org.scalactic.anyvals.PosZInt.scala Maven / Gradle / Ivy
/* * Copyright 2001-2014 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalactic.anyvals import scala.collection.immutable.Range /** * An
Float in * Scala can lose precision.) This makes it convenient to use a *AnyVal
for non-negativeInt
s. * ** Because
* *PosZInt
is anAnyVal
it will usually be * as efficient as anInt
, being boxed only when an *Int
would have been boxed. ** The
* *PosZInt.apply
factory method is implemented in terms of a * macro that checks literals for validity at compile time. Calling *PosZInt.apply
with a literalInt
value will either * produce a validPosZInt
instance at run time or an error at * compile time. Here's an example: ** scala> import anyvals._ * import anyvals._ * * scala> PosZInt(1) * res0: org.scalactic.anyvals.PosZInt = PosZInt(1) * * scala> PosZInt(0) * res1: org.scalactic.anyvals.PosZInt = PosZInt(0) * * scala> PosZInt(-1) * <console>:14: error: PosZInt.apply can only be invoked on a non-negative (i >= 0) integer literal, like PosZInt(42). * PosZInt(-1) * ^ ** **
* *PosZInt.apply
cannot be used if the value being passed is a * variable (i.e., not a literal), because the macro cannot determine * the validity of variables at compile time (just literals). If you try to * pass a variable toPosZInt.apply
, you'll get a compiler error * that suggests you use a different factor method,PosZInt.from
, * instead: ** scala> val x = 1 * x: Int = 1 * * scala> PosZInt(x) * <console>:15: error: PosZInt.apply can only be invoked on an integer literal, like PosZInt(42). Please use PosZInt.from instead. * PosZInt(x) * ^ ** ** The
* *PosZInt.from
factory method will inspect the value at runtime and return anOption[PosZInt]
. If * the value is valid,PosZInt.from
will return aSome[PosZInt]
, else it will return aNone
. * Here's an example: ** scala> PosZInt.from(x) * res4: Option[org.scalactic.anyvals.PosZInt] = Some(PosZInt(1)) * * scala> val y = -1 * y: Int = -1 * * scala> PosZInt.from(y) * res5: Option[org.scalactic.anyvals.PosZInt] = None ** ** The
* *PosZInt.apply
factory method is marked implicit, so that * you can pass literalInt
s into methods that require *PosZInt
, and get the same compile-time checking you get when * callingPosZInt.apply
explicitly. Here's an example: ** scala> def invert(pos: PosZInt): Int = Int.MaxValue - pos * invert: (pos: org.scalactic.anyvals.PosZInt)Int * * scala> invert(0) * res7: Int = 2147483647 * * scala> invert(Int.MaxValue) * res8: Int = 0 * * scala> invert(-1) * <console>:15: error: PosZInt.apply can only be invoked on a non-negative (i >= 0) integer literal, like PosZInt(42). * invert(-1) * ^ ** ** This example also demonstrates that the
PosZInt
* companion object also defines implicit widening conversions * when either no loss of precision will occur or a similar * conversion is provided in Scala. (For example, the implicit * conversion fromInt
toPosZInt
where anInt
or wider type * is needed. An example is the subtraction in the body of the *invert
method defined above,Int.MaxValue * - pos
. AlthoughInt.MaxValue
is an *Int
, which has no-
method that * takes aPosZInt
(the type ofpos
), * you can still subtractpos
, because the *PosZInt
will be implicitly widened to *Int
. * * * @param value TheInt
value underlying thisPosZInt
. */ final class PosZInt private (val value: Int) extends AnyVal { /** * A string representation of thisPosZInt
. */ override def toString: String = s"PosZInt($value)" /** * Converts thisPosZInt
to aByte
. */ def toByte: Byte = value.toByte /** * Converts thisPosZInt
to aShort
. */ def toShort: Short = value.toShort /** * Converts thisPosZInt
to aChar
. */ def toChar: Char = value.toChar /** * Converts thisPosZInt
to anInt
. */ def toInt: Int = value.toInt /** * Converts thisPosZInt
to aLong
. */ def toLong: Long = value.toLong /** * Converts thisPosZInt
to aFloat
. */ def toFloat: Float = value.toFloat /** * Converts thisPosZInt
to aDouble
. */ def toDouble: Double = value.toDouble /** * Returns the bitwise negation of this value. * @example {{{ * ~5 == -6 * // in binary: ~00000101 == * // 11111010 * }}} */ def unary_~ : Int = ~value /** Returns this value, unmodified. */ def unary_+ : PosZInt = this /** Returns the negation of this value. */ def unary_- : Int = -value /** * Converts thisPosZInt
's value to a string then concatenates the given string. */ def +(x: String): String = value + x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the new right bits with zeroes. * @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}} */ def <<(x: Int): Int = value << x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the new right bits with zeroes. * @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}} */ def <<(x: Long): Int = value << x /** * Returns this value bit-shifted right by the specified number of bits, * filling the new left bits with zeroes. * @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}} * @example {{{ * -21 >>> 3 == 536870909 * // in binary: 11111111 11111111 11111111 11101011 >>> 3 == * // 00011111 11111111 11111111 11111101 * }}} */ def >>>(x: Int): Int = value >>> x /** * Returns this value bit-shifted right by the specified number of bits, * filling the new left bits with zeroes. * @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}} * @example {{{ * -21 >>> 3 == 536870909 * // in binary: 11111111 11111111 11111111 11101011 >>> 3 == * // 00011111 11111111 11111111 11111101 * }}} */ def >>>(x: Long): Int = value >>> x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the right bits with the same value as the left-most bit of this. * The effect of this is to retain the sign of the value. * @example {{{ * -21 >> 3 == -3 * // in binary: 11111111 11111111 11111111 11101011 >> 3 == * // 11111111 11111111 11111111 11111101 * }}} */ def >>(x: Int): Int = value >> x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the right bits with the same value as the left-most bit of this. * The effect of this is to retain the sign of the value. * @example {{{ * -21 >> 3 == -3 * // in binary: 11111111 11111111 11111111 11101011 >> 3 == * // 11111111 11111111 11111111 11111101 * }}} */ def >>(x: Long): Int = value >> x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Byte): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Short): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Char): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Int): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Long): Long = value | x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Byte): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Short): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Char): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Int): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Long): Long = value & x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Byte): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Short): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Char): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Int): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Long): Long = value ^ x /** Returns the sum of this value and `x`. */ def +(x: Byte): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Long = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Long = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Long = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Long = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Long = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from Richint: /** * Returns a string representation of thisPosZInt
's underlyingInt
as an * unsigned integer in base 2. * ** The unsigned integer value is the argument plus 232 * if this
* * @return the string representation of the unsigned integer value * represented by thisPosZInt
's underlyingInt
is negative; otherwise it is equal to the * underlyingInt
. This value is converted to a string of ASCII digits * in binary (base 2) with no extra leading0
s. * If the unsigned magnitude is zero, it is represented by a * single zero character'0'
* ('\u0030'
); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The characters'0'
* ('\u0030'
) and'1'
* ('\u0031'
) are used as binary digits. *PosZInt
's underlyingInt
in binary (base 2). */ def toBinaryString: String = java.lang.Integer.toBinaryString(value) /** * Returns a string representation of thisPosZInt
's underlyingInt
as an * unsigned integer in base 16. * ** The unsigned integer value is the argument plus 232 * if this
* *PosZInt
's underlyingInt
is negative; otherwise, it is equal to the * thisPosZInt
's underlyingInt
This value is converted to a string of ASCII digits * in hexadecimal (base 16) with no extra leading *0
s. If the unsigned magnitude is zero, it is * represented by a single zero character'0'
* ('\u0030'
); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as * hexadecimal digits: *** * These are the characters0123456789abcdef
*'\u0030'
through *'\u0039'
and'\u0061'
through *'\u0066'
. If uppercase letters are * desired, thetoUpperCase
method may * be called on the result. * * @return the string representation of the unsigned integer value * represented by thisPosZInt
's underlyingInt
in hexadecimal (base 16). */ def toHexString: String = java.lang.Integer.toHexString(value) /** * Returns a string representation of thisPosZInt
's underlyingInt
as an * unsigned integer in base 8. * *The unsigned integer value is this
PosZInt
's underlyingInt
plus 232 * if the underlyingInt
is negative; otherwise, it is equal to the * underlyingInt
. This value is converted to a string of ASCII digits * in octal (base 8) with no extra leading0
s. * *If the unsigned magnitude is zero, it is represented by a * single zero character
'0'
* ('\u0030'
); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as octal * digits: * *** * These are the characters01234567
*'\u0030'
through *'\u0037'
. * * @return the string representation of the unsigned integer value * represented by thisPosZInt
's underlyingInt
in octal (base 8). */ def toOctalString: String = java.lang.Integer.toOctalString(value) /** * Create aRange
from thisPosZInt
value * until the specifiedend
(exclusive) with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range]] from `this` up to but * not including `end`. */ def until(end: Int): Range = Range(value, end) /** * Create aRange
from thisPosZInt
value * until the specifiedend
(exclusive) with the specifiedstep
value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.Range]] from `this` up to but * not including `end`. */ def until(end: Int, step: Int): Range = Range(value, end, step) /** * Create an inclusiveRange
from thisPosZInt
value * to the specifiedend
with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range]] from `'''this'''` up to * and including `end`. */ def to(end: Int): Range.Inclusive = Range.inclusive(value, end) /** * Create an inclusiveRange
from thisPosZInt
value * to the specifiedend
with the specifiedstep
value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.Range]] from `'''this'''` up to * and including `end`. */ def to(end: Int, step: Int): Range.Inclusive = Range.inclusive(value, end, step) // No point to call abs on a PosZInt. /** * Returnsthis
ifthis > that
orthat
otherwise. */ def max(that: PosZInt): PosZInt = if (math.max(value, that.value) == value) this else that /** * Returnsthis
ifthis < that
orthat
otherwise. */ def min(that: PosZInt): PosZInt = if (math.min(value, that.value) == value) this else that } /** * The companion object forPosZInt
that offers * factory methods that producePosZInt
s, implicit * widening conversions fromPosZInt
to other * numeric types, and maximum and minimum constant values for *PosZInt
. */ object PosZInt { /** * The largest value representable as a non-negativeInt
, * which isPosZInt(2147483647)
. */ final val MaxValue: PosZInt = PosZInt.from(Int.MaxValue).get /** * The smallest value representable as a non-negativeInt
, * which isPosZInt(0)
. */ final val MinValue: PosZInt = PosZInt.from(0).get // Can't use the macro here /** * A factory method that produces anOption[PosZInt]
given an *Int
value. * ** This method will inspect the passed
* *Int
value * and if it is a non-negativeInt
, * i.e., a value greater than or equal to 0, it will * return aPosZInt
representing that value, * wrapped in aSome
. Otherwise, the passed *Int
value is negative, so this method * will returnNone
. ** This factory method differs from the
* * @param value theapply
* factory method in thatapply
is implemented * via a macro that inspectsInt
literals at * compile time, whereasfrom
inspects *Int
values at run time. *Int
to inspect, and if non-negative, return * wrapped in aSome[PosZInt]
. * @return the specifiedInt
value wrapped * in aSome[PosZInt]
, if it is positive, else *None
. */ def from(value: Int): Option[PosZInt] = if (value >= 0) Some(new PosZInt(value)) else None import language.experimental.macros import scala.language.implicitConversions /** * A factory method, implemented via a macro, that produces a *PosZInt
if passed a validInt
* literal, otherwise a compile time error. * ** The macro that implements this method will inspect the * specified
* *Int
expression at compile time. If * the expression is a non-negativeInt
literal, * i.e., with a value greater than or equal to 0, it will return * aPosZInt
representing that value. Otherwise, * the passedInt
expression is either a literal * that is negative, or is not a literal, so this method * will give a compiler error. ** This factory method differs from the
* * @param value thefrom
* factory method in that this method is implemented via a * macro that inspectsInt
literals at compile * time, whereasfrom
inspectsInt
* values at run time. *Int
literal expression to inspect at * compile time, and if non-negative, to return wrapped in a *PosZInt
at run time. * @return the specified, validInt
literal value wrapped * in aPosZInt
. (If the specified expression is not a valid *Int
literal, the invocation of this method will not * compile.) */ implicit def apply(value: Int): PosZInt = macro PosZIntMacro.apply /** * Implicit widening conversion fromPosZInt
to *Int
. * * @param pos thePosZInt
to widen * @return theInt
value underlying the specified *PosZInt
. */ implicit def widenToInt(poz: PosZInt): Int = poz.value /** * Implicit widening conversion fromPosZInt
to *Long
. * * @param pos thePosZInt
to widen * @return theInt
value underlying the specified *PosZInt
, widened toLong
. */ implicit def widenToLong(poz: PosZInt): Long = poz.value /** * Implicit widening conversion fromPosZInt
to *Float
. * * @param pos thePosZInt
to widen * @return theInt
value underlying the specified *PosZInt
, widened toFloat
. */ implicit def widenToFloat(poz: PosZInt): Float = poz.value /** * Implicit widening conversion fromPosZInt
to *Double
. * * @param pos thePosZInt
to widen * @return theInt
value underlying the specified *PosZInt
, widened toDouble
. */ implicit def widenToDouble(poz: PosZInt): Double = poz.value /** * Implicit widening conversion fromPosZInt
to *PosZLong
. * * @param pos thePosZInt
to widen * @return theInt
value underlying the specified *PosZInt
, widened toLong
and * wrapped in aPosZLong
. */ implicit def widenToPosZLong(poz: PosZInt): PosZLong = PosZLong.from(poz.value).get /** * Implicit widening conversion fromPosZInt
to *PosZFloat
. * * @param pos thePosZInt
to widen * @return theInt
value underlying the specified *PosZInt
, widened toFloat
and * wrapped in aPosZFloat
. */ implicit def widenToPosZFloat(poz: PosZInt): PosZFloat = PosZFloat.from(poz.value).get /** * Implicit widening conversion fromPosZInt
to *PosZDouble
. * * @param pos thePosZInt
to widen * @return theInt
value underlying the specified *PosZInt
, widened toDouble
* and wrapped in aPosZDouble
. */ implicit def widenToPosZDouble(poz: PosZInt): PosZDouble = PosZDouble.from(poz.value).get /** * Implicit Ordering instance. */ implicit val posZIntOrd: Ordering[PosZInt] = new Ordering[PosZInt] { def compare(x: PosZInt, y: PosZInt): Int = x - y } }