All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.PosZFloat.scala Maven / Gradle / Ivy

/*
 * Copyright 2001-2014 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.collection.immutable.NumericRange

/**
 * An AnyVal for non-negative Floats.
 *
 * 

* Because PosZFloat is an AnyVal it will usually be * as efficient as an Float, being boxed only when a * Float would have been boxed. *

* *

* The PosZFloat.apply factory method is * implemented in terms of a macro that checks literals for * validity at compile time. Calling * PosZFloat.apply with a literal * Float value will either produce a valid * PosZFloat instance at run time or an error at * compile time. Here's an example: *

* *
 * scala> import anyvals._
 * import anyvals._
 *
 * scala> PosZFloat(1.1F)
 * res0: org.scalactic.anyvals.PosZFloat = PosZFloat(1.1)
 *
 * scala> PosZFloat(0.0F)
 * res1: org.scalactic.anyvals.PosZFloat = PosZFloat(0.0)
 *
 * scala> PosZFloat(-1.1F)
 * <console>:14: error: PosZFloat.apply can only be invoked on a non-negative (i >= 0.0F) floating point literal, like PosZFloat(42.0F).
 *               PosZFloat(-1.1F)
 *                        ^
 * 
* *

* PosZFloat.apply cannot be used if the value * being passed is a variable (i.e., not a literal), * because the macro cannot determine the validity of variables * at compile time (just literals). If you try to pass a * variable to PosZFloat.apply, you'll get a * compiler error that suggests you use a different factor * method, PosZFloat.from, instead: *

* *
 * scala> val x = 1.1F
 * x: Float = 1.1
 *
 * scala> PosZFloat(x)
 * <console>:15: error: PosZFloat.apply can only be invoked on a floating point literal, like PosZFloat(42.0F). Please use PosZFloat.from instead.
 *               PosZFloat(x)
 *                        ^
 * 
* *

* The PosZFloat.from factory method will inspect * the value at runtime and return an * Option[PosZFloat]. If the value is valid, * PosZFloat.from will return a * Some[PosZFloat], else it will return a * None. Here's an example: *

* *
 * scala> PosZFloat.from(x)
 * res4: Option[org.scalactic.anyvals.PosZFloat] = Some(PosZFloat(1.1))
 *
 * scala> val y = -1.1F
 * y: Float = -1.1
 *
 * scala> PosZFloat.from(y)
 * res5: Option[org.scalactic.anyvals.PosZFloat] = None
 * 
* *

* The PosZFloat.apply factory method is marked implicit, so that * you can pass literal Floats into methods that require * PosZFloat, and get the same compile-time checking you get when * calling PosZFloat.apply explicitly. Here's an example: *

* *
 * scala> def invert(pos: PosZFloat): Float = Float.MaxValue - pos
 * invert: (pos: org.scalactic.anyvals.PosZFloat)Float
 *
 * scala> invert(0.0F)
 * res6: Float = 3.4028235E38
 *
 * scala> invert(Float.MaxValue)
 * res7: Float = 0.0
 *
 * scala> invert(-1.1F)
 * <console>:15: error: PosZFloat.apply can only be invoked on a non-negative (i >= 0.0F) floating point literal, like PosZFloat(42.0F).
   *             invert(-1.1F)
   *                     ^
 * 
* *

* This example also demonstrates that the * PosZFloat companion object also defines * implicit widening conversions when a similar conversion is * provided in Scala. This makes it convenient to use a * PosZFloat where a Float or wider * type is needed. An example is the subtraction in the body of * the invert method defined above, * Float.MaxValue - pos. Although * Float.MaxValue is an Float, which * has no - method that takes a * PosZFloat (the type of pos), you * can still subtract pos, because the * PosZFloat will be implicitly widened to * Float. *

* * @param value The Float value underlying this PosZFloat. */ final class PosZFloat private (val value: Float) extends AnyVal { /** * A string representation of this PosZFloat. */ override def toString: String = s"PosZFloat($value)" /** * Converts this PosZFloat to a Byte. */ def toByte: Byte = value.toByte /** * Converts this PosZFloat to a Short. */ def toShort: Short = value.toShort /** * Converts this PosZFloat to a Char. */ def toChar: Char = value.toChar /** * Converts this PosZFloat to an Int. */ def toInt: Int = value.toInt /** * Converts this PosZFloat to a Long. */ def toLong: Long = value.toLong /** * Converts this PosZFloat to a Float. */ def toFloat: Float = value.toFloat /** * Converts this PosZFloat to a Double. */ def toDouble: Double = value.toDouble /** Returns this value, unmodified. */ def unary_+ : PosZFloat = this /** Returns the negation of this value. */ def unary_- : Float = -value /** * Converts this PosZFloat's value to a string then concatenates the given string. */ def +(x: String): String = value + x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** Returns the sum of this value and `x`. */ def +(x: Byte): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from RichFloat def isPosInfinity: Boolean = Float.PositiveInfinity == value /** * Returns this if this > that or that otherwise. */ def max(that: PosZFloat): PosZFloat = if (math.max(value, that.value) == value) this else that /** * Returns this if this < that or that otherwise. */ def min(that: PosZFloat): PosZFloat = if (math.min(value, that.value) == value) this else that def isWhole = { val longValue = value.toLong longValue.toFloat == value || longValue == Long.MaxValue && value < Float.PositiveInfinity || longValue == Long.MinValue && value > Float.NegativeInfinity } def round: PosZInt = PosZInt.from(math.round(value)).get def ceil: PosZFloat = PosZFloat.from(math.ceil(value).toFloat).get def floor: PosZFloat = PosZFloat.from(math.floor(value).toFloat).get /** Converts an angle measured in degrees to an approximately equivalent * angle measured in radians. * * @return the measurement of the angle x in radians. */ def toRadians: PosZFloat = PosZFloat.from(math.toRadians(value).toFloat).get /** Converts an angle measured in radians to an approximately equivalent * angle measured in degrees. * @return the measurement of the angle x in degrees. */ def toDegrees: PosZFloat = PosZFloat.from(math.toDegrees(value).toFloat).get // adapted from RichInt: /** * Create a Range from this PosZFloat value * until the specified end (exclusive) with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Float, NumericRange[Float]]]] from `this` up to but * not including `end`. */ def until(end: Float): Range.Partial[Float, NumericRange[Float]] = value.until(end) /** * Create a Range from this PosZFloat value * until the specified end (exclusive) with the specified step value. * * @param end The final bound of the range to make. * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Exclusive[Float]]] from `this` up to but * not including `end`. */ def until(end: Float, step: Float): NumericRange.Exclusive[Float] = value.until(end, step) /** * Create an inclusive Range from this PosZFloat value * to the specified end with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Float, NumericRange[Float]]]] from `'''this'''` up to * and including `end`. */ def to(end: Float): Range.Partial[Float, NumericRange[Float]] = value.to(end) /** * Create an inclusive Range from this PosZFloat value * to the specified end with the specified step value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Inclusive[Float]]] from `'''this'''` up to * and including `end`. */ def to(end: Float, step: Float): NumericRange.Inclusive[Float] = value.to(end, step) } /** * The companion object for PosZFloat that offers * factory methods that produce PosZFloats, implicit * widening conversions from PosZFloat to other * numeric types, and maximum and minimum constant values for * PosZFloat. */ object PosZFloat { /** * The largest value representable as a non-negative Float, * which is PosZFloat(3.4028235E38). */ final val MaxValue: PosZFloat = PosZFloat.from(Float.MaxValue).get /** * The smallest value representable as a non-negative Float, * which is PosZFloat(0.0F). */ final val MinValue: PosZFloat = PosZFloat.from(0.0f).get // Can't use the macro here /** * A factory method that produces an Option[PosZFloat] given a * Float value. * *

* This method will inspect the passed Float value * and if it is a non-negative Float, * i.e., a value greater than or equal to 0, it will * return a PosZFloat representing that value, * wrapped in a Some. Otherwise, the passed * Float value is negative, so this method * will return None. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Float literals at * compile time, whereas from inspects * Float values at run time. *

* * @param value the Float to inspect, and if non-negative, return * wrapped in a Some[PosZFloat]. * @return the specified Float value wrapped * in a Some[PosZFloat], if it is positive, else * None. */ def from(value: Float): Option[PosZFloat] = if (value >= 0.0F) Some(new PosZFloat(value)) else None import language.experimental.macros import scala.language.implicitConversions /** * A factory method, implemented via a macro, that produces a * PosZFloat if passed a valid Float * literal, otherwise a compile time error. * *

* The macro that implements this method will inspect the * specified Float expression at compile time. If * the expression is a non-negative Float literal, * i.e., with a value greater than or equal to 0, it will return * a PosZFloat representing that value. Otherwise, * the passed Float expression is either a literal * that is negative, or is not a literal, so this method * will give a compiler error. *

* *

* This factory method differs from the from * factory method in that this method is implemented via a * macro that inspects Float literals at compile * time, whereas from inspects Float * values at run time. *

* * @param value the Float literal expression to inspect at * compile time, and if non-negative, to return wrapped in a * PosZFloat at run time. * @return the specified, valid Float literal * value wrapped in a PosZFloat. (If the * specified expression is not a valid Float * literal, the invocation of this method will not * compile.) */ implicit def apply(value: Float): PosZFloat = macro PosZFloatMacro.apply /** * Implicit widening conversion from PosZFloat to * Float. * * @param pos the PosZFloat to widen * @return the Float value underlying the specified * PosZFloat. */ implicit def widenToFloat(poz: PosZFloat): Float = poz.value /** * Implicit widening conversion from PosZFloat to * Double. * * @param pos the PosZFloat to widen * @return the Float value underlying the specified * PosZFloat, widened to Double. */ implicit def widenToDouble(poz: PosZFloat): Double = poz.value /** * Implicit widening conversion from PosZFloat to * PosZDouble. * * @param pos the PosZFloat to widen * @return the Float value underlying the specified * PosZFloat, widened to Double * and wrapped in a PosZDouble. */ implicit def widenToPosZDouble(poz: PosZFloat): PosZDouble = PosZDouble.from(poz.value).get /** * Implicit Ordering instance. */ implicit val posZFloatOrd: Ordering[PosZFloat] = new Ordering[PosZFloat] { def compare(x: PosZFloat, y: PosZFloat): Int = x.toFloat.compare(y) } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy