All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.PosFloat.scala Maven / Gradle / Ivy

/*
 * Copyright 2001-2014 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.language.implicitConversions
import scala.collection.immutable.NumericRange

/**
 * An AnyVal for positive Floats.
 *
 * Note: a PosFloat may not equal 0. If you want positive
 * number or 0, use [[PosZFloat]].
 *
 * 

* Because PosFloat is an AnyVal it * will usually be as efficient as an Float, being * boxed only when an Float would have been boxed. *

* *

* The PosFloat.apply factory method is implemented * in terms of a macro that checks literals for validity at * compile time. Calling PosFloat.apply with a * literal Float value will either produce a valid * PosFloat instance at run time or an error at * compile time. Here's an example: *

* *
 * scala> import anyvals._
 * import anyvals._
 *
 * scala> PosFloat(1.0F)
 * res0: org.scalactic.anyvals.PosFloat = PosFloat(1.0)
 *
 * scala> PosFloat(0.0F)
 * <console>:14: error: PosFloat.apply can only be invoked on a positive (i > 0.0F) floating point literal, like PosFloat(42.0F).
 *               PosFloat(0.0F)
 *                       ^
 * 
* *

* PosFloat.apply cannot be used if the value being * passed is a variable (i.e., not a literal), because * the macro cannot determine the validity of variables at * compile time (just literals). If you try to pass a variable * to PosFloat.apply, you'll get a compiler error * that suggests you use a different factor method, * PosFloat.from, instead: *

* *
 * scala> val x = 1.0F
 * x: Float = 1.0
 *
 * scala> PosFloat(x)
 * <console>:15: error: PosFloat.apply can only be invoked on a floating point literal, like PosFloat(42.0F). Please use PosFloat.from instead.
 *               PosFloat(x)
 *                       ^
 * 
* *

* The PosFloat.from factory method will inspect * the value at runtime and return an * Option[PosFloat]. If the value is valid, * PosFloat.from will return a * Some[PosFloat], else it will return a * None. Here's an example: *

* *
 * scala> PosFloat.from(x)
 * res3: Option[org.scalactic.anyvals.PosFloat] = Some(PosFloat(1.0))
 *
 * scala> val y = 0.0F
 * y: Float = 0.0
 *
 * scala> PosFloat.from(y)
 * res4: Option[org.scalactic.anyvals.PosFloat] = None
 * 
* *

* The PosFloat.apply factory method is marked * implicit, so that you can pass literal Floats * into methods that require PosFloat, and get the * same compile-time checking you get when calling * PosFloat.apply explicitly. Here's an example: *

* *
 * scala> def invert(pos: PosFloat): Float = Float.MaxValue - pos
 * invert: (pos: org.scalactic.anyvals.PosFloat)Float
 *
 * scala> invert(1.1F)
 * res5: Float = 3.4028235E38
 *
 * scala> invert(Float.MaxValue)
 * res6: Float = 0.0
 *
 * scala> invert(0.0F)
 * <console>:15: error: PosFloat.apply can only be invoked on a positive (i > 0.0F) floating point literal, like PosFloat(42.0F).
 *               invert(0.0F)
 *                      ^
 *
 * scala> invert(-1.1F)
 * <console>:15: error: PosFloat.apply can only be invoked on a positive (i > 0.0F) floating point literal, like PosFloat(42.0F).
 *               invert(-1.1F)
 *                       ^
 *
 * 
* *

* This example also demonstrates that the PosFloat * companion object also defines implicit widening conversions * when no loss of precision will occur. This makes it convenient to use a * PosFloat where a Float or wider * type is needed. An example is the subtraction in the body of * the invert method defined above, * Float.MaxValue - pos. Although * Float.MaxValue is a Float, which * has no - method that takes a * PosFloat (the type of pos), you can * still subtract pos, because the * PosFloat will be implicitly widened to * Float. *

* * @param value The Float value underlying this PosFloat. */ final class PosFloat private (val value: Float) extends AnyVal { /** * A string representation of this PosFloat. */ override def toString: String = s"PosFloat($value)" /** * Converts this PosFloat to a Byte. */ def toByte: Byte = value.toByte /** * Converts this PosFloat to a Short. */ def toShort: Short = value.toShort /** * Converts this PosFloat to a Char. */ def toChar: Char = value.toChar /** * Converts this PosFloat to an Int. */ def toInt: Int = value.toInt /** * Converts this PosFloat to a Long. */ def toLong: Long = value.toLong /** * Converts this PosFloat to a Float. */ def toFloat: Float = value.toFloat /** * Converts this PosFloat to a Double. */ def toDouble: Double = value.toDouble /** Returns this value, unmodified. */ def unary_+ : PosFloat = this /** Returns the negation of this value. */ def unary_- : Float = -value /** * Converts this PosFloat's value to a string then concatenates the given string. */ def +(x: String): String = value + x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** Returns the sum of this value and `x`. */ def +(x: Byte): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from RichFloat def isPosInfinity: Boolean = Float.PositiveInfinity == value /** * Returns this if this > that or that otherwise. */ def max(that: PosFloat): PosFloat = if (math.max(value, that.value) == value) this else that /** * Returns this if this < that or that otherwise. */ def min(that: PosFloat): PosFloat = if (math.min(value, that.value) == value) this else that def isWhole = { val longValue = value.toLong longValue.toFloat == value || longValue == Long.MaxValue && value < Float.PositiveInfinity || longValue == Long.MinValue && value > Float.NegativeInfinity } def round: PosZInt = { import scala.util.Try import scala.util.Success import scala.util.Failure val roundedInt: Int = math.round(value) val result = Try(PosZInt.from(math.round(value)).get) result match { case Failure(ex) => println("PosZInt round failed") println(s"value was $value") println(s"result was $result") throw ex case Success(v) => v } // PosZInt.from(math.round(value)).get // Also could be zero. } def ceil: PosFloat = PosFloat.from(math.ceil(value.toDouble).toFloat).get // I think this one is safe, but try NaN def floor: PosZFloat = PosZFloat.from(math.floor(value.toDouble).toFloat).get // Could be zero. /** Converts an angle measured in degrees to an approximately equivalent * angle measured in radians. * * @return the measurement of the angle x in radians. */ def toRadians: Float = math.toRadians(value.toDouble).toFloat /** Converts an angle measured in radians to an approximately equivalent * angle measured in degrees. * @return the measurement of the angle x in degrees. */ def toDegrees: Float = math.toDegrees(value.toDouble).toFloat // adapted from RichInt: /** * Create a Range from this PosFloat value * until the specified end (exclusive) with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Float, NumericRange[Float]]]] from `this` up to but * not including `end`. */ def until(end: Float): Range.Partial[Float, NumericRange[Float]] = value.until(end) /** * Create a Range (exclusive) from this PosFloat value * until the specified end (exclusive) with the specified step value. * * @param end The final bound of the range to make. * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Exclusive[Float]]] from `this` up to but * not including `end`. */ def until(end: Float, step: Float): NumericRange.Exclusive[Float] = value.until(end, step) /** * Create an inclusive Range from this PosFloat value * to the specified end with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Float], NumericRange[Float]]] from `'''this'''` up to * and including `end`. */ def to(end: Float): Range.Partial[Float, NumericRange[Float]] = value.to(end) /** * Create an inclusive Range from this PosFloat value * to the specified end with the specified step value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Inclusive[Float]]] from `'''this'''` up to * and including `end`. */ def to(end: Float, step: Float): NumericRange.Inclusive[Float] = value.to(end, step) } /** * The companion object for PosFloat that offers * factory methods that produce PosFloats, * implicit widening conversions from PosFloat to * other numeric types, and maximum and minimum constant values * for PosFloat. */ object PosFloat { /** * The largest value representable as a positive Float, * which is PosFloat(3.4028235E38). */ final val MaxValue: PosFloat = PosFloat.from(Float.MaxValue).get /** * The smallest value representable as a positive * Float, which is PosFloat(1.4E-45). */ final val MinValue: PosFloat = PosFloat.from(Float.MinPositiveValue).get // Can't use the macro here /** * A factory method that produces an Option[PosFloat] given a * Float value. * *

* This method will inspect the passed Float value and if * it is a positive Float, i.e., a value greater * than 0.0, it will return a PosFloat representing that value, * wrapped in a Some. Otherwise, the passed Float * value is 0.0 or negative, so this method will return None. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Float literals at * compile time, whereas from inspects * Float values at run time. *

* * @param value the Float to inspect, and if positive, return * wrapped in a Some[PosFloat]. * @return the specified Float value wrapped in a * Some[PosFloat], if it is positive, else * None. */ def from(value: Float): Option[PosFloat] = if (value > 0.0F) Some(new PosFloat(value)) else None import language.experimental.macros import scala.language.implicitConversions /** * A factory method, implemented via a macro, that produces a * PosFloat if passed a valid Float * literal, otherwise a compile time error. * *

* The macro that implements this method will inspect the * specified Float expression at compile time. If * the expression is a positive Float literal, * i.e., with a value greater than 0.0, it will return * a PosFloat representing that value. Otherwise, * the passed Float expression is either a literal * that is 0.0 or negative, or is not a literal, so this method * will give a compiler error. *

* *

* This factory method differs from the from * factory method in that this method is implemented via a * macro that inspects Float literals at compile * time, whereas from inspects Float * values at run time. *

* * @param value the Float literal expression to * inspect at compile time, and if positive, to return * wrapped in a PosFloat at run time. * @return the specified, valid Float literal * value wrapped in a PosFloat. (If the * specified expression is not a valid Float * literal, the invocation of this method will not * compile.) */ implicit def apply(value: Float): PosFloat = macro PosFloatMacro.apply /** * Implicit widening conversion from PosFloat to * Float. * * @param pos the PosFloat to widen * @return the Float value underlying the * specified PosFloat */ implicit def widenToFloat(pos: PosFloat): Float = pos.value /** * Implicit widening conversion from PosFloat to * Double. * * @param pos the PosFloat to widen * @return the Float value underlying the * specified PosFloat, widened to * Double. */ implicit def widenToDouble(pos: PosFloat): Double = pos.value /** * Implicit widening conversion from PosFloat to * PosDouble. * * @param pos the PosFloat to widen * @return the Float value underlying the * specified PosFloat, widened to * Double and wrapped in a * PosDouble. */ implicit def widenToPosDouble(pos: PosFloat): PosDouble = PosDouble.from(pos.value).get /** * Implicit widening conversion from PosFloat to * PosZFloat. * * @param pos the PosFloat to widen * @return the Float value underlying the * specified PosFloat wrapped in a * PosZFloat. */ implicit def widenToPosZFloat(pos: PosFloat): PosZFloat = PosZFloat.from(pos.value).get /** * Implicit widening conversion from PosFloat to * PosZDouble. * * @param pos the PosFloat to widen * @return the Float value underlying the * specified PosFloat, widened to * Double and wrapped in a * PosZDouble. */ implicit def widenToPosZDouble(pos: PosFloat): PosZDouble = PosZDouble.from(pos.value).get /** * Implicit Ordering instance. */ implicit val posFloatOrd: Ordering[PosFloat] = new Ordering[PosFloat] { def compare(x: PosFloat, y: PosFloat): Int = x.toFloat.compare(y) } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy