScopes = initFreshScope(EmptyTree)
given buf: ExprBuffer = new ExprBuffer()
scoped(
curFresh := fresh,
curFreshScope := freshScopes,
curScopeId := nir.ScopeId.of(freshScopes.last),
curExprBuffer := buf,
curMethodEnv := MethodEnv(fresh),
curMethodLabels := MethodLabelsEnv(fresh),
curMethodInfo := CollectMethodInfo(),
curUnwindHandler := None
) {
val self = nir.Val.Local(fresh(), selfType)
val params = sigTypes.map(nir.Val.Local(fresh(), _))
buf.label(fresh(), self +: params)
// At this point, the type parameter symbols are all Objects.
// We need to transform them, so that their type conforms to
// what the apply method expects:
// - values that can be unboxed, are unboxed
// - otherwise, the value is cast to the appropriate type
val paramVals =
for (param, sym) <- params.zip(paramSyms)
yield ensureUnboxed(param, sym.info.finalResultType)
val captureVals =
for (sym, (tpe, name)) <- captureSyms.zip(captureTypesAndNames)
yield buf.fieldload(tpe, self, name, unwind)
val allVals =
(captureVals ++ paramVals).toList.map(ValTree(_)(sym.span))
val res = if (isStaticCall) {
scoped(curMethodThis := None) {
buf.genApplyStaticMethod(
funSym,
qualifierOf(fun).symbol,
allVals
)
}
} else {
val thisVal :: argVals = allVals: @unchecked
scoped(curMethodThis := Some(thisVal.value)) {
buf.genApplyMethod(
funSym,
statically = false,
thisVal,
argVals
)
}
}
val retValue =
if (retType == res.ty) res
else
// Get the result type of the lambda after erasure, when entering posterasure.
// This allows to recover the correct type in case value classes are involved.
// In that case, the type will be an ErasedValueType.
buf.ensureBoxed(res, funSym.info.finalResultType)
buf.ret(retValue)
buf.toSeq
}
}
new nir.Defn.Define(
nir.Attrs.None,
methodName,
nir.Type.Function(paramTypes, retType),
genBody
)
}
def genAnonymousClassMethods: List[nir.Defn] =
resolveAnonClassMethods
.map(genAnonClassMethod)
generatedDefns ++= {
genAnonymousClass ::
genAnonymousClassCtor ::
genCaptureFields :::
genAnonymousClassMethods
}
def allocateClosure() = {
val alloc = buf.classalloc(anonClassName, unwind)
val captures = allCaptureValues.map(genExpr)
buf.call(
ctorTy,
nir.Val.Global(ctorName, nir.Type.Ptr),
alloc +: captures,
unwind
)
alloc
}
allocateClosure()
}
def genIdent(tree: Ident): nir.Val =
desugarIdent(tree) match {
case Ident(_) =>
val sym = tree.symbol
given nir.SourcePosition = tree.span
if (curMethodInfo.mutableVars.contains(sym))
buf.varload(curMethodEnv.resolve(sym), unwind)
else if (sym.is(Module))
genModule(sym)
else curMethodEnv.resolve(sym)
case desuagred: Select =>
genSelect(desuagred.withSpan(tree.span))
case tree =>
throw FatalError(s"Unsupported desugared ident tree: $tree")
}
def genIf(tree: If): nir.Val = {
given nir.SourcePosition = tree.span
val If(cond, thenp, elsep) = tree
def isUnitType(tpe: Type) =
tpe =:= defn.UnitType || defn.isBoxedUnitClass(tpe.sym)
val retty =
if (isUnitType(thenp.tpe) || isUnitType(elsep.tpe)) nir.Type.Unit
else genType(tree.tpe)
genIf(retty, cond, thenp, elsep)
}
def genIf(
retty: nir.Type,
condp: Tree,
thenp: Tree,
elsep: Tree,
ensureLinktime: Boolean = false
)(using enclosingPos: nir.SourcePosition): nir.Val = {
val thenn, elsen, mergen = fresh()
val mergev = nir.Val.Local(fresh(), retty)
locally {
given nir.SourcePosition = condp.span.orElse(enclosingPos)
getLinktimeCondition(condp) match {
case Some(cond) =>
curMethodEnv.get.isUsingLinktimeResolvedValue = true
buf.branchLinktime(cond, nir.Next(thenn), nir.Next(elsen))
case None =>
if ensureLinktime then
report.error(
"Cannot resolve given condition in linktime, it might be depending on runtime value",
condp.srcPos
)
val cond = genExpr(condp)
buf.branch(cond, nir.Next(thenn), nir.Next(elsen))
}
}
locally {
given nir.SourcePosition = thenp.span.orElse(enclosingPos)
buf.label(thenn)
val thenv = genExpr(thenp)
buf.jumpExcludeUnitValue(retty)(mergen, thenv)
}
locally {
given nir.SourcePosition = elsep.span.orElse(enclosingPos)
buf.label(elsen)
val elsev = genExpr(elsep)
buf.jumpExcludeUnitValue(retty)(mergen, elsev)
}
buf.labelExcludeUnitValue(mergen, mergev)
}
def genJavaSeqLiteral(tree: JavaSeqLiteral): nir.Val = {
val JavaArrayType(elemTpe) = tree.tpe: @unchecked
val elems = tree.elems
val elemty = genType(elemTpe)
val values = genSimpleArgs(elems)
given nir.SourcePosition = tree.span
if (values.forall(_.isCanonical) && values.exists(v => !v.isZero))
buf.arrayalloc(elemty, nir.Val.ArrayValue(elemty, values), unwind)
else
val alloc = buf.arrayalloc(elemty, nir.Val.Int(values.length), unwind)
for (v, i) <- values.zipWithIndex if !v.isZero do
given nir.SourcePosition = elems(i).span
buf.arraystore(elemty, alloc, nir.Val.Int(i), v, unwind)
alloc
}
def genLabelDef(label: Labeled): nir.Val = {
given nir.SourcePosition = label.span
val Labeled(bind, body) = label
assert(bind.body == EmptyTree, "non-empty Labeled bind body")
val (labelEntry, labelExit) = curMethodLabels.enterLabel(label)
val labelExitParam = nir.Val.Local(fresh(), genType(bind.tpe))
curMethodLabels.enterExitType(labelExit, labelExitParam.ty)
buf.jump(nir.Next(labelEntry))
buf.label(labelEntry, Nil)
buf.jumpExcludeUnitValue(labelExitParam.ty)(
labelExit,
genExpr(label.expr)
)
buf.labelExcludeUnitValue(labelExit, labelExitParam)
}
def genLiteral(lit: Literal): nir.Val = {
val value = lit.const
value.tag match {
case ClazzTag => genTypeValue(value.typeValue)
case _ => genLiteralValue(lit)
}
}
private def genLiteralValue(lit: Literal): nir.Val = {
val value = lit.const
value.tag match {
case UnitTag => nir.Val.Unit
case NullTag => nir.Val.Null
case BooleanTag =>
if (value.booleanValue) nir.Val.True else nir.Val.False
case ByteTag => nir.Val.Byte(value.intValue.toByte)
case ShortTag => nir.Val.Short(value.intValue.toShort)
case CharTag => nir.Val.Char(value.intValue.toChar)
case IntTag => nir.Val.Int(value.intValue)
case LongTag => nir.Val.Long(value.longValue)
case FloatTag => nir.Val.Float(value.floatValue)
case DoubleTag => nir.Val.Double(value.doubleValue)
case StringTag => nir.Val.String(value.stringValue)
}
}
def genMatch(m: Match): nir.Val = {
given nir.SourcePosition = m.span
val Match(scrutp, allcaseps) = m
case class Case(
id: nir.Local,
value: nir.Val,
tree: Tree,
position: nir.SourcePosition
)
// Extract switch cases and assign unique names to them.
val caseps: Seq[Case] = allcaseps.flatMap {
case CaseDef(Ident(nme.WILDCARD), _, _) =>
Seq.empty
case cd @ CaseDef(pat, guard, body) =>
assert(guard.isEmpty, "CaseDef guard was not empty")
val vals: Seq[nir.Val] = pat match {
case lit: Literal =>
List(genLiteralValue(lit))
case Alternative(alts) =>
alts.map {
case lit: Literal => genLiteralValue(lit)
}
case _ =>
Nil
}
vals.map(Case(fresh(), _, body, cd.span: nir.SourcePosition))
}
// Extract default case.
val defaultp: Tree = allcaseps.collectFirst {
case c @ CaseDef(Ident(nme.WILDCARD), _, body) => body
}.get
val retty = genType(m.tpe)
val scrut = genExpr(scrutp)
// Generate code for the switch and its cases.
def genSwitch(): nir.Val = {
// Generate some more fresh names and types.
val casenexts = caseps.map {
case Case(n, v, _, _) => nir.Next.Case(v, n)
}
val defaultnext = nir.Next(fresh())
val merge = fresh()
val mergev = nir.Val.Local(fresh(), retty)
val defaultCasePos: nir.SourcePosition = defaultp.span
// Generate code for the switch and its cases.
val scrut = genExpr(scrutp)
buf.switch(scrut, defaultnext, casenexts)
buf.label(defaultnext.id)(using defaultCasePos)
buf.jumpExcludeUnitValue(retty)(merge, genExpr(defaultp))(using
defaultCasePos
)
caseps.foreach {
case Case(n, _, expr, pos) =>
given nir.SourcePosition = pos
buf.label(n)
val caseres = genExpr(expr)
buf.jumpExcludeUnitValue(retty)(merge, caseres)
}
buf.labelExcludeUnitValue(merge, mergev)
}
def genIfsChain(): nir.Val = {
/* Default label needs to be generated before any others and then added to
* current MethodEnv. It's label might be referenced in any of them in
* case of match with guards, eg.:
*
* "Hello, World!" match {
* case "Hello" if cond1 => "foo"
* case "World" if cond2 => "bar"
* case _ if cond3 => "bar-baz"
* case _ => "baz-bar"
* }
*
* might be translated to something like:
*
* val x1 = "Hello, World!"
* if(x1 == "Hello"){ if(cond1) "foo" else default4() }
* else if (x1 == "World"){ if(cond2) "bar" else default4() }
* else default4()
*
* def default4() = if(cond3) "bar-baz" else "baz-bar
*
* We need to make sure to only generate LabelDef at this stage.
* Generating other ASTs and mutating state might lead to unexpected
* runtime errors.
*/
val optDefaultLabel = defaultp match {
case label: Labeled => Some(genLabelDef(label))
case _ => None
}
def loop(cases: List[Case]): nir.Val = {
cases match {
case Case(_, caze, body, p) :: elsep =>
given nir.SourcePosition = p
val cond =
buf.genClassEquality(
leftp = ValTree(scrutp)(scrut),
rightp = ValTree(body)(caze),
ref = false,
negated = false
)
buf.genIf(
retty = retty,
condp = ValTree(body)(cond),
thenp = ContTree(body)(_.genExpr(body)),
elsep = ContTree(body)(_ => loop(elsep))
)
case Nil => optDefaultLabel.getOrElse(genExpr(defaultp))
}
}
loop(caseps.toList)
}
/* Since 2.13 we need to enforce that only Int switch cases reach backend
* For all other cases we're generating If-else chain */
val isIntMatch = scrut.ty == nir.Type.Int &&
caseps.forall(_._2.ty == nir.Type.Int)
if (isIntMatch) genSwitch()
else genIfsChain()
}
private def genMatch(prologue: List[Tree], lds: List[Labeled]): nir.Val = {
// Generate prologue expressions.
prologue.foreach(genExpr(_))
// Enter symbols for all labels and jump to the first one.
lds.foreach(curMethodLabels.enterLabel)
val firstLd = lds.head
given nir.SourcePosition = firstLd.span
buf.jump(nir.Next(curMethodLabels.resolveEntry(firstLd)))
// Generate code for all labels and return value of the last one.
lds.map(genLabelDef(_)).last
}
def genModule(sym: Symbol)(using nir.SourcePosition): nir.Val = {
val moduleSym = if (sym.isTerm) sym.moduleClass match {
case NoSymbol => sym.info.typeSymbol
case moduleCls => moduleCls
}
else sym
val name = genModuleName(moduleSym)
buf.module(name, unwind)
}
def genReturn(tree: Return): nir.Val = {
val Return(exprp, from) = tree
given nir.SourcePosition = tree.span
val rhs = genExpr(exprp)
val fromSym = from.symbol
val label = Option.when(fromSym.is(Label)) {
curMethodLabels.resolveExit(fromSym)
}
genReturn(rhs, label)
}
def genReturn(value: nir.Val, from: Option[nir.Local] = None)(using
pos: nir.SourcePosition
): nir.Val = {
val retv =
if (curMethodIsExtern.get)
val nir.Type.Function(_, retty) = genExternMethodSig(curMethodSym)
toExtern(retty, value)
else value
from match {
case Some(label) =>
val retty = curMethodLabels.resolveExitType(label)
buf.jumpExcludeUnitValue(retty)(label, retv)
case _ if retv.ty == nir.Type.Unit => buf.ret(nir.Val.Unit)
case _ => buf.ret(retv)
}
nir.Val.Unit
}
def genSelect(tree: Select): nir.Val = {
given nir.SourcePosition = tree.span
val Select(qualp, selp) = tree
val sym = tree.symbol
val owner = if sym != NoSymbol then sym.owner else NoSymbol
if (sym.is(Module)) genModule(sym)
else if (sym.isStaticInNIR && !sym.isExtern)
genStaticMember(sym, qualp.symbol)
else if (sym.is(Method))
genApplyMethod(sym, statically = false, qualp, Seq.empty)
else if (owner.isStruct) {
val index = owner.info.decls.filter(_.isField).toList.indexOf(sym)
val qual = genExpr(qualp)
buf.extract(qual, Seq(index), unwind)
} else {
val ty = genType(tree.tpe)
val qual =
if (sym.isStaticMember) genModule(owner)
else genExpr(qualp)
val name = genFieldName(tree.symbol)
if (sym.isExtern) {
val externTy = genExternType(tree.tpe)
genLoadExtern(ty, externTy, tree.symbol)
} else {
buf.fieldload(ty, qual, name, unwind)
}
}
}
def genThis(tree: This): nir.Val = {
given nir.SourcePosition = tree.span
val sym = tree.symbol
def currentThis = curMethodThis.get
def currentClass = curClassSym.get
def currentMethod = curMethodSym.get
def canUseCurrentThis = currentThis.nonEmpty &&
(sym == currentClass || currentMethod.owner == currentClass)
val canLoadAsModule =
sym != currentClass &&
sym.is(ModuleClass, butNot = Package) ||
sym.isPackageObject
if (canLoadAsModule) genModule(sym)
else if (canUseCurrentThis) currentThis.get
else
report.error(
s"Cannot resolve `this` instance for ${tree}",
tree.sourcePos
)
nir.Val.Zero(genType(currentClass))
}
def genTry(tree: Try): nir.Val = tree match {
case Try(expr, catches, finalizer)
if catches.isEmpty && finalizer.isEmpty =>
genExpr(expr)
case Try(expr, catches, finalizer) =>
val retty = genType(tree.tpe)
genTry(retty, expr, catches, finalizer)
}
private def genTry(
retty: nir.Type,
expr: Tree,
catches: List[Tree],
finallyp: Tree
): nir.Val = {
given nir.SourcePosition = expr.span
val handler, normaln, mergen = fresh()
val excv = nir.Val.Local(fresh(), nir.Rt.Object)
val mergev = nir.Val.Local(fresh(), retty)
// Nested code gen to separate out try/catch-related instructions.
val nested = ExprBuffer()
scoped(
curUnwindHandler := Some(handler)
) {
withFreshBlockScope(summon[nir.SourcePosition]) { _ =>
nested.label(normaln)
val res = nested.genExpr(expr)
nested.jumpExcludeUnitValue(retty)(mergen, res)
}
}
withFreshBlockScope(summon[nir.SourcePosition]) { _ =>
nested.label(handler, Seq(excv))
val res = nested.genTryCatch(retty, excv, mergen, catches)
nested.jumpExcludeUnitValue(retty)(mergen, res)
}
// Append finally to the try/catch instructions and merge them back.
val insts =
if (finallyp.isEmpty) nested.toSeq
else genTryFinally(finallyp, nested.toSeq)
// Append try/catch instructions to the outher instruction buffer.
buf.jump(nir.Next(normaln))
buf ++= insts
buf.labelExcludeUnitValue(mergen, mergev)
}
private def genTryCatch(
retty: nir.Type,
exc: nir.Val,
mergen: nir.Local,
catches: List[Tree]
)(using exprPos: nir.SourcePosition): nir.Val = {
val cases = catches.map {
case cd @ CaseDef(pat, _, body) =>
val (excty, symopt) = pat match {
case Typed(Ident(nme.WILDCARD), tpt) =>
genType(tpt.tpe) -> None
case Ident(nme.WILDCARD) =>
genType(defn.ThrowableClass.info.resultType) -> None
case Bind(_, _) =>
genType(pat.tpe) -> Some(pat.symbol)
}
val f = ContTree(body) { (buf: ExprBuffer) =>
withFreshBlockScope(body.span) { _ =>
symopt.foreach { sym =>
val cast = buf.as(excty, exc, unwind)(cd.span, getScopeId)
curMethodLocalNames.get.update(cast.id, genLocalName(sym))
curMethodEnv.enter(sym, cast)
}
val res = genExpr(body)
buf.jumpExcludeUnitValue(retty)(mergen, res)
}
nir.Val.Unit
}
(excty, f, exprPos)
}
def wrap(
cases: Seq[(nir.Type, ContTree, nir.SourcePosition)]
): nir.Val =
cases match {
case Seq() =>
buf.raise(exc, unwind)
nir.Val.Unit
case (excty, f, pos) +: rest =>
val cond = buf.is(excty, exc, unwind)(pos, getScopeId)
genIf(
retty,
ValTree(f)(cond),
f,
ContTree(f)(_ => wrap(rest))
)(using pos)
}
wrap(cases)
}
private def genTryFinally(
finallyp: Tree,
insts: Seq[nir.Inst]
): Seq[nir.Inst] = {
val labels =
insts.collect {
case nir.Inst.Label(n, _) => n
}.toSet
def internal(cf: nir.Inst.Cf) = cf match {
case inst @ nir.Inst.Jump(n) =>
labels.contains(n.id)
case inst @ nir.Inst.If(_, n1, n2) =>
labels.contains(n1.id) && labels.contains(n2.id)
case inst @ nir.Inst.LinktimeIf(_, n, n2) =>
labels.contains(n.id) && labels.contains(n2.id)
case inst @ nir.Inst.Switch(_, n, ns) =>
labels.contains(n.id) && ns.forall(n => labels.contains(n.id))
case inst @ nir.Inst.Throw(_, n) =>
(n ne nir.Next.None) && labels.contains(n.id)
case _ =>
false
}
val finalies = new ExprBuffer
val transformed = insts.map {
case cf: nir.Inst.Cf if internal(cf) =>
// We don't touch control-flow within try/catch block.
cf
case cf: nir.Inst.Cf =>
// All control-flow edges that jump outside the try/catch block
// must first go through finally block if it's present. We generate
// a new copy of the finally handler for every edge.
val finallyn = fresh()
withFreshBlockScope(cf.pos) { _ =>
finalies.label(finallyn)(cf.pos)
finalies.genExpr(finallyp)
}
finalies += cf
// The original jump outside goes through finally block first.
nir.Inst.Jump(nir.Next(finallyn))(cf.pos)
case inst =>
inst
}
transformed ++ finalies.toSeq
}
def genTyped(tree: Typed): nir.Val = tree match {
case Typed(Super(_, _), _) => curMethodThis.get.get
case Typed(expr, _) => genExpr(expr)
}
def genTypeApply(tree: TypeApply): nir.Val = {
given nir.SourcePosition = tree.span
val TypeApply(fun @ Select(receiverp, _), targs) = tree: @unchecked
val funSym = fun.symbol
val fromty = genType(receiverp.tpe)
val toty = genType(targs.head.tpe)
def boxty = genBoxType(targs.head.tpe)
val value = genExpr(receiverp)
lazy val boxed = boxValue(receiverp.tpe, value)(using receiverp.span)
if (funSym == defn.Any_isInstanceOf) buf.is(boxty, boxed, unwind)
else if (funSym == defn.Any_asInstanceOf)
(fromty, toty) match {
case (_: nir.Type.PrimitiveKind, _: nir.Type.PrimitiveKind) =>
genCoercion(value, fromty, toty)
case _ if boxed.ty =?= boxty => boxed
case (_, nir.Type.Nothing) =>
val isNullL, notNullL = fresh()
val isNull =
buf.comp(nir.Comp.Ieq, boxed.ty, boxed, nir.Val.Null, unwind)
buf.branch(isNull, nir.Next(isNullL), nir.Next(notNullL))
buf.label(isNullL)
buf.raise(nir.Val.Null, unwind)
buf.label(notNullL)
buf.as(nir.Rt.RuntimeNothing, boxed, unwind)
buf.unreachable(unwind)
buf.label(fresh())
nir.Val.Zero(nir.Type.Nothing)
case _ =>
val cast = buf.as(boxty, boxed, unwind)
unboxValue(tree.tpe, partial = true, cast)
}
else {
report.error("Unkown case genTypeApply: " + funSym, tree.sourcePos)
nir.Val.Null
}
}
def genValDef(vd: ValDef): nir.Val = {
given nir.SourcePosition = vd.span
val localNames = curMethodLocalNames.get
val isMutable = curMethodInfo.mutableVars.contains(vd.symbol)
def name = genLocalName(vd.symbol)
val rhs = genExpr(vd.rhs) match {
case v @ nir.Val.Local(id, _) =>
if !(localNames.contains(id) || isMutable)
then localNames.update(id, name)
vd.rhs match {
// When rhs is a block patch the scopeId of it's result to match the current scopeId
// This allows us to reflect that ValDef is accessible in this scope
case _: Block | Typed(_: Block, _) | Try(_: Block, _, _) |
Try(Typed(_: Block, _), _, _) =>
buf.updateLetInst(id)(i => i.copy()(i.pos, curScopeId.get))
case _ => ()
}
v
case nir.Val.Unit =>
nir.Val.Unit
case v =>
buf.let(fresh.namedId(name), nir.Op.Copy(v), unwind)
}
if (vd.symbol.isExtern)
checkExplicitReturnTypeAnnotation(vd, "extern field")
if (isMutable)
val slot = curMethodEnv.resolve(vd.symbol)
buf.varstore(slot, rhs, unwind)
else
curMethodEnv.enter(vd.symbol, rhs)
nir.Val.Unit
}
def genWhileDo(wd: WhileDo): nir.Val = {
val WhileDo(cond, body) = wd
val condLabel, bodyLabel, exitLabel = fresh()
locally {
given nir.SourcePosition = wd.span
buf.jump(nir.Next(condLabel))
}
locally {
given nir.SourcePosition = cond.span.orElse(wd.span)
buf.label(condLabel)
val genCond =
if (cond == EmptyTree) nir.Val.Bool(true)
else genExpr(cond)
buf.branch(genCond, nir.Next(bodyLabel), nir.Next(exitLabel))
}
locally {
given nir.SourcePosition = body.span
buf.label(bodyLabel)
val _ = genExpr(body)
buf.jump(condLabel, Nil)
}
locally {
given nir.SourcePosition = wd.span.endPos
buf.label(exitLabel, Seq.empty)
if (cond == EmptyTree) nir.Val.Zero(genType(defn.NothingClass))
else nir.Val.Unit
}
}
private def genApplyBox(st: SimpleType, argp: Tree)(using
nir.SourcePosition
): nir.Val = {
val value = genExpr(argp)
buf.box(genBoxType(st), value, unwind)
}
private def genApplyUnbox(st: SimpleType, argp: Tree)(using
nir.SourcePosition
): nir.Val = {
val value = genExpr(argp)
value.ty match {
case _: nir.Type.I | _: nir.Type.F =>
// No need for unboxing, fixing some slack generated by the general
// purpose Scala compiler.
value
case _ =>
buf.unbox(genBoxType(st), value, unwind)
}
}
private def genApplyPrimitive(app: Apply): nir.Val = {
import NirPrimitives._
import dotty.tools.backend.ScalaPrimitivesOps._
given nir.SourcePosition = app.span
val Apply(fun, args) = app
val Select(receiver, _) = desugarTree(fun): @unchecked
val sym = app.symbol
val code = nirPrimitives.getPrimitive(app, receiver.tpe)
def arg = args.head
(code: @switch) match {
case THROW => genThrow(app, args)
case CONCAT => genStringConcat(app)
case HASH => genHashCode(arg)
case BOXED_UNIT => nir.Val.Unit
case SYNCHRONIZED => genSynchronized(receiver, arg)
case CFUNCPTR_APPLY => genCFuncPtrApply(app)
case CFUNCPTR_FROM_FUNCTION => genCFuncFromScalaFunction(app)
case STACKALLOC => genStackalloc(app)
case SAFEZONE_ALLOC => genSafeZoneAlloc(app)
case CQUOTE => genCQuoteOp(app)
case CLASS_FIELD_RAWPTR => genClassFieldRawPtr(app)
case SIZE_OF => genSizeOf(app)
case ALIGNMENT_OF => genAlignmentOf(app)
case REFLECT_SELECTABLE_SELECTDYN =>
genReflectiveCall(app, isSelectDynamic = true)
case REFLECT_SELECTABLE_APPLYDYN =>
genReflectiveCall(app, isSelectDynamic = false)
case USES_LINKTIME_INTRINSIC => genLinktimeIntrinsicApply(app)
case _ =>
if (isArithmeticOp(code) || isLogicalOp(code) || isComparisonOp(code))
genSimpleOp(app, receiver :: args, code)
else if (isArrayOp(code) || code == ARRAY_CLONE) genArrayOp(app, code)
else if (isCoercion(code)) genCoercion(app, receiver, code)
else if (NirPrimitives.isRawPtrOp(code)) genRawPtrOp(app, code)
else if (NirPrimitives.isRawPtrCastOp(code)) genRawPtrCastOp(app)
else if (NirPrimitives.isRawSizeCastOp(code))
genRawSizeCastOp(app, code)
else if (NirPrimitives.isUnsignedOp(code)) genUnsignedOp(app, code)
else {
report.error(
s"Unknown primitive operation: ${sym.fullName}(${fun.symbol.showName})",
app.sourcePos
)
nir.Val.Null
}
}
}
private def genLinktimeIntrinsicApply(app: Apply): nir.Val = {
import defnNir.*
given nir.SourcePosition = app.span
val Apply(fun, args) = app
val sym = fun.symbol
def isStatic = sym.owner.isStaticOwner
def qualifier0 = qualifierOf(fun)
def qualifier = qualifier0.withSpan(qualifier0.span.orElse(fun.span))
sym match {
case _
if JavaUtilServiceLoaderLoad.contains(sym) ||
JavaUtilServiceLoaderLoadInstalled == sym =>
args.head match {
case Literal(c: Constant) => () // ok
case _ =>
report.error(
s"Limitation of ScalaNative runtime: first argument of ${sym.show} needs to be literal constant of class type, use `classOf[T]` instead.",
app.srcPos
)
}
case _ =>
report.error(
s"Unhandled intrinsic function call for ${sym.show}",
app.srcPos
)
}
curMethodEnv.get.isUsingIntrinsics = true
genApplyMethod(sym, statically = isStatic, qualifier, args)
}
private def genApplyTypeApply(app: Apply): nir.Val = {
val Apply(tApply @ TypeApply(fun, targs), argsp) = app: @unchecked
val Select(receiverp, _) = desugarTree(fun): @unchecked
given nir.SourcePosition = app.span
val funSym = fun.symbol
genExpr(receiverp)
if (funSym == defn.Object_synchronized)
assert(argsp.size == 1, "synchronized with wrong number of args")
genSynchronized(receiverp, argsp.head)
else genTypeApply(tApply)
}
private def genApplyNew(app: Apply): nir.Val = {
val Apply(fun @ Select(New(tpt), nme.CONSTRUCTOR), args) = app: @unchecked
given nir.SourcePosition = app.span
fromType(tpt.tpe) match {
case st if st.sym.isStruct =>
genApplyNewStruct(st, args)
case SimpleType(cls, Seq()) =>
val ctor = fun.symbol
assert(
ctor.isClassConstructor,
"'new' call to non-constructor: " + ctor.name
)
genApplyNew(
cls,
ctor,
args,
zone = app.getAttachment(SafeZoneInstance)
)
case SimpleType(sym, targs) =>
unsupported(s"unexpected new: $sym with targs $targs")
}
}
private def genApplyNewStruct(st: SimpleType, argsp: Seq[Tree]): nir.Val = {
val ty = genType(st)
val args = genSimpleArgs(argsp)
var res: nir.Val = nir.Val.Zero(ty)
for ((arg, argp), idx) <- args.zip(argsp).zipWithIndex
do
given nir.SourcePosition = argp.span
res = buf.insert(res, arg, Seq(idx), unwind)
res
}
private def genApplyNew(
clssym: Symbol,
ctorsym: Symbol,
args: List[Tree],
zone: Option[nir.Val]
)(using
nir.SourcePosition
): nir.Val = {
val alloc = buf.classalloc(genTypeName(clssym), unwind, zone)
genApplyMethod(ctorsym, statically = true, alloc, args)
alloc
}
def genApplyModuleMethod(
module: Symbol,
method: Symbol,
args: Seq[Tree]
)(using
nir.SourcePosition
): nir.Val = {
val self = genModule(module)
genApplyMethod(method, statically = true, self, args)
}
def genApplyMethod(
sym: Symbol,
statically: Boolean,
selfp: Tree,
argsp: Seq[Tree]
)(using nir.SourcePosition): nir.Val = {
if (sym.isExtern && sym.is(Accessor)) genApplyExternAccessor(sym, argsp)
else if (sym.isStaticInNIR && !sym.isExtern)
genApplyStaticMethod(sym, selfp.symbol, argsp)
else
val self = genExpr(selfp)
genApplyMethod(sym, statically, self, argsp)
}
private def genApplyMethod(
sym: Symbol,
statically: Boolean,
self: nir.Val,
argsp: Seq[Tree]
)(using nir.SourcePosition): nir.Val = {
assert(!sym.isStaticMethod, sym)
val owner = sym.owner.asClass
val name = genMethodName(sym)
val isExtern = sym.isExtern
val origSig = genMethodSig(sym)
val sig =
if isExtern then genExternMethodSig(sym)
else origSig
val args = genMethodArgs(sym, argsp)
val isStaticCall = statically || owner.isStruct || isExtern
val method =
if (isStaticCall) nir.Val.Global(name, nir.Type.Ptr)
else
val nir.Global.Member(_, sig) = name: @unchecked
buf.method(self, sig, unwind)
val values =
if isExtern then args
else self +: args
val res = buf.call(sig, method, values, unwind)
if !isExtern then res
else {
val nir.Type.Function(_, retty) = origSig
fromExtern(retty, res)
}
}
def genApplyStaticMethod(
sym: Symbol,
receiver: Symbol,
argsp: Seq[Tree]
)(using nir.SourcePosition): nir.Val = {
require(!sym.isExtern, sym)
val sig = genMethodSig(sym, statically = true)
val args = genMethodArgs(sym, argsp)
val methodName = genStaticMemberName(sym, receiver)
val method = nir.Val.Global(methodName, nir.Type.Ptr)
buf.call(sig, method, args, unwind)
}
private def genApplyExternAccessor(sym: Symbol, argsp: Seq[Tree])(using
nir.SourcePosition
): nir.Val = {
argsp match {
case Seq() =>
val ty = genMethodSig(sym).ret
val externTy = genExternMethodSig(sym).ret
genLoadExtern(ty, externTy, sym)
case Seq(valuep) =>
val externTy = genExternType(valuep.tpe)
genStoreExtern(externTy, sym, genExpr(valuep))
}
}
// Utils
private def boxValue(st: SimpleType, value: nir.Val)(using
nir.SourcePosition
): nir.Val = {
if (st.sym.isUnsignedType)
genApplyModuleMethod(
defnNir.RuntimeBoxesModule,
defnNir.BoxUnsignedMethod(st.sym),
Seq(ValTree(value)())
)
else if (genPrimCode(st) == 'O') value
else genApplyBox(st, ValTree(value)())
}
private def unboxValue(st: SimpleType, partial: Boolean, value: nir.Val)(
using nir.SourcePosition
): nir.Val = {
if (st.sym.isUnsignedType) {
// Results of asInstanceOfs are partially unboxed, meaning
// that non-standard value types remain to be boxed.
if (partial) value
else
genApplyModuleMethod(
defnNir.RuntimeBoxesModule,
defnNir.UnboxUnsignedMethod(st.sym),
Seq(ValTree(value)())
)
} else if (genPrimCode(st) == 'O') value
else genApplyUnbox(st, ValTree(value)())
}
private def genSimpleOp(
app: Apply,
args: List[Tree],
code: Int
): nir.Val = {
given nir.SourcePosition = app.span
val retty = genType(app.tpe)
args match {
case List(right) => genUnaryOp(code, right, retty)
case List(left, right) => genBinaryOp(code, left, right, retty)
case _ =>
report.error(
s"Too many arguments for primitive function: $app",
app.sourcePos
)
nir.Val.Null
}
}
private def negateBool(value: nir.Val)(using nir.SourcePosition): nir.Val =
buf.bin(nir.Bin.Xor, nir.Type.Bool, nir.Val.True, value, unwind)
private def genUnaryOp(code: Int, rightp: Tree, opty: nir.Type)(using
nir.SourcePosition
): nir.Val = {
val right = genExpr(rightp)
val coerced = genCoercion(right, right.ty, opty)
val tpe = coerced.ty
def numOfType(num: Int, ty: nir.Type): nir.Val = ty match {
case nir.Type.Byte => nir.Val.Byte(num.toByte)
case nir.Type.Short | nir.Type.Char => nir.Val.Short(num.toShort)
case nir.Type.Int => nir.Val.Int(num)
case nir.Type.Long => nir.Val.Long(num.toLong)
case nir.Type.Float => nir.Val.Float(num.toFloat)
case nir.Type.Double => nir.Val.Double(num.toDouble)
case nir.Type.Size => nir.Val.Size(num.toLong)
case _ => unsupported(s"num = $num, ty = ${ty.show}")
}
(opty, code) match {
case (_: nir.Type.I | _: nir.Type.F, POS) => coerced
case (_: nir.Type.I, NOT) =>
buf.bin(nir.Bin.Xor, tpe, numOfType(-1, tpe), coerced, unwind)
case (_: nir.Type.F, NEG) =>
buf.bin(nir.Bin.Fmul, tpe, numOfType(-1, tpe), coerced, unwind)
case (_: nir.Type.I, NEG) =>
buf.bin(nir.Bin.Isub, tpe, numOfType(0, tpe), coerced, unwind)
case (nir.Type.Bool, ZNOT) => negateBool(coerced)
case _ =>
report.error(s"Unknown unary operation code: $code", rightp.sourcePos)
nir.Val.Null
}
}
private def genBinaryOp(
code: Int,
left: Tree,
right: Tree,
retty: nir.Type
)(using nir.SourcePosition): nir.Val = {
val lty = genType(left.tpe)
val rty = genType(right.tpe)
val opty = {
if (isShiftOp(code))
if (lty == nir.Type.Long) nir.Type.Long
else nir.Type.Int
else
binaryOperationType(lty, rty)
}
def genOp(op: (nir.Type, nir.Val, nir.Val) => nir.Op): nir.Val = {
val leftcoerced = genCoercion(genExpr(left), lty, opty)(using left.span)
val rightcoerced =
genCoercion(genExpr(right), rty, opty)(using right.span)
buf.let(op(opty, leftcoerced, rightcoerced), unwind)(using
left.span,
getScopeId
)
}
val binres = opty match {
case _: nir.Type.F =>
code match {
case ADD => genOp(nir.Op.Bin(nir.Bin.Fadd, _, _, _))
case SUB => genOp(nir.Op.Bin(nir.Bin.Fsub, _, _, _))
case MUL => genOp(nir.Op.Bin(nir.Bin.Fmul, _, _, _))
case DIV => genOp(nir.Op.Bin(nir.Bin.Fdiv, _, _, _))
case MOD => genOp(nir.Op.Bin(nir.Bin.Frem, _, _, _))
case EQ => genOp(nir.Op.Comp(nir.Comp.Feq, _, _, _))
case NE => genOp(nir.Op.Comp(nir.Comp.Fne, _, _, _))
case LT => genOp(nir.Op.Comp(nir.Comp.Flt, _, _, _))
case LE => genOp(nir.Op.Comp(nir.Comp.Fle, _, _, _))
case GT => genOp(nir.Op.Comp(nir.Comp.Fgt, _, _, _))
case GE => genOp(nir.Op.Comp(nir.Comp.Fge, _, _, _))
case _ =>
report.error(
s"Unknown floating point type binary operation code: $code",
right.sourcePos
)
nir.Val.Null
}
case nir.Type.Bool | _: nir.Type.I =>
code match {
case ADD => genOp(nir.Op.Bin(nir.Bin.Iadd, _, _, _))
case SUB => genOp(nir.Op.Bin(nir.Bin.Isub, _, _, _))
case MUL => genOp(nir.Op.Bin(nir.Bin.Imul, _, _, _))
case DIV => genOp(nir.Op.Bin(nir.Bin.Sdiv, _, _, _))
case MOD => genOp(nir.Op.Bin(nir.Bin.Srem, _, _, _))
case OR => genOp(nir.Op.Bin(nir.Bin.Or, _, _, _))
case XOR => genOp(nir.Op.Bin(nir.Bin.Xor, _, _, _))
case AND => genOp(nir.Op.Bin(nir.Bin.And, _, _, _))
case LSL => genOp(nir.Op.Bin(nir.Bin.Shl, _, _, _))
case LSR => genOp(nir.Op.Bin(nir.Bin.Lshr, _, _, _))
case ASR => genOp(nir.Op.Bin(nir.Bin.Ashr, _, _, _))
case EQ => genOp(nir.Op.Comp(nir.Comp.Ieq, _, _, _))
case NE => genOp(nir.Op.Comp(nir.Comp.Ine, _, _, _))
case LT => genOp(nir.Op.Comp(nir.Comp.Slt, _, _, _))
case LE => genOp(nir.Op.Comp(nir.Comp.Sle, _, _, _))
case GT => genOp(nir.Op.Comp(nir.Comp.Sgt, _, _, _))
case GE => genOp(nir.Op.Comp(nir.Comp.Sge, _, _, _))
case ZOR => genIf(retty, left, Literal(Constant(true)), right)
case ZAND => genIf(retty, left, right, Literal(Constant(false)))
case _ =>
report.error(
s"Unknown integer type binary operation code: $code",
right.sourcePos
)
nir.Val.Null
}
case _: nir.Type.RefKind =>
def genEquals(ref: Boolean, negated: Boolean) = (left, right) match {
// If null is present on either side, we must always
// generate reference equality, regardless of where it
// was called with == or eq. This shortcut is not optional.
case (Literal(Constant(null)), _) | (_, Literal(Constant(null))) =>
genClassEquality(left, right, ref = true, negated = negated)
case _ =>
genClassEquality(left, right, ref = ref, negated = negated)
}
code match {
case EQ => genEquals(ref = false, negated = false)
case NE => genEquals(ref = false, negated = true)
case ID => genEquals(ref = true, negated = false)
case NI => genEquals(ref = true, negated = true)
case _ =>
report.error(
s"Unknown reference type binary operation code: $code",
right.sourcePos
)
nir.Val.Null
}
case nir.Type.Ptr =>
code match {
case EQ | ID => genOp(nir.Op.Comp(nir.Comp.Ieq, _, _, _))
case NE | NI => genOp(nir.Op.Comp(nir.Comp.Ine, _, _, _))
}
case ty =>
report.error(
s"Unknown binary operation type: $ty",
right.sourcePos
)
nir.Val.Null
}
genCoercion(binres, binres.ty, retty)(using right.span)
}
private def binaryOperationType(lty: nir.Type, rty: nir.Type) =
(lty, rty) match {
// Bug compatibility with scala/bug/issues/11253
case (nir.Type.Long, nir.Type.Float) =>
nir.Type.Double
case (nir.Type.Ptr, _: nir.Type.RefKind) =>
lty
case (_: nir.Type.RefKind, nir.Type.Ptr) =>
rty
case (nir.Type.Bool, nir.Type.Bool) =>
nir.Type.Bool
case (lhs: nir.Type.FixedSizeI, rhs: nir.Type.FixedSizeI) =>
if (lhs.width < 32 && rhs.width < 32) {
nir.Type.Int
} else if (lhs.width >= rhs.width) {
lhs
} else {
rhs
}
case (_: nir.Type.FixedSizeI, _: nir.Type.F) =>
rty
case (_: nir.Type.F, _: nir.Type.FixedSizeI) =>
lty
case (lhs: nir.Type.F, rhs: nir.Type.F) =>
if (lhs.width >= rhs.width) lhs else rhs
case (_: nir.Type.RefKind, _: nir.Type.RefKind) =>
nir.Rt.Object
case (ty1, ty2) if ty1 == ty2 =>
ty1
case (nir.Type.Nothing, ty) =>
ty
case (ty, nir.Type.Nothing) =>
ty
case _ =>
report.error(s"can't perform binary operation between $lty and $rty")
nir.Type.Nothing
}
private def genClassEquality(
leftp: Tree,
rightp: Tree,
ref: Boolean,
negated: Boolean
)(using nir.SourcePosition): nir.Val = {
if (ref) {
// referencial equality
val left = genExpr(leftp)
val right = genExpr(rightp)
val comp = if (negated) nir.Comp.Ine else nir.Comp.Ieq
buf.comp(comp, nir.Rt.Object, left, right, unwind)
} else genClassUniversalEquality(leftp, rightp, negated)
}
private def genClassUniversalEquality(l: Tree, r: Tree, negated: Boolean)(
using nir.SourcePosition
): nir.Val = {
/* True if the equality comparison is between values that require the use of the rich equality
* comparator (scala.runtime.BoxesRunTime.equals). This is the case when either side of the
* comparison might have a run-time type subtype of java.lang.Number or java.lang.Character.
* When it is statically known that both sides are equal and subtypes of Number of Character,
* not using the rich equality is possible (their own equals method will do ok.)
*/
val mustUseAnyComparator: Boolean = {
// Exclude custom trees introduced by Scala Natvie from checks
def isScalaTree(tree: Tree) = tree match {
case _: ValTree => false
case _: ContTree => false
case _ => true
}
val usesOnlyScalaTrees = isScalaTree(l) && isScalaTree(r)
def areSameFinals = l.tpe.typeSymbol.is(Final) &&
r.tpe.typeSymbol.is(Final) &&
(l.tpe =:= r.tpe)
def isMaybeBoxed(sym: Symbol): Boolean = {
(sym == defn.ObjectClass) ||
(sym == defn.JavaSerializableClass) ||
(sym == defn.ComparableClass) ||
(sym.derivesFrom(defn.BoxedNumberClass)) ||
(sym.derivesFrom(defn.BoxedCharClass)) ||
(sym.derivesFrom(defn.BoxedBooleanClass))
}
usesOnlyScalaTrees && !areSameFinals &&
isMaybeBoxed(l.tpe.typeSymbol) &&
isMaybeBoxed(r.tpe.typeSymbol)
}
def isNull(t: Tree): Boolean = t match {
case Literal(Constant(null)) => true
case _ => false
}
def isNonNullExpr(t: Tree): Boolean =
t.isInstanceOf[Literal] || ((t.symbol ne null) && t.symbol.is(Module))
def comparator = if (negated) nir.Comp.Ine else nir.Comp.Ieq
def maybeNegate(v: nir.Val): nir.Val =
if negated then negateBool(v) else v
if (mustUseAnyComparator) maybeNegate {
val equalsMethod: Symbol = {
if (l.tpe <:< defn.BoxedNumberClass.info) {
if (r.tpe <:< defn.BoxedNumberClass.info)
defn.BoxesRunTimeModule.requiredMethod(nme.equalsNumNum)
else if (r.tpe <:< defn.BoxedCharClass.info)
defn.BoxesRunTimeModule.requiredMethod(nme.equalsNumChar)
else defn.BoxesRunTimeModule.requiredMethod(nme.equalsNumObject)
} else defn.BoxesRunTimeModule_externalEquals
}
genApplyStaticMethod(equalsMethod, defn.BoxesRunTimeModule, Seq(l, r))
}
else if (isNull(l)) {
// null == expr -> expr eq null
buf.comp(comparator, nir.Rt.Object, genExpr(r), nir.Val.Null, unwind)
} else if (isNull(r)) {
// expr == null -> expr eq null
buf.comp(comparator, nir.Rt.Object, genExpr(l), nir.Val.Null, unwind)
} else if (isNonNullExpr(l)) maybeNegate {
// SI-7852 Avoid null check if L is statically non-null.
genApplyMethod(
sym = defn.Any_equals,
statically = false,
selfp = l,
argsp = Seq(r)
)
}
else
maybeNegate {
// l == r -> if (l eq null) r eq null else l.equals(r)
val thenn, elsen, mergen = fresh()
val mergev = nir.Val.Local(fresh(), nir.Type.Bool)
val left = genExpr(l)
val isnull =
buf.comp(nir.Comp.Ieq, nir.Rt.Object, left, nir.Val.Null, unwind)
buf.branch(isnull, nir.Next(thenn), nir.Next(elsen))
locally {
buf.label(thenn)
val right = genExpr(r)
val thenv =
buf.comp(nir.Comp.Ieq, nir.Rt.Object, right, nir.Val.Null, unwind)
buf.jump(mergen, Seq(thenv))
}
locally {
buf.label(elsen)
val elsev = genApplyMethod(
defn.Any_equals,
statically = false,
left,
Seq(r)
)
buf.jump(mergen, Seq(elsev))
}
buf.label(mergen, Seq(mergev))
mergev
}
}
def genMethodArgs(sym: Symbol, argsp: Seq[Tree]): Seq[nir.Val] =
if sym.isExtern
then genExternMethodArgs(sym, argsp)
else genSimpleArgs(argsp)
private def genSimpleArgs(argsp: Seq[Tree]): Seq[nir.Val] =
argsp.map(genExpr)
private def genExternMethodArgs(
sym: Symbol,
argsp: Seq[Tree]
): Seq[nir.Val] = {
val res = Seq.newBuilder[nir.Val]
val nir.Type.Function(argTypes, _) = genExternMethodSig(sym)
val paramTypes = sym.paramInfo.paramInfoss.flatten
assert(
argTypes.size == argsp.size && argTypes.size == paramTypes.size,
"Different number of arguments passed to method signature and apply method"
)
def genArg(
argp: Tree,
paramTpe: Types.Type,
isVarArg: Boolean = false
): nir.Val = {
given nir.SourcePosition = argp.span
given ExprBuffer = buf
val externType = genExternType(paramTpe.finalResultType)
val rawValue = genExpr(argp)
val maybeUnboxed =
if (isVarArg) ensureUnboxed(rawValue, paramTpe.finalResultType)
else rawValue
val value = (maybeUnboxed, nir.Type.box.get(externType)) match {
case (value @ nir.Val.Null, Some(unboxedType)) =>
externType match {
case nir.Type.Ptr | _: nir.Type.RefKind =>
value
case _ =>
report.warning(
s"Passing null as argument of type ${paramTpe.show} to the extern method is unsafe. " +
s"The argument would be unboxed to primitive value of type $externType.",
argp.srcPos
)
nir.Val.Zero(unboxedType)
}
case (value, _) => value
}
toExtern(externType, value)
}
for ((argp, sigType), paramTpe) <- argsp zip argTypes zip paramTypes
do
sigType match {
case nir.Type.Vararg =>
argp match {
case Apply(_, List(seqLiteral: JavaSeqLiteral)) =>
for tree <- seqLiteral.elems
do
given nir.SourcePosition = tree.span
val tpe = tree
.getAttachment(NirDefinitions.NonErasedType)
.getOrElse(tree.tpe)
val arg = genArg(tree, tpe, isVarArg = true)
def isUnsigned = nir.Type.isUnsignedType(genType(tpe))
// Decimal varargs needs to be promoted to at least Int, and Float needs to be promoted to Double
val promotedArg = arg.ty match {
case nir.Type.Float =>
this.genCastOp(nir.Type.Float, nir.Type.Double, arg)
case i: nir.Type.FixedSizeI
if i.width < nir.Type.Int.width =>
val conv =
if (isUnsigned) nir.Conv.Zext
else nir.Conv.Sext
buf.conv(conv, nir.Type.Int, arg, unwind)
case _ => arg
}
res += promotedArg
case _ =>
report.error(
"Unable to extract vararg arguments, varargs to extern methods must be passed directly to the applied function",
argp.srcPos
)
}
case _ => res += genArg(argp, paramTpe)
}
res.result()
}
private def genArrayOp(app: Apply, code: Int): nir.Val = {
import NirPrimitives._
import dotty.tools.backend.ScalaPrimitivesOps._
val Apply(Select(arrayp, _), argsp) = app: @unchecked
val nir.Type.Array(elemty, _) = genType(arrayp.tpe): @unchecked
given nir.SourcePosition = app.span
def elemcode = genArrayCode(arrayp.tpe)
val array = genExpr(arrayp)
if (code == ARRAY_CLONE)
val method = defnNir.RuntimeArray_clone(elemcode)
genApplyMethod(method, statically = true, array, argsp)
else if (isArrayGet(code))
val idx = genExpr(argsp(0))
buf.arrayload(elemty, array, idx, unwind)
else if (isArraySet(code))
val idx = genExpr(argsp(0))
val value = genExpr(argsp(1))
buf.arraystore(elemty, array, idx, value, unwind)
else buf.arraylength(array, unwind)
}
private def genHashCode(argp: Tree)(using nir.SourcePosition): nir.Val =
genApplyStaticMethod(
defn.staticsMethod(nme.anyHash),
defn.ScalaStaticsModule,
Seq(argp)
)
/*
* Returns a list of trees that each should be concatenated, from left to right.
* It turns a chained call like "a".+("b").+("c") into a list of arguments.
*/
def liftStringConcat(tree: Tree): List[Tree] = tree match {
case tree @ Apply(fun @ DesugaredSelect(larg, method), rarg) =>
if (nirPrimitives.isPrimitive(fun) &&
nirPrimitives.getPrimitive(tree, larg.tpe) == CONCAT)
liftStringConcat(larg) ::: rarg
else
tree :: Nil
case _ =>
tree :: Nil
}
/* Issue a call to `StringBuilder#append` for the right element type */
private final def genStringBuilderAppend(
stringBuilder: nir.Val.Local,
tree: Tree
): Unit = {
given nir.SourcePosition = tree.span
val tpe = tree.tpe
val argType =
if (tpe <:< defn.StringType) nir.Rt.String
else if (tpe <:< defnNir.jlStringBufferType)
genType(defnNir.jlStringBufferRef)
else if (tpe <:< defnNir.jlCharSequenceType)
genType(defnNir.jlCharSequenceRef)
// Don't match for `Array(Char)`, even though StringBuilder has such an overload:
// `"a" + Array('b')` should NOT be "ab", but "a[C@...".
else if (tpe <:< defn.ObjectType) nir.Rt.Object
else genType(tpe)
val value = genExpr(tree)
val (adaptedValue, targetType) = argType match {
// jlStringBuilder does not have overloads for byte and short, but we can just use the int version
case nir.Type.Byte | nir.Type.Short =>
genCoercion(value, value.ty, nir.Type.Int) -> nir.Type.Int
case nirType => value -> nirType
}
val (appendFunction, appendSig) = jlStringBuilderAppendForSymbol(
targetType
)
buf.call(
appendSig,
appendFunction,
Seq(stringBuilder, adaptedValue),
unwind
)
}
private lazy val jlStringBuilderRef =
nir.Type.Ref(genTypeName(defnNir.jlStringBuilderRef))
private lazy val jlStringBuilderCtor =
jlStringBuilderRef.name.member(nir.Sig.Ctor(Seq(nir.Type.Int)))
private lazy val jlStringBuilderCtorSig = nir.Type.Function(
Seq(jlStringBuilderRef, nir.Type.Int),
nir.Type.Unit
)
private lazy val jlStringBuilderToString =
jlStringBuilderRef.name.member(
nir.Sig.Method("toString", Seq(nir.Rt.String))
)
private lazy val jlStringBuilderToStringSig = nir.Type.Function(
Seq(jlStringBuilderRef),
nir.Rt.String
)
private def genStringConcat(tree: Apply): nir.Val = {
given nir.SourcePosition = tree.span
liftStringConcat(tree) match {
// Optimization for expressions of the form "" + x
case List(Literal(Constant("")), arg) =>
genApplyStaticMethod(
defn.String_valueOf_Object,
defn.StringClass,
Seq(arg)
)
case concatenations =>
val concatArguments = concatenations.view
.filter {
// empty strings are no-ops in concatenation
case Literal(Constant("")) => false
case _ => true
}
.map {
// Eliminate boxing of primitive values. Boxing is introduced by erasure because
// there's only a single synthetic `+` method "added" to the string class.
case Apply(boxOp, value :: Nil)
// TODO: SN specific boxing
if Erasure.Boxing.isBox(boxOp.symbol) &&
boxOp.symbol.denot.owner != defn.UnitModuleClass =>
value
case other => other
}
.toList
// Estimate capacity needed for the string builder
val approxBuilderSize = concatArguments.view.map {
case Literal(Constant(s: String)) => s.length
case Literal(c: Constant) if c.isNonUnitAnyVal =>
String.valueOf(c).length
case _ => 0
}.sum
// new StringBuidler(approxBuilderSize)
val stringBuilder =
buf.classalloc(jlStringBuilderRef.name, unwind, None)
buf.call(
jlStringBuilderCtorSig,
nir.Val.Global(jlStringBuilderCtor, nir.Type.Ptr),
Seq(stringBuilder, nir.Val.Int(approxBuilderSize)),
unwind
)
// concat substrings
concatArguments.foreach(genStringBuilderAppend(stringBuilder, _))
// stringBuilder.toString
buf.call(
jlStringBuilderToStringSig,
nir.Val.Global(jlStringBuilderToString, nir.Type.Ptr),
Seq(stringBuilder),
unwind
)
}
}
private def genStaticMember(sym: Symbol, receiver: Symbol)(using
nir.SourcePosition
): nir.Val = {
/* Actually, there is no static member in Scala Native. If we come here, that
* is because we found the symbol in a Java-emitted .class in the
* classpath. But the corresponding implementation in Scala Native will
* actually be a val in the companion module.
*/
if (sym == defn.BoxedUnit_UNIT) nir.Val.Unit
else if (sym == defn.BoxedUnit_TYPE) nir.Val.Unit
else genApplyStaticMethod(sym, receiver, Seq.empty)
}
private def genSynchronized(receiverp: Tree, bodyp: Tree)(using
nir.SourcePosition
): nir.Val = {
genSynchronized(receiverp)(_.genExpr(bodyp))
}
def genSynchronized(
receiverp: Tree
)(bodyGen: ExprBuffer => nir.Val)(using nir.SourcePosition): nir.Val = {
// Here we wrap the synchronized call into the try-finally block
// to ensure that monitor would be released even in case of the exception
// or in case of non-local returns
val nested = new ExprBuffer()
val normaln = fresh()
val handler = fresh()
val mergen = fresh()
// scalanative.runtime.`package`.enterMonitor(receiver)
genApplyStaticMethod(
defnNir.RuntimePackage_enterMonitor,
defnNir.RuntimePackageClass,
List(receiverp)
)
// synchronized block
val retValue = scoped(curUnwindHandler := Some(handler)) {
nested.label(normaln)
bodyGen(nested)
}
val retty = retValue.ty
val mergev = nir.Val.Local(fresh(), retty)
nested.jumpExcludeUnitValue(retty)(mergen, retValue)
// dummy exception handler,
// monitorExit call would be added to it in genTryFinally transformer
locally {
val excv = nir.Val.Local(fresh(), nir.Rt.Object)
nested.label(handler, Seq(excv))
nested.raise(excv, unwind)
nested.jumpExcludeUnitValue(retty)(mergen, nir.Val.Zero(retty))
}
// Append try/catch instructions to the outher instruction buffer.
buf.jump(nir.Next(normaln))
buf ++= genTryFinally(
// scalanative.runtime.`package`.exitMonitor(receiver)
ContTree(receiverp)(
_.genApplyStaticMethod(
defnNir.RuntimePackage_exitMonitor,
defnNir.RuntimePackageClass,
List(receiverp)
)
),
nested.toSeq
)
buf.labelExcludeUnitValue(mergen, mergev)
}
private def genThrow(tree: Tree, args: List[Tree]): nir.Val = {
given nir.SourcePosition = tree.span
val exception = args.head
val res = genExpr(exception)
buf.raise(res, unwind)
nir.Val.Unit
}
def genCastOp(from: nir.Type, to: nir.Type, value: nir.Val)(using
nir.SourcePosition
): nir.Val =
castConv(from, to).fold(value)(buf.conv(_, to, value, unwind))
private def genCoercion(app: Apply, receiver: Tree, code: Int): nir.Val = {
given nir.SourcePosition = app.span
val rec = genExpr(receiver)
val (fromty, toty) = coercionTypes(code)
genCoercion(rec, fromty, toty)
}
private def genCoercion(value: nir.Val, fromty: nir.Type, toty: nir.Type)(
using nir.SourcePosition
): nir.Val = {
if (fromty == toty) value
else if (fromty == nir.Type.Nothing || toty == nir.Type.Nothing) value
else {
val conv = (fromty, toty) match {
case (nir.Type.Ptr, _: nir.Type.RefKind) => nir.Conv.Bitcast
case (_: nir.Type.RefKind, nir.Type.Ptr) => nir.Conv.Bitcast
case (l: nir.Type.FixedSizeI, r: nir.Type.FixedSizeI) =>
if (l.width < r.width)
if (l.signed) nir.Conv.Sext
else nir.Conv.Zext
else if (l.width > r.width) nir.Conv.Trunc
else nir.Conv.Bitcast
case (i: nir.Type.I, _: nir.Type.F) if i.signed => nir.Conv.Sitofp
case (_: nir.Type.I, _: nir.Type.F) => nir.Conv.Uitofp
case (_: nir.Type.F, i: nir.Type.FixedSizeI) if i.signed =>
if (i.width < 32) {
val ivalue = genCoercion(value, fromty, nir.Type.Int)
return genCoercion(ivalue, nir.Type.Int, toty)
}
nir.Conv.Fptosi
case (_: nir.Type.F, i: nir.Type.FixedSizeI) if !i.signed =>
if (i.width < 32) {
val ivalue = genCoercion(value, fromty, nir.Type.Int)
return genCoercion(ivalue, nir.Type.Int, toty)
}
nir.Conv.Fptoui
case (nir.Type.Double, nir.Type.Float) => nir.Conv.Fptrunc
case (nir.Type.Float, nir.Type.Double) => nir.Conv.Fpext
case _ =>
report.error(
s"Unsupported coercion types: from $fromty to $toty"
)
nir.Conv.Bitcast
}
buf.conv(conv, toty, value, unwind)
}
}
private def coercionTypes(code: Int): (nir.Type, nir.Type) = {
code match {
case B2B => (nir.Type.Byte, nir.Type.Byte)
case B2S => (nir.Type.Byte, nir.Type.Short)
case B2C => (nir.Type.Byte, nir.Type.Char)
case B2I => (nir.Type.Byte, nir.Type.Int)
case B2L => (nir.Type.Byte, nir.Type.Long)
case B2F => (nir.Type.Byte, nir.Type.Float)
case B2D => (nir.Type.Byte, nir.Type.Double)
case S2B => (nir.Type.Short, nir.Type.Byte)
case S2S => (nir.Type.Short, nir.Type.Short)
case S2C => (nir.Type.Short, nir.Type.Char)
case S2I => (nir.Type.Short, nir.Type.Int)
case S2L => (nir.Type.Short, nir.Type.Long)
case S2F => (nir.Type.Short, nir.Type.Float)
case S2D => (nir.Type.Short, nir.Type.Double)
case C2B => (nir.Type.Char, nir.Type.Byte)
case C2S => (nir.Type.Char, nir.Type.Short)
case C2C => (nir.Type.Char, nir.Type.Char)
case C2I => (nir.Type.Char, nir.Type.Int)
case C2L => (nir.Type.Char, nir.Type.Long)
case C2F => (nir.Type.Char, nir.Type.Float)
case C2D => (nir.Type.Char, nir.Type.Double)
case I2B => (nir.Type.Int, nir.Type.Byte)
case I2S => (nir.Type.Int, nir.Type.Short)
case I2C => (nir.Type.Int, nir.Type.Char)
case I2I => (nir.Type.Int, nir.Type.Int)
case I2L => (nir.Type.Int, nir.Type.Long)
case I2F => (nir.Type.Int, nir.Type.Float)
case I2D => (nir.Type.Int, nir.Type.Double)
case L2B => (nir.Type.Long, nir.Type.Byte)
case L2S => (nir.Type.Long, nir.Type.Short)
case L2C => (nir.Type.Long, nir.Type.Char)
case L2I => (nir.Type.Long, nir.Type.Int)
case L2L => (nir.Type.Long, nir.Type.Long)
case L2F => (nir.Type.Long, nir.Type.Float)
case L2D => (nir.Type.Long, nir.Type.Double)
case F2B => (nir.Type.Float, nir.Type.Byte)
case F2S => (nir.Type.Float, nir.Type.Short)
case F2C => (nir.Type.Float, nir.Type.Char)
case F2I => (nir.Type.Float, nir.Type.Int)
case F2L => (nir.Type.Float, nir.Type.Long)
case F2F => (nir.Type.Float, nir.Type.Float)
case F2D => (nir.Type.Float, nir.Type.Double)
case D2B => (nir.Type.Double, nir.Type.Byte)
case D2S => (nir.Type.Double, nir.Type.Short)
case D2C => (nir.Type.Double, nir.Type.Char)
case D2I => (nir.Type.Double, nir.Type.Int)
case D2L => (nir.Type.Double, nir.Type.Long)
case D2F => (nir.Type.Double, nir.Type.Float)
case D2D => (nir.Type.Double, nir.Type.Double)
}
}
private def castConv(fromty: nir.Type, toty: nir.Type): Option[nir.Conv] =
(fromty, toty) match {
case (_: nir.Type.I, nir.Type.Ptr) => Some(nir.Conv.Inttoptr)
case (nir.Type.Ptr, _: nir.Type.I) => Some(nir.Conv.Ptrtoint)
case (_: nir.Type.RefKind, nir.Type.Ptr) => Some(nir.Conv.Bitcast)
case (nir.Type.Ptr, _: nir.Type.RefKind) => Some(nir.Conv.Bitcast)
case (_: nir.Type.RefKind, _: nir.Type.RefKind) =>
Some(nir.Conv.Bitcast)
case (_: nir.Type.RefKind, _: nir.Type.I) => Some(nir.Conv.Ptrtoint)
case (_: nir.Type.I, _: nir.Type.RefKind) => Some(nir.Conv.Inttoptr)
case (l: nir.Type.FixedSizeI, r: nir.Type.F) if l.width == r.width =>
Some(nir.Conv.Bitcast)
case (l: nir.Type.F, r: nir.Type.FixedSizeI) if l.width == r.width =>
Some(nir.Conv.Bitcast)
case _ if fromty == toty => None
case (nir.Type.Float, nir.Type.Double) => Some(nir.Conv.Fpext)
case (nir.Type.Double, nir.Type.Float) => Some(nir.Conv.Fptrunc)
case _ => unsupported(s"cast from $fromty to $toty")
}
/** Boxes a value of the given type before `elimErasedValueType`.
*
* This should be used when sending values to a LLVM context, which is
* erased/boxed at the NIR level, although it is not erased at the
* dotty/JVM level.
*
* @param value
* Value to be boxed if needed.
* @param tpeEnteringElimErasedValueType
* The type of `value` as it was entering the `elimErasedValueType`
* phase.
*/
private def ensureBoxed(
value: nir.Val,
tpeEnteringPosterasure: core.Types.Type
)(using buf: ExprBuffer, pos: nir.SourcePosition): nir.Val = {
tpeEnteringPosterasure match {
case tpe if tpe.isPrimitiveValueType =>
buf.boxValue(tpe, value)
case ErasedValueType(valueClass, _) =>
val boxedClass = valueClass.typeSymbol.asClass
val ctorName = genMethodName(boxedClass.primaryConstructor)
val ctorSig = genMethodSig(boxedClass.primaryConstructor)
val alloc = buf.classalloc(genTypeName(boxedClass), unwind)
val ctor = buf.method(
alloc,
ctorName.asInstanceOf[nir.Global.Member].sig,
unwind
)
buf.call(ctorSig, ctor, Seq(alloc, value), unwind)
alloc
case _ =>
value
}
}
/** Unboxes a value typed as Any to the given type before
* `elimErasedValueType`.
*
* This should be used when receiving values from a LLVM context, which is
* erased/boxed at the NIR level, although it is not erased at the
* dotty/JVM level.
*
* @param value
* Tree to be extracted.
* @param tpeEnteringElimErasedValueType
* The type of `value` as it was entering the `elimErasedValueType`
* phase.
*/
private def ensureUnboxed(
value: nir.Val,
tpeEnteringPosterasure: core.Types.Type
)(using
buf: ExprBuffer,
pos: nir.SourcePosition
): nir.Val = {
tpeEnteringPosterasure match {
case tpe if tpe.isPrimitiveValueType =>
val targetTpe = genType(tpeEnteringPosterasure)
if (targetTpe == value.ty) value
else buf.unbox(genBoxType(tpe), value, nir.Next.None)
case ErasedValueType(valueClass, _) =>
val boxedClass = valueClass.typeSymbol.asClass
val unboxMethod = ValueClasses.valueClassUnbox(boxedClass)
val castedValue = buf.genCastOp(value.ty, genType(valueClass), value)
buf.genApplyMethod(
sym = unboxMethod,
statically = false,
self = castedValue,
argsp = Nil
)
case tpe =>
val unboxed = buf.unboxValue(tpe, partial = true, value)
if (unboxed == value) // no need to or cannot unbox, we should cast
buf.genCastOp(genType(tpeEnteringPosterasure), genType(tpe), value)
else unboxed
}
}
// Native specifc features
private def genRawPtrOp(app: Apply, code: Int): nir.Val = {
if (NirPrimitives.isRawPtrLoadOp(code)) genRawPtrLoadOp(app, code)
else if (NirPrimitives.isRawPtrStoreOp(code)) genRawPtrStoreOp(app, code)
else if (code == NirPrimitives.ELEM_RAW_PTR) genRawPtrElemOp(app)
else {
report.error(s"Unknown pointer operation #$code : $app", app.sourcePos)
nir.Val.Null
}
}
private def genRawPtrLoadOp(app: Apply, code: Int): nir.Val = {
import NirPrimitives._
given nir.SourcePosition = app.span
val Apply(_, Seq(ptrp)) = app
val ptr = genExpr(ptrp)
val ty = code match {
case LOAD_BOOL => nir.Type.Bool
case LOAD_CHAR => nir.Type.Char
case LOAD_BYTE => nir.Type.Byte
case LOAD_SHORT => nir.Type.Short
case LOAD_INT => nir.Type.Int
case LOAD_LONG => nir.Type.Long
case LOAD_FLOAT => nir.Type.Float
case LOAD_DOUBLE => nir.Type.Double
case LOAD_RAW_PTR => nir.Type.Ptr
case LOAD_RAW_SIZE => nir.Type.Size
case LOAD_OBJECT => nir.Rt.Object
}
val memoryOrder =
Option.when(ptrp.symbol.isVolatile)(
nir.MemoryOrder.Acquire
)
buf.load(ty, ptr, unwind, memoryOrder)
}
private def genRawPtrStoreOp(app: Apply, code: Int): nir.Val = {
import NirPrimitives._
given nir.SourcePosition = app.span
val Apply(_, Seq(ptrp, valuep)) = app
val ptr = genExpr(ptrp)
val value = genExpr(valuep)
val ty = code match {
case STORE_BOOL => nir.Type.Bool
case STORE_CHAR => nir.Type.Char
case STORE_BYTE => nir.Type.Byte
case STORE_SHORT => nir.Type.Short
case STORE_INT => nir.Type.Int
case STORE_LONG => nir.Type.Long
case STORE_FLOAT => nir.Type.Float
case STORE_DOUBLE => nir.Type.Double
case STORE_RAW_PTR => nir.Type.Ptr
case STORE_RAW_SIZE => nir.Type.Size
case STORE_OBJECT => nir.Rt.Object
}
val memoryOrder = Option.when(ptrp.symbol.isVolatile)(
nir.MemoryOrder.Release
)
buf.store(ty, ptr, value, unwind, memoryOrder)
}
private def genRawPtrElemOp(app: Apply): nir.Val = {
given nir.SourcePosition = app.span
val Apply(_, Seq(ptrp, offsetp)) = app
val ptr = genExpr(ptrp)
val offset = genExpr(offsetp)
buf.elem(nir.Type.Byte, ptr, Seq(offset), unwind)
}
private def genRawPtrCastOp(app: Apply): nir.Val = {
given nir.SourcePosition = app.span
val Apply(_, Seq(argp)) = app
val fromty = genType(argp.tpe)
val toty = genType(app.tpe)
val value = genExpr(argp)
genCastOp(fromty, toty, value)
}
def genRawSizeCastOp(app: Apply, code: Int): nir.Val = {
import NirPrimitives._
given pos: nir.SourcePosition = app.span
val Apply(_, Seq(argp)) = app
val rec = genExpr(argp)
val (toty, conv) = code match {
case CAST_RAWSIZE_TO_INT => nir.Type.Int -> nir.Conv.SSizeCast
case CAST_RAWSIZE_TO_LONG => nir.Type.Long -> nir.Conv.SSizeCast
case CAST_RAWSIZE_TO_LONG_UNSIGNED =>
nir.Type.Long -> nir.Conv.ZSizeCast
case CAST_INT_TO_RAWSIZE => nir.Type.Size -> nir.Conv.SSizeCast
case CAST_INT_TO_RAWSIZE_UNSIGNED => nir.Type.Size -> nir.Conv.ZSizeCast
case CAST_LONG_TO_RAWSIZE => nir.Type.Size -> nir.Conv.SSizeCast
}
buf.conv(conv, toty, rec, unwind)
}
private def genUnsignedOp(app: Tree, code: Int): nir.Val = {
given nir.SourcePosition = app.span
import NirPrimitives._
def castToUnsigned = code == UNSIGNED_OF
def castUnsignedInteger = code >= BYTE_TO_UINT && code <= INT_TO_ULONG
def castUnsignedToFloat = code >= UINT_TO_FLOAT && code <= ULONG_TO_DOUBLE
app match {
case Apply(_, Seq(argp)) if castToUnsigned =>
val ty = genType(app.tpe.resultType)
val arg = genExpr(argp)
buf.box(ty, arg, unwind)
case Apply(_, Seq(argp)) if castUnsignedInteger =>
val ty = genType(app.tpe)
val arg = genExpr(argp)
buf.conv(nir.Conv.Zext, ty, arg, unwind)
case Apply(_, Seq(argp)) if castUnsignedToFloat =>
val ty = genType(app.tpe)
val arg = genExpr(argp)
buf.conv(nir.Conv.Uitofp, ty, arg, unwind)
case Apply(_, Seq(leftp, rightp)) =>
val bin = code match {
case DIV_UINT | DIV_ULONG => nir.Bin.Udiv
case REM_UINT | REM_ULONG => nir.Bin.Urem
}
val ty = genType(leftp.tpe)
val left = genExpr(leftp)
val right = genExpr(rightp)
buf.bin(bin, ty, left, right, unwind)
}
}
private def getLinktimeCondition(
condp: Tree
): Option[nir.LinktimeCondition] = {
import nir.LinktimeCondition._
def genComparsion(name: Name, value: nir.Val): nir.Comp = {
def intOrFloatComparison(onInt: nir.Comp, onFloat: nir.Comp) =
value.ty match {
case _: nir.Type.F =>
onFloat
case _ =>
onInt
}
import nir.Comp._
name match {
case nme.EQ => intOrFloatComparison(Ieq, Feq)
case nme.NE => intOrFloatComparison(Ine, Fne)
case nme.GT => intOrFloatComparison(Sgt, Fgt)
case nme.GE => intOrFloatComparison(Sge, Fge)
case nme.LT => intOrFloatComparison(Slt, Flt)
case nme.LE => intOrFloatComparison(Sle, Fle)
case nme =>
report.error(s"Unsupported condition '$nme'", condp.sourcePos)
nir.Comp.Ine
}
}
condp match {
// if(bool) (...)
case Apply(LinktimeProperty(name, _, position), Nil) =>
Some {
SimpleCondition(
propertyName = name,
comparison = nir.Comp.Ieq,
value = nir.Val.True
)(using position)
}
// if(!bool) (...)
case Apply(
Select(
Apply(LinktimeProperty(name, _, position), Nil),
nme.UNARY_!
),
Nil
) =>
Some {
SimpleCondition(
propertyName = name,
comparison = nir.Comp.Ieq,
value = nir.Val.False
)(using position)
}
// if(property x) (...)
case Apply(
Select(LinktimeProperty(name, _, position), comp),
List(arg @ Literal(Constant(_)))
) =>
Some {
val argValue = genLiteralValue(arg)
SimpleCondition(
propertyName = name,
comparison = genComparsion(comp, argValue),
value = argValue
)(using position)
}
// special case for Scala 3 - it wraps != into !(_ == _)
// if(property == x) (...)
case Apply(
Select(
Apply(
Select(LinktimeProperty(name, _, position), nme.EQ),
List(arg @ Literal(Constant(_)))
),
nme.UNARY_!
),
Nil
) =>
Some {
val argValue = genLiteralValue(arg)
SimpleCondition(
propertyName = name,
comparison = genComparsion(nme.NE, argValue),
value = argValue
)(using position)
}
// if(cond1 {&&,||} cond2) (...)
case Apply(Select(cond1, op), List(cond2)) =>
(getLinktimeCondition(cond1), getLinktimeCondition(cond2)) match {
case (Some(c1), Some(c2)) =>
val bin = op match {
case nme.ZAND => nir.Bin.And
case nme.ZOR => nir.Bin.Or
}
given nir.SourcePosition = condp.span
Some(ComplexCondition(bin, c1, c2))
case (None, None) => None
case _ =>
report.error(
"Mixing link-time and runtime conditions is not allowed",
condp.sourcePos
)
None
}
case _ => None
}
}
private lazy val optimizedFunctions = {
// Included functions should be pure, and should not not narrow the result type
Set[Symbol](
defnNir.Intrinsics_castIntToRawSize,
defnNir.Intrinsics_castIntToRawSizeUnsigned,
defnNir.Intrinsics_castLongToRawSize,
defnNir.Intrinsics_castRawSizeToInt,
defnNir.Intrinsics_castRawSizeToLong,
defnNir.Intrinsics_castRawSizeToLongUnsigned,
defnNir.Size_fromByte,
defnNir.Size_fromShort,
defnNir.Size_fromInt,
defnNir.USize_fromUByte,
defnNir.USize_fromUShort,
defnNir.USize_fromUInt,
defnNir.RuntimePackage_fromRawSize,
defnNir.RuntimePackage_fromRawUSize
) ++ defnNir.Intrinsics_unsignedOfAlts ++ defnNir.RuntimePackage_toRawSizeAlts
}
private def getUnboxedSize(sizep: Tree)(using nir.SourcePosition): nir.Val =
sizep match {
// Optimize call, strip numeric conversions
case Literal(Constant(size: Int)) => nir.Val.Size(size)
case Block(Nil, expr) => getUnboxedSize(expr)
case Apply(fun, List(arg))
if optimizedFunctions.contains(fun.symbol) ||
arg.symbol.exists && optimizedFunctions.contains(arg.symbol) =>
getUnboxedSize(arg)
case Typed(expr, _) => getUnboxedSize(expr)
case _ =>
// actual unboxing
val size = genExpr(sizep)
val sizeTy = nir.Type.normalize(size.ty)
val unboxed =
if nir.Type.unbox.contains(sizeTy) then
buf.unbox(sizeTy, size, unwind)
else if nir.Type.box.contains(sizeTy) then size
else {
report.error(
s"Invalid usage of Intrinsic.stackalloc, argument is not an integer type: ${sizeTy}",
sizep.srcPos
)
nir.Val.Size(0)
}
if (unboxed.ty == nir.Type.Size) unboxed
else buf.conv(nir.Conv.SSizeCast, nir.Type.Size, unboxed, unwind)
}
def genStackalloc(app: Apply): nir.Val = {
given nir.SourcePosition = app.span
val Apply(_, args) = app
val tpe = app
.getAttachment(NonErasedType)
.map(genType(_, deconstructValueTypes = true))
.getOrElse {
report.error(
"Not found type attachment for stackalloc operation, report it as a bug.",
app.srcPos
)
nir.Type.Nothing
}
val size = args match {
case Seq() => nir.Val.Size(1)
case Seq(sizep) => getUnboxedSize(sizep)
case Seq(_, sizep) => getUnboxedSize(sizep)
case _ => scalanative.util.unreachable
}
buf.stackalloc(tpe, size, unwind)
}
def genSafeZoneAlloc(app: Apply): nir.Val = {
val Apply(_, List(sz, tree)) = app
// For new expression with a specified safe zone, e.g. `new {sz} T(...)`,
// it's translated to `allocate(sz, new T(...))` in TyperPhase.
tree match {
case Apply(Select(New(_), nme.CONSTRUCTOR), _) =>
case Apply(fun, _) if fun.symbol == defn.newArrayMethod =>
case _ =>
report.error(
s"Unexpected tree in scala.scalanative.runtime.SafeZoneAllocator.allocate: `${tree}`",
tree.srcPos
)
}
// Put the zone into the attachment of `new T(...)`.
if tree.hasAttachment(SafeZoneInstance) then
report.warning(
s"Safe zone handle is already attached to ${tree}, which is unexpected.",
tree.srcPos
)
tree.putAttachment(SafeZoneInstance, genExpr(sz))
genExpr(tree)
}
def genCQuoteOp(app: Apply): nir.Val = {
app match {
// case q"""
// scala.scalanative.unsafe.`package`.CQuote(
// new StringContext(scala.this.Predef.wrapRefArray(
// Array[String]{${str: String}}.$asInstanceOf[Array[Object]]()
// ))
// ).c()
case Apply(
Select(
Apply(
_, // Ident(CQuote),
List(
Apply(
_,
List(Apply(_, List(javaSeqLiteral: JavaSeqLiteral)))
)
)
),
_
),
_
) =>
given nir.SourcePosition = app.span
val List(Literal(Constant(str: String))) =
javaSeqLiteral.elems: @unchecked
val bytes = nir.Val.ByteString(StringUtils.processEscapes(str))
val const = nir.Val.Const(bytes)
buf.box(nir.Rt.BoxedPtr, const, unwind)
case _ =>
report.error("Failed to interpret CQuote", app.sourcePos)
nir.Val.Null
}
}
def genClassFieldRawPtr(app: Apply): nir.Val = {
given nir.SourcePosition = app.span
val Apply(_, List(target, fieldName: Literal)) = app: @unchecked
val fieldNameId = fieldName.const.stringValue
val classInfo = target.tpe.finalResultType
val classInfoSym = classInfo.typeSymbol.asClass
def matchesName(f: SingleDenotation) =
f.name.mangled == termName(fieldNameId).mangled
def isImmutableField(f: SymDenotation) = {
// If `val` was defined in trait it would be internally mutable, but with stable accessors
!f.is(Mutable) || classInfoSym.parentSyms.exists(s =>
s.asClass.info.decls.exists { f =>
matchesName(f) && f.asSymDenotation
.isAllOf(Method | Accessor, butNot = Mutable)
}
)
}
val allFields =
classInfoSym.info.fields ++ classInfoSym.info.parents.flatMap(_.fields)
allFields
.collectFirst {
case f if matchesName(f) =>
// Don't allow to get pointer to immutable field, as it might allow for mutation
if (isImmutableField(f.asSymDenotation)) {
val owner = f.asSymDenotation.owner
report.error(
s"Resolving pointer of immutable field ${fieldNameId} in ${owner.show} is not allowed"
)
}
buf.field(genExpr(target), genFieldName(f.symbol), unwind)
}
.getOrElse {
report.error(
s"${classInfoSym.show} does not contain field ${fieldNameId}",
app.sourcePos
)
nir.Val.Int(-1)
}
}
def genSizeOf(app: Apply): nir.Val =
genLayoutValueOf("sizeOf", buf.sizeOf(_, unwind))(app)
def genAlignmentOf(app: Apply): nir.Val =
genLayoutValueOf("alignmentOf", buf.alignmentOf(_, unwind))(app)
private def genLayoutValueOf(
opType: => String,
toVal: nir.SourcePosition ?=> nir.Type => nir.Val
)(app: Apply): nir.Val = {
given nir.SourcePosition = app.span
def fail(msg: => String) =
report.error(msg, app.srcPos)
nir.Val.Zero(nir.Type.Size)
app.getAttachment(NirDefinitions.NonErasedType) match
case None =>
app.args match {
case Seq(Literal(cls: Constant)) =>
val nirTpe = genType(cls.typeValue, deconstructValueTypes = false)
toVal(nirTpe)
case _ =>
fail(
s"Method $opType(Class[_]) requires single class literal argument, if you used $opType[T] report it as a bug"
)
}
case Some(tpe) if tpe.typeSymbol.isTraitOrInterface =>
fail(
s"Type ${tpe.show} is a trait or interface, its $opType cannot be calculated"
)
case Some(tpe) =>
try {
val nirTpe = genType(tpe, deconstructValueTypes = true)
toVal(nirTpe)
} catch {
case ex: Throwable =>
fail(
s"Failed to generate exact NIR type of ${tpe.show} - ${ex.getMessage}"
)
}
}
def genLoadExtern(ty: nir.Type, externTy: nir.Type, sym: Symbol)(using
nir.SourcePosition
): nir.Val = {
assert(sym.isExtern, "loadExtern was not extern")
val name = nir.Val.Global(genName(sym), nir.Type.Ptr)
val memoryOrder = Option.when(sym.isVolatile)(
nir.MemoryOrder.Acquire
)
fromExtern(
ty,
buf.load(externTy, name, unwind, memoryOrder)
)
}
def genStoreExtern(externTy: nir.Type, sym: Symbol, value: nir.Val)(using
nir.SourcePosition
): nir.Val = {
assert(sym.isExtern, "storeExtern was not extern")
val name = nir.Val.Global(genName(sym), nir.Type.Ptr)
val externValue = toExtern(externTy, value)
val memoryOrder = Option.when(sym.isVolatile)(
nir.MemoryOrder.Release
)
buf.store(externTy, name, externValue, unwind, memoryOrder)
}
def toExtern(expectedTy: nir.Type, value: nir.Val)(using
nir.SourcePosition
): nir.Val =
(expectedTy, value.ty) match {
case (nir.Type.Unit, _) => nir.Val.Unit
case (_, refty: nir.Type.Ref)
if nir.Type.boxClasses.contains(refty.name)
&& nir.Type.unbox(nir.Type.Ref(refty.name)) == expectedTy =>
buf.unbox(nir.Type.Ref(refty.name), value, unwind)
case _ =>
value
}
def fromExtern(expectedTy: nir.Type, value: nir.Val)(using
nir.SourcePosition
): nir.Val =
(expectedTy, value.ty) match {
case (refty: nir.Type.Ref, ty)
if nir.Type.boxClasses.contains(refty.name)
&& nir.Type.unbox(nir.Type.Ref(refty.name)) == ty =>
buf.box(nir.Type.Ref(refty.name), value, unwind)
case _ =>
value
}
/** Generates direct call to function ptr with optional unboxing arguments
* and boxing result Apply.args can contain different number of arguments
* depending on usage, however they are passed in constant order:
* - 0..N args
* - return type evidence
*/
private def genCFuncPtrApply(app: Apply): nir.Val = {
given nir.SourcePosition = app.span
val Apply(appRec @ Select(receiverp, _), aargs) = app: @unchecked
val attachment = app
.getAttachment(NirDefinitions.NonErasedTypes)
.orElse(appRec.getAttachment(NirDefinitions.NonErasedTypes))
val paramTypes = attachment match {
case None =>
report.error(
s"Failed to generated exact NIR types for $app, something is wrong with scala-native internls.",
app.srcPos
)
return nir.Val.Null
case Some(paramTys) => paramTys
}
val self = genExpr(receiverp)
val retType = genType(paramTypes.last)
val unboxedRetType = nir.Type.unbox.getOrElse(retType, retType)
val args = aargs
.zip(paramTypes)
.map {
case (Apply(Select(_, nme.box), List(value)), _) =>
genExpr(value)
case (arg, ty) =>
given nir.SourcePosition = arg.span
val tpe = genType(ty)
val obj = genExpr(arg)
/* buf.unboxValue does not handle Ref( Ptr | CArray | ... ) unboxing
* That's why we're doing it directly */
if (nir.Type.unbox.isDefinedAt(tpe)) buf.unbox(tpe, obj, unwind)
else buf.unboxValue(fromType(ty), partial = false, obj)
}
val argTypes = args.map(_.ty)
val funcSig = nir.Type.Function(argTypes, unboxedRetType)
val selfName = genTypeName(defnNir.CFuncPtrClass)
val getRawPtrName = selfName
.member(nir.Sig.Field("rawptr", nir.Sig.Scope.Private(selfName)))
val target = buf.fieldload(nir.Type.Ptr, self, getRawPtrName, unwind)
val result = buf.call(funcSig, target, args, unwind)
if (retType != unboxedRetType) buf.box(retType, result, unwind)
else boxValue(paramTypes.last, result)
}
private final val ExternForwarderSig =
nir.Sig.Generated("$extern$forwarder")
private def genCFuncFromScalaFunction(app: Apply): nir.Val = {
given pos: nir.SourcePosition = app.span
val paramTypes = app.getAttachment(NirDefinitions.NonErasedTypes) match
case None =>
report.error(
s"Failed to generate exact NIR types for $app, something is wrong with scala-native internals.",
app.srcPos
)
Nil
case Some(paramTys) =>
paramTys.map(fromType)
val fn :: _ = app.args: @unchecked
@tailrec
def resolveFunction(tree: Tree): nir.Val = tree match {
case Typed(expr, _) => resolveFunction(expr)
case Block(_, expr) => resolveFunction(expr)
case fn @ Closure(env, target, _) =>
if env.nonEmpty then
report.error(
s"Closing over local state of ${env.map(_.symbol.show).mkString(", ")} in function transformed to CFuncPtr results in undefined behaviour.",
fn.srcPos
)
val fnRef = genClosure(fn)
val nir.Type.Ref(className, _, _) = fnRef.ty: @unchecked
generatedDefns += genFuncExternForwarder(
className,
target.symbol,
fn,
paramTypes
)
fnRef
case ref: RefTree =>
report.error(
s"Function passed to ${app.symbol.show} needs to be inlined",
tree.sourcePos
)
nir.Val.Null
case _ =>
report.error(
"Failed to resolve function ref for extern forwarder",
tree.sourcePos
)
nir.Val.Null
}
val fnRef = resolveFunction(fn)
val className = genTypeName(app.tpe.sym)
val ctorTy = nir.Type.Function(
Seq(nir.Type.Ref(className), nir.Type.Ptr),
nir.Type.Unit
)
val ctorName = className.member(nir.Sig.Ctor(Seq(nir.Type.Ptr)))
val rawptr = buf.method(fnRef, ExternForwarderSig, unwind)
val alloc = buf.classalloc(className, unwind)
buf.call(
ctorTy,
nir.Val.Global(ctorName, nir.Type.Ptr),
Seq(alloc, rawptr),
unwind
)
alloc
}
private def genFuncExternForwarder(
funcName: nir.Global,
funSym: Symbol,
funTree: Closure,
evidences: List[SimpleType]
)(using nir.SourcePosition): nir.Defn = {
val attrs = nir.Attrs(isExtern = true)
// In case if passed function is adapted closure it's param types
// would be erased, in such case we would recover original types
// using evidence types (materialized unsafe.Tags)
val isAdapted = funSym.name.mangledString.contains("$adapted$")
val sig = genMethodSig(funSym)
val externSig = genExternMethodSig(funSym)
val nir.Type.Function(origtys, _) =
if (!isAdapted) sig
else {
val params :+ retty = evidences
.map(genType(_))
.map(t => nir.Type.box.getOrElse(t, t)): @unchecked
nir.Type.Function(params, retty)
}
val forwarderSig @ nir.Type.Function(paramtys, retty) =
if (!isAdapted) externSig
else {
val params :+ retty = evidences
.map(genExternType)
.map(t => nir.Type.unbox.getOrElse(t, t)): @unchecked
nir.Type.Function(params, retty)
}
val forwarderName = funcName.member(ExternForwarderSig)
val forwarderBody = scoped(
curUnwindHandler := None,
curScopeId := nir.ScopeId.TopLevel
) {
val fresh = nir.Fresh()
val buf = ExprBuffer(using fresh)
val params = paramtys.map(ty => nir.Val.Local(fresh(), ty))
buf.label(fresh(), params)
val origTypes =
if (funSym.isStaticInNIR || isAdapted) origtys else origtys.tail
val boxedParams = origTypes.zip(params).map(buf.fromExtern(_, _))
val argsp = boxedParams.map(ValTree(funTree)(_))
// Check number of arguments that would be be used in a call to the function,
// it should be equal to the quantity of implicit evidences (without return type evidence)
// and arguments passed via closure env.
if (argsp.size != evidences.length - 1 + funTree.env.size) {
report.error(
"Failed to create scalanative.unsafe.CFuncPtr from scala.Function, report this issue to Scala Native team.",
funTree.srcPos
)
}
val res =
if (funSym.isStaticInNIR)
buf.genApplyStaticMethod(funSym, NoSymbol, argsp)
else
val owner = buf.genModule(funSym.owner)
val selfp = ValTree(funTree)(owner)
buf.genApplyMethod(funSym, statically = true, selfp, argsp)
val unboxedRes = buf.toExtern(retty, res)
buf.ret(unboxedRes)
buf.toSeq
}
new nir.Defn.Define(attrs, forwarderName, forwarderSig, forwarderBody)
}
private object WrapArray {
lazy val isWrapArray: Set[Symbol] = {
val names = defn
.ScalaValueClasses()
.map(sym => nme.wrapXArray(sym.name))
.concat(Set(nme.wrapRefArray, nme.genericWrapArray))
val symsInPredef = names.map(defn.ScalaPredefModule.requiredMethod(_))
val symsInScalaRunTime =
names.map(defn.ScalaRuntimeModule.requiredMethod(_))
(symsInPredef ++ symsInScalaRunTime).toSet
}
def unapply(tree: Apply): Option[Tree] = tree match {
case Apply(wrapArray_?, List(wrapped))
if isWrapArray(wrapArray_?.symbol) =>
Some(wrapped)
case _ =>
None
}
}
private def genReflectiveCall(
tree: Apply,
isSelectDynamic: Boolean
): nir.Val = {
given nir.SourcePosition = tree.span
val Apply(fun @ Select(receiver, _), args) = tree: @unchecked
val selectedValue = genApplyMethod(
defnNir.ReflectSelectable_selectedValue,
statically = false,
genExpr(receiver),
Seq.empty
)
// Extract the method name as a String
val methodNameStr = args.head match {
case Literal(Constants.Constant(name: String)) => name
case _ =>
report.error(
"The method name given to Selectable.selectDynamic or Selectable.applyDynamic " +
"must be a literal string. " +
"Other uses are not supported in Scala Native.",
args.head.sourcePos
)
"erroneous"
}
val (formalParamTypeRefs, actualArgs) =
if (isSelectDynamic) (Nil, Nil)
else
args.tail match {
// Extract the param type refs and actual args from the 2nd and 3rd argument to applyDynamic
case WrapArray(classOfsArray: JavaSeqLiteral) ::
WrapArray(actualArgsAnyArray: JavaSeqLiteral) :: Nil =>
// Extract nir.Type's from the classOf[_] trees
val formalParamTypes = classOfsArray.elems.map {
// classOf[tp] -> tp
case Literal(const) if const.tag == Constants.ClazzTag =>
genType(const.typeValue)
// Anything else is invalid
case otherTree =>
report.error(
"The java.lang.Class[_] arguments passed to Selectable.applyDynamic must be " +
"literal classOf[T] expressions (typically compiler-generated). " +
"Other uses are not supported in Scala Native.",
otherTree.sourcePos
)
nir.Rt.Object
}
// Gen the actual args, downcasting them to the formal param types
val actualArgs =
actualArgsAnyArray.elems
.zip(formalParamTypes)
.map { (actualArgAny, formalParamType) =>
val genActualArgAny = genExpr(actualArgAny)
(genActualArgAny.ty, formalParamType) match {
case (ty: nir.Type.Ref, formal: nir.Type.Ref) =>
if ty.name == formal.name then genActualArgAny
else
buf.as(
formalParamType,
genActualArgAny,
unwind
)
case (ty: nir.Type.Ref, formal: nir.Type.PrimitiveKind) =>
assert(nir.Type.Ref(ty.name) == nir.Type.box(formal))
genActualArgAny
case _ => scalanative.util.unreachable
}
}
(formalParamTypes, actualArgs)
case _ =>
report.error(
"Passing the varargs of Selectable.applyDynamic with `: _*` " +
"is not supported in Scala Native.",
tree.sourcePos
)
(Nil, Nil)
}
val dynMethod = buf.dynmethod(
selectedValue,
nir.Sig.Proxy(methodNameStr, formalParamTypeRefs),
unwind
)
// Proxies operate only on boxed types, however formal param types and name of the method
// might contain primitive types. With current imlementation of proxies we workaround it
// by always using boxed types in function calls
val boxedFormalParamTypeRefs = formalParamTypeRefs.map {
case ty: nir.Type.PrimitiveKind =>
nir.Type.box(ty)
case ty =>
ty
}
buf.call(
nir.Type.Function(
selectedValue.ty :: boxedFormalParamTypeRefs,
nir.Rt.Object
),
dynMethod,
selectedValue :: actualArgs,
unwind
)
}
private def labelExcludeUnitValue(label: nir.Local, value: nir.Val.Local)(
using nir.SourcePosition
): nir.Val =
value.ty match
case nir.Type.Unit =>
buf.label(label); nir.Val.Unit
case _ =>
buf.label(label, Seq(value)); value
private def jumpExcludeUnitValue(
mergeType: nir.Type
)(label: nir.Local, value: nir.Val)(using
nir.SourcePosition
): Unit =
mergeType match
case nir.Type.Unit =>
buf.jump(label, Nil)
case _ =>
buf.jump(label, Seq(value))
}
sealed class FixupBuffer(using fresh: nir.Fresh)
extends nir.InstructionBuilder {
private var labeled = false
override def +=(inst: nir.Inst): Unit = {
given nir.SourcePosition = inst.pos
inst match {
case inst: nir.Inst.Label =>
if (labeled) {
unreachable(unwind)
}
labeled = true
case _ =>
if (!labeled) {
label(fresh())
}
labeled = !inst.isInstanceOf[nir.Inst.Cf]
}
super.+=(inst)
inst match {
case nir.Inst.Let(_, op, _) if op.resty == nir.Type.Nothing =>
unreachable(unwind)
label(fresh())
case _ => ()
}
}
override def ++=(insts: Seq[nir.Inst]): Unit =
insts.foreach { inst => this += inst }
override def ++=(other: nir.InstructionBuilder): Unit =
this ++= other.toSeq
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy