All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.PosZInt.scala Maven / Gradle / Ivy

/*
 * Copyright 2001-2014 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.collection.immutable.Range

/**
 * An AnyVal for non-negative Ints.
 *
 * 

* Because PosZInt is an AnyVal it will usually be * as efficient as an Int, being boxed only when an * Int would have been boxed. *

* *

* The PosZInt.apply factory method is implemented in terms of a * macro that checks literals for validity at compile time. Calling * PosZInt.apply with a literal Int value will either * produce a valid PosZInt instance at run time or an error at * compile time. Here's an example: *

* *
 * scala> import anyvals._
 * import anyvals._
 *
 * scala> PosZInt(1)
 * res0: org.scalactic.anyvals.PosZInt = PosZInt(1)
 *
 * scala> PosZInt(0)
 * res1: org.scalactic.anyvals.PosZInt = PosZInt(0)
 *
 * scala> PosZInt(-1)
 * <console>:14: error: PosZInt.apply can only be invoked on a non-negative (i >= 0) integer literal, like PosZInt(42).
 *               PosZInt(-1)
 *                      ^
 * 
* *

* PosZInt.apply cannot be used if the value being passed is a * variable (i.e., not a literal), because the macro cannot determine * the validity of variables at compile time (just literals). If you try to * pass a variable to PosZInt.apply, you'll get a compiler error * that suggests you use a different factor method, PosZInt.from, * instead: *

* *
 * scala> val x = 1
 * x: Int = 1
 *
 * scala> PosZInt(x)
 * <console>:15: error: PosZInt.apply can only be invoked on an integer literal, like PosZInt(42). Please use PosZInt.from instead.
 *               PosZInt(x)
 *                      ^
 * 
* *

* The PosZInt.from factory method will inspect the value at runtime and return an Option[PosZInt]. If * the value is valid, PosZInt.from will return a Some[PosZInt], else it will return a None. * Here's an example: *

* *
 * scala> PosZInt.from(x)
 * res4: Option[org.scalactic.anyvals.PosZInt] = Some(PosZInt(1))
 *
 * scala> val y = -1
 * y: Int = -1
 *
 * scala> PosZInt.from(y)
 * res5: Option[org.scalactic.anyvals.PosZInt] = None
 * 
* *

* The PosZInt.apply factory method is marked implicit, so that * you can pass literal Ints into methods that require * PosZInt, and get the same compile-time checking you get when * calling PosZInt.apply explicitly. Here's an example: *

* *
 * scala> def invert(pos: PosZInt): Int = Int.MaxValue - pos
 * invert: (pos: org.scalactic.anyvals.PosZInt)Int
 *
 * scala> invert(0)
 * res7: Int = 2147483647
 *
 * scala> invert(Int.MaxValue)
 * res8: Int = 0
 *
 * scala> invert(-1)
 * <console>:15: error: PosZInt.apply can only be invoked on a non-negative (i >= 0) integer literal, like PosZInt(42).
 *               invert(-1)
 *                       ^
 * 
* *

* This example also demonstrates that the PosZInt * companion object also defines implicit widening conversions * when either no loss of precision will occur or a similar * conversion is provided in Scala. (For example, the implicit * conversion from Int to Float in * Scala can lose precision.) This makes it convenient to use a * PosZInt where an Int or wider type * is needed. An example is the subtraction in the body of the * invert method defined above, Int.MaxValue * - pos. Although Int.MaxValue is an * Int, which has no - method that * takes a PosZInt (the type of pos), * you can still subtract pos, because the * PosZInt will be implicitly widened to * Int. *

* * @param value The Int value underlying this PosZInt. */ final class PosZInt private (val value: Int) extends AnyVal { /** * A string representation of this PosZInt. */ override def toString: String = s"PosZInt($value)" /** * Converts this PosZInt to a Byte. */ def toByte: Byte = value.toByte /** * Converts this PosZInt to a Short. */ def toShort: Short = value.toShort /** * Converts this PosZInt to a Char. */ def toChar: Char = value.toChar /** * Converts this PosZInt to an Int. */ def toInt: Int = value.toInt /** * Converts this PosZInt to a Long. */ def toLong: Long = value.toLong /** * Converts this PosZInt to a Float. */ def toFloat: Float = value.toFloat /** * Converts this PosZInt to a Double. */ def toDouble: Double = value.toDouble /** * Returns the bitwise negation of this value. * @example {{{ * ~5 == -6 * // in binary: ~00000101 == * // 11111010 * }}} */ def unary_~ : Int = ~value /** Returns this value, unmodified. */ def unary_+ : PosZInt = this /** Returns the negation of this value. */ def unary_- : Int = -value /** * Converts this PosZInt's value to a string then concatenates the given string. */ def +(x: String): String = value + x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the new right bits with zeroes. * @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}} */ def <<(x: Int): Int = value << x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the new right bits with zeroes. * @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}} */ def <<(x: Long): Int = value << x /** * Returns this value bit-shifted right by the specified number of bits, * filling the new left bits with zeroes. * @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}} * @example {{{ * -21 >>> 3 == 536870909 * // in binary: 11111111 11111111 11111111 11101011 >>> 3 == * // 00011111 11111111 11111111 11111101 * }}} */ def >>>(x: Int): Int = value >>> x /** * Returns this value bit-shifted right by the specified number of bits, * filling the new left bits with zeroes. * @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}} * @example {{{ * -21 >>> 3 == 536870909 * // in binary: 11111111 11111111 11111111 11101011 >>> 3 == * // 00011111 11111111 11111111 11111101 * }}} */ def >>>(x: Long): Int = value >>> x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the right bits with the same value as the left-most bit of this. * The effect of this is to retain the sign of the value. * @example {{{ * -21 >> 3 == -3 * // in binary: 11111111 11111111 11111111 11101011 >> 3 == * // 11111111 11111111 11111111 11111101 * }}} */ def >>(x: Int): Int = value >> x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the right bits with the same value as the left-most bit of this. * The effect of this is to retain the sign of the value. * @example {{{ * -21 >> 3 == -3 * // in binary: 11111111 11111111 11111111 11101011 >> 3 == * // 11111111 11111111 11111111 11111101 * }}} */ def >>(x: Long): Int = value >> x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Byte): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Short): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Char): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Int): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Long): Long = value | x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Byte): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Short): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Char): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Int): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Long): Long = value & x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Byte): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Short): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Char): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Int): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Long): Long = value ^ x /** Returns the sum of this value and `x`. */ def +(x: Byte): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Long = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Long = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Long = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Long = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Long = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from Richint: /** * Returns a string representation of this PosZInt's underlying Int as an * unsigned integer in base 2. * *

* The unsigned integer value is the argument plus 232 * if this PosZInt's underlying Int is negative; otherwise it is equal to the * underlying Int. This value is converted to a string of ASCII digits * in binary (base 2) with no extra leading 0s. * If the unsigned magnitude is zero, it is represented by a * single zero character '0' * ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The characters '0' * ('\u0030') and '1' * ('\u0031') are used as binary digits. *

* * @return the string representation of the unsigned integer value * represented by this PosZInt's underlying Int in binary (base 2). */ def toBinaryString: String = java.lang.Integer.toBinaryString(value) /** * Returns a string representation of this PosZInt's underlying Int as an * unsigned integer in base 16. * *

* The unsigned integer value is the argument plus 232 * if this PosZInt's underlying Int is negative; otherwise, it is equal to the * this PosZInt's underlying Int This value is converted to a string of ASCII digits * in hexadecimal (base 16) with no extra leading * 0s. If the unsigned magnitude is zero, it is * represented by a single zero character '0' * ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as * hexadecimal digits: *

* *
* 0123456789abcdef *
* * These are the characters '\u0030' through * '\u0039' and '\u0061' through * '\u0066'. If uppercase letters are * desired, the toUpperCase method may * be called on the result. * * @return the string representation of the unsigned integer value * represented by this PosZInt's underlying Int in hexadecimal (base 16). */ def toHexString: String = java.lang.Integer.toHexString(value) /** * Returns a string representation of this PosZInt's underlying Int as an * unsigned integer in base 8. * *

The unsigned integer value is this PosZInt's underlying Int plus 232 * if the underlying Int is negative; otherwise, it is equal to the * underlying Int. This value is converted to a string of ASCII digits * in octal (base 8) with no extra leading 0s. * *

If the unsigned magnitude is zero, it is represented by a * single zero character '0' * ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as octal * digits: * *

* 01234567 *
* * These are the characters '\u0030' through * '\u0037'. * * @return the string representation of the unsigned integer value * represented by this PosZInt's underlying Int in octal (base 8). */ def toOctalString: String = java.lang.Integer.toOctalString(value) /** * Create a Range from this PosZInt value * until the specified end (exclusive) with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range]] from `this` up to but * not including `end`. */ def until(end: Int): Range = Range(value, end) /** * Create a Range from this PosZInt value * until the specified end (exclusive) with the specified step value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.Range]] from `this` up to but * not including `end`. */ def until(end: Int, step: Int): Range = Range(value, end, step) /** * Create an inclusive Range from this PosZInt value * to the specified end with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range]] from `'''this'''` up to * and including `end`. */ def to(end: Int): Range.Inclusive = Range.inclusive(value, end) /** * Create an inclusive Range from this PosZInt value * to the specified end with the specified step value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.Range]] from `'''this'''` up to * and including `end`. */ def to(end: Int, step: Int): Range.Inclusive = Range.inclusive(value, end, step) // No point to call abs on a PosZInt. /** * Returns this if this > that or that otherwise. */ def max(that: PosZInt): PosZInt = if (math.max(value, that.value) == value) this else that /** * Returns this if this < that or that otherwise. */ def min(that: PosZInt): PosZInt = if (math.min(value, that.value) == value) this else that } /** * The companion object for PosZInt that offers * factory methods that produce PosZInts, implicit * widening conversions from PosZInt to other * numeric types, and maximum and minimum constant values for * PosZInt. */ object PosZInt { /** * The largest value representable as a non-negative Int, * which is PosZInt(2147483647). */ final val MaxValue: PosZInt = PosZInt.from(Int.MaxValue).get /** * The smallest value representable as a non-negative Int, * which is PosZInt(0). */ final val MinValue: PosZInt = PosZInt.from(0).get // Can't use the macro here /** * A factory method that produces an Option[PosZInt] given an * Int value. * *

* This method will inspect the passed Int value * and if it is a non-negative Int, * i.e., a value greater than or equal to 0, it will * return a PosZInt representing that value, * wrapped in a Some. Otherwise, the passed * Int value is negative, so this method * will return None. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Int literals at * compile time, whereas from inspects * Int values at run time. *

* * @param value the Int to inspect, and if non-negative, return * wrapped in a Some[PosZInt]. * @return the specified Int value wrapped * in a Some[PosZInt], if it is positive, else * None. */ def from(value: Int): Option[PosZInt] = if (value >= 0) Some(new PosZInt(value)) else None import language.experimental.macros import scala.language.implicitConversions /** * A factory method, implemented via a macro, that produces a * PosZInt if passed a valid Int * literal, otherwise a compile time error. * *

* The macro that implements this method will inspect the * specified Int expression at compile time. If * the expression is a non-negative Int literal, * i.e., with a value greater than or equal to 0, it will return * a PosZInt representing that value. Otherwise, * the passed Int expression is either a literal * that is negative, or is not a literal, so this method * will give a compiler error. *

* *

* This factory method differs from the from * factory method in that this method is implemented via a * macro that inspects Int literals at compile * time, whereas from inspects Int * values at run time. *

* * @param value the Int literal expression to inspect at * compile time, and if non-negative, to return wrapped in a * PosZInt at run time. * @return the specified, valid Int literal value wrapped * in a PosZInt. (If the specified expression is not a valid * Int literal, the invocation of this method will not * compile.) */ implicit def apply(value: Int): PosZInt = macro PosZIntMacro.apply /** * Implicit widening conversion from PosZInt to * Int. * * @param pos the PosZInt to widen * @return the Int value underlying the specified * PosZInt. */ implicit def widenToInt(poz: PosZInt): Int = poz.value /** * Implicit widening conversion from PosZInt to * Long. * * @param pos the PosZInt to widen * @return the Int value underlying the specified * PosZInt, widened to Long. */ implicit def widenToLong(poz: PosZInt): Long = poz.value /** * Implicit widening conversion from PosZInt to * Float. * * @param pos the PosZInt to widen * @return the Int value underlying the specified * PosZInt, widened to Float. */ implicit def widenToFloat(poz: PosZInt): Float = poz.value /** * Implicit widening conversion from PosZInt to * Double. * * @param pos the PosZInt to widen * @return the Int value underlying the specified * PosZInt, widened to Double. */ implicit def widenToDouble(poz: PosZInt): Double = poz.value /** * Implicit widening conversion from PosZInt to * PosZLong. * * @param pos the PosZInt to widen * @return the Int value underlying the specified * PosZInt, widened to Long and * wrapped in a PosZLong. */ implicit def widenToPosZLong(poz: PosZInt): PosZLong = PosZLong.from(poz.value).get /** * Implicit widening conversion from PosZInt to * PosZFloat. * * @param pos the PosZInt to widen * @return the Int value underlying the specified * PosZInt, widened to Float and * wrapped in a PosZFloat. */ implicit def widenToPosZFloat(poz: PosZInt): PosZFloat = PosZFloat.from(poz.value).get /** * Implicit widening conversion from PosZInt to * PosZDouble. * * @param pos the PosZInt to widen * @return the Int value underlying the specified * PosZInt, widened to Double * and wrapped in a PosZDouble. */ implicit def widenToPosZDouble(poz: PosZInt): PosZDouble = PosZDouble.from(poz.value).get /** * Implicit Ordering instance. */ implicit val posZIntOrd: Ordering[PosZInt] = new Ordering[PosZInt] { def compare(x: PosZInt, y: PosZInt): Int = x - y } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy