All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.PosDouble.scala Maven / Gradle / Ivy

/*
 * Copyright 2001-2014 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.language.implicitConversions
import scala.collection.immutable.NumericRange

/**
 * An AnyVal for positive Doubles.
 *
 * Note: a PosDouble may not equal 0. If you want positive
 * number or 0, use [[PosZDouble]].
 *
 * 

* Because PosDouble is an AnyVal it * will usually be as efficient as an Double, being * boxed only when a Double would have been boxed. *

* *

* The PosDouble.apply factory method is * implemented in terms of a macro that checks literals for * validity at compile time. Calling * PosDouble.apply with a literal * Double value will either produce a valid * PosDouble instance at run time or an error at * compile time. Here's an example: *

* *
 * scala> import anyvals._
 * import anyvals._
 *
 * scala> PosDouble(1.0)
 * res1: org.scalactic.anyvals.PosDouble = PosDouble(1.0)
 *
 * scala> PosDouble(0.0)
 * <console>:14: error: PosDouble.apply can only be invoked on a positive (i > 0.0) floating point literal, like PosDouble(42.0).
 *               PosDouble(0.0)
 *                        ^
 * 
* *

* PosDouble.apply cannot be used if the value * being passed is a variable (i.e., not a literal), * because the macro cannot determine the validity of variables * at compile time (just literals). If you try to pass a * variable to PosDouble.apply, you'll get a * compiler error that suggests you use a different factor * method, PosDouble.from, instead: *

* *
 * scala> val x = 1.0
 * x: Double = 1.0
 *
 * scala> PosDouble(x)
 * <console>:15: error: PosDouble.apply can only be invoked on a floating point literal, like PosDouble(42.0). Please use PosDouble.from instead.
 *               PosDouble(x)
 *                        ^
 * 
* *

* The PosDouble.from factory method will inspect * the value at runtime and return an * Option[PosDouble]. If the value is valid, * PosDouble.from will return a * Some[PosDouble], else it will return a * None. Here's an example: *

* *
 * scala> PosDouble.from(x)
 * res4: Option[org.scalactic.anyvals.PosDouble] = Some(PosDouble(1.0))
 *
 * scala> val y = 0.0
 * y: Double = 0.0
 *
 * scala> PosDouble.from(y)
 * res5: Option[org.scalactic.anyvals.PosDouble] = None
 * 
* *

* The PosDouble.apply factory method is marked * implicit, so that you can pass literal Doubles * into methods that require PosDouble, and get the * same compile-time checking you get when calling * PosDouble.apply explicitly. Here's an example: *

* *
 * scala> def invert(pos: PosDouble): Double = Double.MaxValue - pos
 * invert: (pos: org.scalactic.anyvals.PosDouble)Double
 *
 * scala> invert(1.1)
 * res6: Double = 1.7976931348623157E308
 *
 * scala> invert(Double.MaxValue)
 * res8: Double = 0.0
 *
 * scala> invert(0.0)
 * <console>:15: error: PosDouble.apply can only be invoked on a positive (i > 0.0) floating point literal, like PosDouble(42.0).
 *               invert(0.0)
 *                      ^
 *
 * scala> invert(-1.0)
 * <console>:15: error: PosDouble.apply can only be invoked on a positive (i > 0.0) floating point literal, like PosDouble(42.0).
 *               invert(-1.0)
 *                       ^
 *
 * 
* *

* This example also demonstrates that the * PosDouble companion object also defines implicit * widening conversions when a similar conversion is provided in * Scala. This makes it convenient to use a * PosDouble where a Double is * needed. An example is the subtraction in the body of the * invert method defined above, * Double.MaxValue - pos. Although * Double.MaxValue is a Double, which * has no - method that takes a * PosDouble (the type of pos), you * can still subtract pos, because the * PosDouble will be implicitly widened to * Double. *

* * @param value The Double value underlying this PosDouble. */ final class PosDouble private (val value: Double) extends AnyVal { /** * A string representation of this PosDouble. */ override def toString: String = s"PosDouble($value)" /** * Converts this PosDouble to a Byte. */ def toByte: Byte = value.toByte /** * Converts this PosDouble to a Short. */ def toShort: Short = value.toShort /** * Converts this PosDouble to a Char. */ def toChar: Char = value.toChar /** * Converts this PosDouble to an Int. */ def toInt: Int = value.toInt /** * Converts this PosDouble to a Long. */ def toLong: Long = value.toLong /** * Converts this PosDouble to a Float. */ def toFloat: Float = value.toFloat /** * Converts this PosDouble to a Double. */ def toDouble: Double = value.toDouble /** Returns this value, unmodified. */ def unary_+ : PosDouble = this /** Returns the negation of this value. */ def unary_- : Double = -value /** * Converts this PosDouble's value to a string then concatenates the given string. */ def +(x: String): String = value + x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** Returns the sum of this value and `x`. */ def +(x: Byte): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from RichDouble def isPosInfinity: Boolean = Double.PositiveInfinity == value /** * Returns this if this > that or that otherwise. */ def max(that: PosDouble): PosDouble = if (math.max(value, that.value) == value) this else that /** * Returns this if this < that or that otherwise. */ def min(that: PosDouble): PosDouble = if (math.min(value, that.value) == value) this else that def isWhole = { val longValue = value.toLong longValue.toDouble == value || longValue == Long.MaxValue && value < Double.PositiveInfinity || longValue == Long.MinValue && value > Double.NegativeInfinity } def round: PosZLong = PosZLong.from(math.round(value)).get // Also could be zero. def ceil: PosDouble = PosDouble.from(math.ceil(value)).get // I think this one is safe, but try NaN def floor: PosZDouble = PosZDouble.from(math.floor(value)).get // Could be zero. /** Converts an angle measured in degrees to an approximately equivalent * angle measured in radians. * * @return the measurement of the angle x in radians. */ def toRadians: Double = math.toRadians(value) /** Converts an angle measured in radians to an approximately equivalent * angle measured in degrees. * @return the measurement of the angle x in degrees. */ def toDegrees: Double = math.toDegrees(value) // adapted from RichInt: /** * Create a Range from this PosDouble value * until the specified end (exclusive) with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Double, NumericRange[Double]]]] from `this` up to but * not including `end`. */ def until(end: Double): Range.Partial[Double, NumericRange[Double]] = value.until(end) /** * Create a Range from this PosDouble value * until the specified end (exclusive) with the specified step value. * * @param end The final bound of the range to make. * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Exclusive[Double]]] from `this` up to but * not including `end`. */ def until(end: Double, step: Double): NumericRange.Exclusive[Double] = value.until(end, step) /** * Create an inclusive Range from this PosDouble value * to the specified end with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Double, NumericRange[Double]]]] from `'''this'''` up to * and including `end`. */ def to(end: Double): Range.Partial[Double, NumericRange[Double]] = value.to(end) /** * Create an inclusive Range from this PosDouble value * to the specified end with the specified step value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Inclusive[Double]]] from `'''this'''` up to * and including `end`. */ def to(end: Double, step: Double): NumericRange.Inclusive[Double] = value.to(end, step) } /** * The companion object for PosDouble that offers * factory methods that produce PosDoubles, * implicit widening conversions from PosDouble to * other numeric types, and maximum and minimum constant values * for PosDouble. */ object PosDouble { /** * The largest value representable as a positive Double, * which is PosDouble(1.7976931348623157E308). */ final val MaxValue: PosDouble = PosDouble.from(Double.MaxValue).get /** * The smallest value representable as a positive * Double, which is PosDouble(4.9E-324). */ final val MinValue: PosDouble = PosDouble.from(Double.MinPositiveValue).get // Can't use the macro here /** * A factory method that produces an Option[PosDouble] given a * Double value. * *

* This method will inspect the passed Double value and if * it is a positive Double, i.e., a value greater * than 0.0, it will return a PosDouble representing that value, * wrapped in a Some. Otherwise, the passed Double * value is 0.0 or negative, so this method will return None. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Double literals at * compile time, whereas from inspects * Double values at run time. *

* * @param value the Double to inspect, and if positive, return * wrapped in a Some[PosDouble]. * @return the specified Double value wrapped in a * Some[PosDouble], if it is positive, else * None. */ def from(value: Double): Option[PosDouble] = if (value > 0.0) Some(new PosDouble(value)) else None import language.experimental.macros import scala.language.implicitConversions /** * A factory method, implemented via a macro, that produces a * PosDouble if passed a valid Double * literal, otherwise a compile time error. * *

* The macro that implements this method will inspect the * specified Double expression at compile time. If * the expression is a positive Double literal, * i.e., with a value greater than 0.0, it will return * a PosDouble representing that value. Otherwise, * the passed Double expression is either a literal * that is 0.0 or negative, or is not a literal, so this method * will give a compiler error. *

* *

* This factory method differs from the from * factory method in that this method is implemented via a * macro that inspects Double literals at compile * time, whereas from inspects Double * values at run time. *

* * @param value the Double literal expression to * inspect at compile time, and if positive, to return * wrapped in a PosDouble at run time. * @return the specified, valid Double literal * value wrapped in a PosDouble. (If the * specified expression is not a valid Double * literal, the invocation of this method will not * compile.) */ implicit def apply(value: Double): PosDouble = macro PosDoubleMacro.apply /** * Implicit widening conversion from PosDouble to * Double. * * @param pos the PosDouble to widen * @return the Double value underlying the specified * PosDouble */ implicit def widenToDouble(pos: PosDouble): Double = pos.value /** * Implicit widening conversion from PosDouble to * PosZDouble. * * @param pos the PosDouble to widen * @return the Double value underlying the specified * PosDouble wrapped in a PosZDouble. */ implicit def widenToPosZDouble(pos: PosDouble): PosZDouble = PosZDouble.from(pos.value).get /** * Implicit Ordering instance. */ implicit val posDoubleOrd: Ordering[PosDouble] = new Ordering[PosDouble] { def compare(x: PosDouble, y: PosDouble): Int = x.toDouble.compare(y) } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy