All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.NonEmptyArray.scala Maven / Gradle / Ivy

/*
 * Copyright 2001-2013 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.annotation.unchecked.{ uncheckedVariance => uV }
import scala.collection.GenIterable
import scala.collection.GenSeq
import scala.collection.GenTraversableOnce
import scala.collection.generic.CanBuildFrom
import scala.collection.mutable.Buffer
import scala.reflect.ClassTag
import scala.collection.immutable
import scala.collection.mutable.ArrayBuffer
import org.scalactic.Every


// Can't be a LinearSeq[T] because Builder would be able to create an empty one.
/**
  * A non-empty list: an ordered, immutable, non-empty collection of elements with LinearSeq performance characteristics.
  *
  * 

* The purpose of NonEmptyArray is to allow you to express in a type that a Array is non-empty, thereby eliminating the * need for (and potential exception from) a run-time check for non-emptiness. For a non-empty sequence with IndexedSeq * performance, see Every. *

* *

Constructing NonEmptyArrays

* *

* You can construct a NonEmptyArray by passing one or more elements to the NonEmptyArray.apply factory method: *

* *
  * scala> NonEmptyArray(1, 2, 3)
  * res0: org.scalactic.anyvals.NonEmptyArray[Int] = NonEmptyArray(1, 2, 3)
  * 
* *

* Alternatively you can cons elements onto the End singleton object, similar to making a Array starting with Nil: *

* *
  * scala> 1 :: 2 :: 3 :: Nil
  * res0: Array[Int] = Array(1, 2, 3)
  *
  * scala> 1 :: 2 :: 3 :: End
  * res1: org.scalactic.NonEmptyArray[Int] = NonEmptyArray(1, 2, 3)
  * 
* *

* Note that although Nil is a Array[Nothing], End is * not a NonEmptyArray[Nothing], because no empty NonEmptyArray exists. (A non-empty list is a series * of connected links; if you have no links, you have no non-empty list.) *

* *
  * scala> val nil: Array[Nothing] = Nil
  * nil: Array[Nothing] = Array()
  *
  * scala> val nada: NonEmptyArray[Nothing] = End
  * <console>:16: error: type mismatch;
  * found   : org.scalactic.anyvals.End.type
  * required: org.scalactic.anyvals.NonEmptyArray[Nothing]
  *        val nada: NonEmptyArray[Nothing] = End
  *                                          ^
  * 
* *

Working with NonEmptyArrays

* *

* NonEmptyArray does not extend Scala's Seq or Traversable traits because these require that * implementations may be empty. For example, if you invoke tail on a Seq that contains just one element, * you'll get an empty Seq: *

* *
  * scala> Array(1).tail
  * res6: Array[Int] = Array()
  * 
* *

* On the other hand, many useful methods exist on Seq that when invoked on a non-empty Seq are guaranteed * to not result in an empty Seq. For convenience, NonEmptyArray defines a method corresponding to every such Seq * method. Here are some examples: *

* *
  * NonEmptyArray(1, 2, 3).map(_ + 1)                        // Result: NonEmptyArray(2, 3, 4)
  * NonEmptyArray(1).map(_ + 1)                              // Result: NonEmptyArray(2)
  * NonEmptyArray(1, 2, 3).containsSlice(NonEmptyArray(2, 3)) // Result: true
  * NonEmptyArray(1, 2, 3).containsSlice(NonEmptyArray(3, 4)) // Result: false
  * NonEmptyArray(-1, -2, 3, 4, 5).minBy(_.abs)              // Result: -1
  * 
* *

* NonEmptyArray does not currently define any methods corresponding to Seq methods that could result in * an empty Seq. However, an implicit converison from NonEmptyArray to Array * is defined in the NonEmptyArray companion object that will be applied if you attempt to call one of the missing methods. As a * result, you can invoke filter on an NonEmptyArray, even though filter could result * in an empty sequence—but the result type will be Array instead of NonEmptyArray: *

* *
  * NonEmptyArray(1, 2, 3).filter(_ < 10) // Result: Array(1, 2, 3)
  * NonEmptyArray(1, 2, 3).filter(_ > 10) // Result: Array()
  * 
* * *

* You can use NonEmptyArrays in for expressions. The result will be an NonEmptyArray unless * you use a filter (an if clause). Because filters are desugared to invocations of filter, the * result type will switch to a Array at that point. Here are some examples: *

* *
  * scala> import org.scalactic.anyvals._
  * import org.scalactic.anyvals._
  *
  * scala> for (i <- NonEmptyArray(1, 2, 3)) yield i + 1
  * res0: org.scalactic.anyvals.NonEmptyArray[Int] = NonEmptyArray(2, 3, 4)
  *
  * scala> for (i <- NonEmptyArray(1, 2, 3) if i < 10) yield i + 1
  * res1: Array[Int] = Array(2, 3, 4)
  *
  * scala> for {
  *      |   i <- NonEmptyArray(1, 2, 3)
  *      |   j <- NonEmptyArray('a', 'b', 'c')
  *      | } yield (i, j)
  * res3: org.scalactic.anyvals.NonEmptyArray[(Int, Char)] =
  *         NonEmptyArray((1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c))
  *
  * scala> for {
  *      |   i <- NonEmptyArray(1, 2, 3) if i < 10
  *      |   j <- NonEmptyArray('a', 'b', 'c')
  *      | } yield (i, j)
  * res6: Array[(Int, Char)] =
  *         Array((1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c))
  * 
* * @tparam T the type of elements contained in this NonEmptyArray */ final class NonEmptyArray[T] private (val toArray: Array[T]) extends AnyVal { /** * Returns a new NonEmptyArray containing the elements of this NonEmptyArray followed by the elements of the passed NonEmptyArray. * The element type of the resulting NonEmptyArray is the most specific superclass encompassing the element types of this and the passed NonEmptyArray. * * @tparam U the element type of the returned NonEmptyArray * @param other the NonEmptyArray to append * @return a new NonEmptyList that contains all the elements of this NonEmptyList followed by all elements of other. */ def ++[U >: T](other: NonEmptyArray[U])(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray((toArray ++ other.toArray).toArray) /** * Returns a new NonEmptyArray containing the elements of this NonEmptyArray followed by the elements of the passed Every. * The element type of the resulting NonEmptyArray is the most specific superclass encompassing the element types of this NonEmptyArray and the passed Every. * * @tparam U the element type of the returned NonEmptyArray * @param other the Every to append * @return a new NonEmptyArray that contains all the elements of this NonEmptyArray followed by all elements of other. */ def ++[U >: T](other: Every[U])(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray((toArray ++ other).toArray) // TODO: Have I added these extra ++, etc. methods to Every that take a NonEmptyList? /** * Returns a new NonEmptyArray containing the elements of this NonEmptyArray followed by the elements of the passed GenTraversableOnce. * The element type of the resulting NonEmptyArray is the most specific superclass encompassing the element types of this NonEmptyArray * and the passed GenTraversableOnce. * * @tparam U the element type of the returned NonEmptyArray * @param other the GenTraversableOnce to append * @return a new NonEmptyArray that contains all the elements of this NonEmptyArray followed by all elements of other. */ def ++[U >: T](other: org.scalactic.ColCompatHelper.IterableOnce[U])(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray((toArray ++ other.toStream).toArray) /** * Fold left: applies a binary operator to a start value, z, and all elements of this NonEmptyArray, going left to right. * *

* Note: /: is alternate syntax for the foldLeft method; z /: non-empty list is the * same as non-empty list foldLeft z. *

* * @tparam B the result of the binary operator * @param z the start value * @param op the binary operator * @return the result of inserting op between consecutive elements of this NonEmptyArray, going left to right, with the start value, * z, on the left: * *
    * op(...op(op(z, x_1), x_2), ..., x_n)
    * 
* *

* where x1, ..., xn are the elements of this NonEmptyArray. *

*/ final def /:[B](z: B)(op: (B, T) => B): B = toArray./:(z)(op) /** * Fold right: applies a binary operator to all elements of this NonEmptyArray and a start value, going right to left. * *

* Note: :\ is alternate syntax for the foldRight method; non-empty list :\ z is the same * as non-empty list foldRight z. *

* * @tparam B the result of the binary operator * @param z the start value * @param op the binary operator * @return the result of inserting op between consecutive elements of this NonEmptyArray, going right to left, with the start value, * z, on the right: * *
    * op(x_1, op(x_2, ... op(x_n, z)...))
    * 
* *

* where x1, ..., xn are the elements of this NonEmptyArray. *

*/ final def :\[B](z: B)(op: (T, B) => B): B = toArray.:\(z)(op) /** * Returns a new NonEmptyArray with the given element prepended. * *

* Note that :-ending operators are right associative. A mnemonic for +: vs. :+ is: the COLon goes on the COLlection side. *

* * @param element the element to prepend to this NonEmptyArray * @return a new NonEmptyArray consisting of element followed by all elements of this NonEmptyArray. */ final def +:[U >: T](element: U)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(element +: toArray) /** * Returns a new NonEmptyArray with the given element appended. * *

* Note a mnemonic for +: vs. :+ is: the COLon goes on the COLlection side. *

* * @param element the element to append to this NonEmptyArray * @return a new NonEmptyArray consisting of all elements of this NonEmptyArray followed by element. */ def :+[U >: T](element: U)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(toArray :+ element) /** * Appends all elements of this NonEmptyArray to a string builder. The written text will consist of a concatenation of the result of invoking toString * on of every element of this NonEmptyArray, without any separator string. * * @param sb the string builder to which elements will be appended * @return the string builder, sb, to which elements were appended. */ final def addString(sb: StringBuilder): StringBuilder = toArray.addString(sb) /** * Appends all elements of this NonEmptyArray to a string builder using a separator string. The written text will consist of a concatenation of the * result of invoking toString * on of every element of this NonEmptyArray, separated by the string sep. * * @param sb the string builder to which elements will be appended * @param sep the separator string * @return the string builder, sb, to which elements were appended. */ final def addString(sb: StringBuilder, sep: String): StringBuilder = toArray.addString(sb, sep) /** * Appends all elements of this NonEmptyArray to a string builder using start, end, and separator strings. The written text will consist of a concatenation of * the string start; the result of invoking toString on all elements of this NonEmptyArray, * separated by the string sep; and the string end * * @param sb the string builder to which elements will be appended * @param start the starting string * @param sep the separator string * @param start the ending string * @return the string builder, sb, to which elements were appended. */ final def addString(sb: StringBuilder, start: String, sep: String, end: String): StringBuilder = toArray.addString(sb, start, sep, end) /** * Selects an element by its index in the NonEmptyArray. * * @return the element of this NonEmptyArray at index idx, where 0 indicates the first element. */ final def apply(idx: Int): T = toArray(idx) /** * Finds the first element of this NonEmptyArray for which the given partial function is defined, if any, and applies the partial function to it. * * @param pf the partial function * @return an Option containing pf applied to the first element for which it is defined, or None if * the partial function was not defined for any element. */ final def collectFirst[U](pf: PartialFunction[T, U])(implicit classTagOfU: ClassTag[U]): Option[U] = toArray.collectFirst(pf) /** * Indicates whether this NonEmptyArray contains a given value as an element. * * @param elem the element to look for * @return true if this NonEmptyArray has an element that is equal (as determined by ==) to elem, false otherwise. */ final def contains(elem: T): Boolean = toArray.contains(elem) /** * Indicates whether this NonEmptyArray contains a given GenSeq as a slice. * * @param that the GenSeq slice to look for * @return true if this NonEmptyArray contains a slice with the same elements as that, otherwise false. */ final def containsSlice[B](that: GenSeq[B]): Boolean = toArray.containsSlice(that) /** * Indicates whether this NonEmptyArray contains a given Every as a slice. * * @param that the Every slice to look for * @return true if this NonEmptyArray contains a slice with the same elements as that, otherwise false. */ final def containsSlice[B](that: Every[B]): Boolean = toArray.containsSlice(that.toVector) /** * Indicates whether this NonEmptyArray contains a given NonEmptyArray as a slice. * * @param that the NonEmptyArray slice to look for * @return true if this NonEmptyArray contains a slice with the same elements as that, otherwise false. */ final def containsSlice[B](that: NonEmptyArray[B]): Boolean = toArray.containsSlice(that.toArray) /** * Copies values of this NonEmptyArray to an array. Fills the given array arr with values of this NonEmptyArray. Copying * will stop once either the end of the current NonEmptyArray is reached, or the end of the array is reached. * * @param arr the array to fill */ final def copyToArray[U >: T](arr: Array[U]): Unit = toArray.copyToArray(arr, 0) /** * Copies values of this NonEmptyArray to an array. Fills the given array arr with values of this NonEmptyArray, beginning at * index start. Copying will stop once either the end of the current NonEmptyArray is reached, or the end of the array is reached. * * @param arr the array to fill * @param start the starting index */ final def copyToArray[U >: T](arr: Array[U], start: Int): Unit = toArray.copyToArray(arr, start) /** * Copies values of this NonEmptyArray to an array. Fills the given array arr with at most len elements of this NonEmptyArray, beginning at * index start. Copying will stop once either the end of the current NonEmptyArray is reached, the end of the array is reached, or * len elements have been copied. * * @param arr the array to fill * @param start the starting index * @param len the maximum number of elements to copy */ final def copyToArray[U >: T](arr: Array[U], start: Int, len: Int): Unit = toArray.copyToArray(arr, start, len) /** * Copies all elements of this NonEmptyArray to a buffer. * * @param buf the buffer to which elements are copied */ final def copyToBuffer[U >: T](buf: Buffer[U]): Unit = toArray.copyToBuffer(buf) /** * Indicates whether every element of this NonEmptyArray relates to the corresponding element of a given GenSeq by satisfying a given predicate. * * @tparam B the type of the elements of that * @param that the GenSeq to compare for correspondence * @param p the predicate, which relates elements from this NonEmptyArray and the passed GenSeq * @return true if this NonEmptyArray and the passed GenSeq have the same length and p(x, y) is true * for all corresponding elements x of this NonEmptyArray and y of that, otherwise false. */ final def corresponds[B](that: GenSeq[B])(p: (T, B) => Boolean): Boolean = toArray.corresponds(that)(p) /** * Indicates whether every element of this NonEmptyArray relates to the corresponding element of a given Every by satisfying a given predicate. * * @tparam B the type of the elements of that * @param that the Every to compare for correspondence * @param p the predicate, which relates elements from this NonEmptyArray and the passed Every * @return true if this NonEmptyArray and the passed Every have the same length and p(x, y) is true * for all corresponding elements x of this NonEmptyArray and y of that, otherwise false. */ final def corresponds[B](that: Every[B])(p: (T, B) => Boolean): Boolean = toArray.corresponds(that.toVector)(p) /** * Indicates whether every element of this NonEmptyArray relates to the corresponding element of a given NonEmptyArray by satisfying a given predicate. * * @tparam B the type of the elements of that * @param that the NonEmptyArray to compare for correspondence * @param p the predicate, which relates elements from this and the passed NonEmptyArray * @return true if this and the passed NonEmptyArray have the same length and p(x, y) is true * for all corresponding elements x of this NonEmptyArray and y of that, otherwise false. */ final def corresponds[B](that: NonEmptyArray[B])(p: (T, B) => Boolean): Boolean = toArray.corresponds(that.toArray)(p) /** * Counts the number of elements in this NonEmptyArray that satisfy a predicate. * * @param p the predicate used to test elements. * @return the number of elements satisfying the predicate p. */ final def count(p: T => Boolean): Int = toArray.count(p) /** * Builds a new NonEmptyArray from this NonEmptyArray without any duplicate elements. * * @return A new NonEmptyArray that contains the first occurrence of every element of this NonEmptyArray. */ final def distinct: NonEmptyArray[T] = new NonEmptyArray(toArray.distinct) /** * Indicates whether this NonEmptyArray ends with the given GenSeq. * * @param that the sequence to test * @return true if this NonEmptyArray has that as a suffix, false otherwise. */ final def endsWith[B](that: GenSeq[B]): Boolean = toArray.endsWith(that) /** * Indicates whether this NonEmptyArray ends with the given Every. * * @param that the Every to test * @return true if this NonEmptyArray has that as a suffix, false otherwise. */ final def endsWith[B](that: Every[B]): Boolean = toArray.endsWith(that.toVector) // TODO: Search for that: Every in here and add a that: NonEmptyArray in Every. /** * Indicates whether this NonEmptyArray ends with the given NonEmptyArray. * * @param that the NonEmptyArray to test * @return true if this NonEmptyArray has that as a suffix, false otherwise. */ final def endsWith[B](that: NonEmptyArray[B]): Boolean = toArray.endsWith(that.toArray.toSeq) /* override def equals(o: Any): Boolean = o match { case nonEmptyArray: NonEmptyArray[_] => toArray == nonEmptyArray.toArray case _ => false } */ /** * Indicates whether a predicate holds for at least one of the elements of this NonEmptyArray. * * @param the predicate used to test elements. * @return true if the given predicate p holds for some of the elements of this NonEmptyArray, otherwise false. */ final def exists(p: T => Boolean): Boolean = toArray.exists(p) /** * Finds the first element of this NonEmptyArray that satisfies the given predicate, if any. * * @param p the predicate used to test elements * @return an Some containing the first element in this NonEmptyArray that satisfies p, or None if none exists. */ final def find(p: T => Boolean): Option[T] = toArray.find(p) /** * Builds a new NonEmptyArray by applying a function to all elements of this NonEmptyArray and using the elements of the resulting NonEmptyArrays. * * @tparam U the element type of the returned NonEmptyArray * @param f the function to apply to each element. * @return a new NonEmptyArray containing elements obtained by applying the given function f to each element of this NonEmptyArray and concatenating * the elements of resulting NonEmptyArrays. */ final def flatMap[U](f: T => NonEmptyArray[U])(implicit classTag: ClassTag[U]): NonEmptyArray[U] = { val buf = new ArrayBuffer[U] for (ele <- toArray) buf ++= f(ele).toArray new NonEmptyArray(buf.toArray) } /** * Converts this NonEmptyArray of NonEmptyArrays into a NonEmptyArray * formed by the elements of the nested NonEmptyArrays. * *

* Note: You cannot use this flatten method on a NonEmptyArray that contains a GenTraversableOnces, because * if all the nested GenTraversableOnces were empty, you'd end up with an empty NonEmptyArray. *

* * @tparm B the type of the elements of each nested NonEmptyArray * @return a new NonEmptyArray resulting from concatenating all nested NonEmptyArrays. */ final def flatten[B](implicit ev: T <:< NonEmptyArray[B], classTag: ClassTag[B]): NonEmptyArray[B] = flatMap(ev) /** * Folds the elements of this NonEmptyArray using the specified associative binary operator. * *

* The order in which operations are performed on elements is unspecified and may be nondeterministic. *

* * @tparam U a type parameter for the binary operator, a supertype of T. * @param z a neutral element for the fold operation; may be added to the result an arbitrary number of * times, and must not change the result (e.g., Nil for list concatenation, * 0 for addition, or 1 for multiplication.) * @param op a binary operator that must be associative * @return the result of applying fold operator op between all the elements and z */ final def fold[U >: T](z: U)(op: (U, U) => U): U = toArray.fold(z)(op) /** * Applies a binary operator to a start value and all elements of this NonEmptyArray, going left to right. * * @tparam B the result type of the binary operator. * @param z the start value. * @param op the binary operator. * @return the result of inserting op between consecutive elements of this NonEmptyArray, going left to right, with the start value, * z, on the left: * *
    * op(...op(op(z, x_1), x_2), ..., x_n)
    * 
* *

* where x1, ..., xn are the elements of this NonEmptyArray. *

*/ final def foldLeft[B](z: B)(op: (B, T) => B): B = toArray.foldLeft(z)(op) /** * Applies a binary operator to all elements of this NonEmptyArray and a start value, going right to left. * * @tparam B the result of the binary operator * @param z the start value * @param op the binary operator * @return the result of inserting op between consecutive elements of this NonEmptyArray, going right to left, with the start value, * z, on the right: * *
    * op(x_1, op(x_2, ... op(x_n, z)...))
    * 
* *

* where x1, ..., xn are the elements of this NonEmptyArray. *

*/ final def foldRight[B](z: B)(op: (T, B) => B): B = toArray.foldRight(z)(op) /** * Indicates whether a predicate holds for all elements of this NonEmptyArray. * * @param p the predicate used to test elements. * @return true if the given predicate p holds for all elements of this NonEmptyArray, otherwise false. */ final def forall(p: T => Boolean): Boolean = toArray.forall(p) /** * Applies a function f to all elements of this NonEmptyArray. * * @param f the function that is applied for its side-effect to every element. The result of function f is discarded. */ final def foreach(f: T => Unit): Unit = toArray.foreach(f) //def arrayToNonEmptyArray(array: Array[T]): NonEmptyArray[T] = new NonEmptyArray[T](array) /** * Partitions this NonEmptyArray into a map of NonEmptyArrays according to some discriminator function. * * @tparam K the type of keys returned by the discriminator function. * @param f the discriminator function. * @return A map from keys to NonEmptyArrays such that the following invariant holds: * *
    * (nonEmptyArray.toArray partition f)(k) = xs filter (x => f(x) == k)
    * 
* *

* That is, every key k is bound to a NonEmptyArray of those elements x for which f(x) equals k. *

*/ final def groupBy[K](f: T => K)(implicit classTag: ClassTag[T]): Map[K, NonEmptyArray[T]] = { val mapKToArray = toArray.toList.groupBy(f) // toList and implicit ClassTag is required to compile in scala 2.10. (mapKToArray.mapValues{ list => new NonEmptyArray(list.toArray) }).toMap } /** * Partitions elements into fixed size NonEmptyArrays. * * @param size the number of elements per group * @return An iterator producing NonEmptyArrays of size size, except the last will be truncated if the elements don't divide evenly. */ final def grouped(size: Int)(implicit classTag: ClassTag[T]): Iterator[NonEmptyArray[T]] = { val itOfArray = toArray.toList.grouped(size) // toList and implicit ClassTag is required to compile in scala 2.10. itOfArray.map { list => new NonEmptyArray(list.toArray) } } /** * Returns true to indicate this NonEmptyArray has a definite size, since all NonEmptyArrays are strict collections. */ final def hasDefiniteSize: Boolean = true // override def hashCode: Int = toArray.hashCode /** * Selects the first element of this NonEmptyArray. * * @return the first element of this NonEmptyArray. */ final def head: T = toArray.head // Methods like headOption I can't get rid of because of the implicit conversion to GenTraversable. // Users can call any of the methods I've left out on a NonEmptyArray, and get whatever Array would return // for that method call. Eventually I'll probably implement them all to save the implicit conversion. /** * Selects the first element of this NonEmptyArray and returns it wrapped in a Some. * * @return the first element of this NonEmptyArray, wrapped in a Some. */ final def headOption: Option[T] = toArray.headOption /** * Finds index of first occurrence of some value in this NonEmptyArray. * * @param elem the element value to search for. * @return the index of the first element of this NonEmptyArray that is equal (as determined by ==) to elem, * or -1, if none exists. */ final def indexOf(elem: T): Int = toArray.indexOf(elem, 0) /** * Finds index of first occurrence of some value in this NonEmptyArray after or at some start index. * * @param elem the element value to search for. * @param from the start index * @return the index >= from of the first element of this NonEmptyArray that is equal (as determined by ==) to elem, * or -1, if none exists. */ final def indexOf(elem: T, from: Int): Int = toArray.indexOf(elem, from) /** * Finds first index where this NonEmptyArray contains a given GenSeq as a slice. * * @param that the GenSeq defining the slice to look for * @return the first index at which the elements of this NonEmptyArray starting at that index match the elements of * GenSeq that, or -1 of no such subsequence exists. */ final def indexOfSlice[U >: T](that: GenSeq[U]): Int = toArray.indexOfSlice(that) /** * Finds first index after or at a start index where this NonEmptyArray contains a given GenSeq as a slice. * * @param that the GenSeq defining the slice to look for * @param from the start index * @return the first index >= from at which the elements of this NonEmptyArray starting at that index match the elements of * GenSeq that, or -1 of no such subsequence exists. */ final def indexOfSlice[U >: T](that: GenSeq[U], from: Int): Int = toArray.indexOfSlice(that, from) /** * Finds first index where this NonEmptyArray contains a given Every as a slice. * * @param that the Every defining the slice to look for * @return the first index such that the elements of this NonEmptyArray starting at this index match the elements of * Every that, or -1 of no such subsequence exists. */ final def indexOfSlice[U >: T](that: Every[U]): Int = toArray.indexOfSlice(that.toVector) /** * Finds first index where this NonEmptyArray contains a given NonEmptyArray as a slice. * * @param that the NonEmptyArray defining the slice to look for * @return the first index such that the elements of this NonEmptyArray starting at this index match the elements of * NonEmptyArray that, or -1 of no such subsequence exists. */ final def indexOfSlice[U >: T](that: NonEmptyArray[U]): Int = toArray.indexOfSlice(that.toArray) /** * Finds first index after or at a start index where this NonEmptyArray contains a given Every as a slice. * * @param that the Every defining the slice to look for * @param from the start index * @return the first index >= from such that the elements of this NonEmptyArray starting at this index match the elements of * Every that, or -1 of no such subsequence exists. */ final def indexOfSlice[U >: T](that: Every[U], from: Int): Int = toArray.indexOfSlice(that.toVector, from) /** * Finds first index after or at a start index where this NonEmptyArray contains a given NonEmptyArray as a slice. * * @param that the NonEmptyArray defining the slice to look for * @param from the start index * @return the first index >= from such that the elements of this NonEmptyArray starting at this index match the elements of * NonEmptyArray that, or -1 of no such subsequence exists. */ final def indexOfSlice[U >: T](that: NonEmptyArray[U], from: Int): Int = toArray.indexOfSlice(that.toArray, from) /** * Finds index of the first element satisfying some predicate. * * @param p the predicate used to test elements. * @return the index of the first element of this NonEmptyArray that satisfies the predicate p, * or -1, if none exists. */ final def indexWhere(p: T => Boolean): Int = toArray.indexWhere(p) /** * Finds index of the first element satisfying some predicate after or at some start index. * * @param p the predicate used to test elements. * @param from the start index * @return the index >= from of the first element of this NonEmptyArray that satisfies the predicate p, * or -1, if none exists. */ final def indexWhere(p: T => Boolean, from: Int): Int = toArray.indexWhere(p, from) /** * Produces the range of all indices of this NonEmptyArray. * * @return a Range value from 0 to one less than the length of this NonEmptyArray. */ final def indices: Range = toArray.indices /** * Tests whether this NonEmptyArray contains given index. * * @param idx the index to test * @return true if this NonEmptyArray contains an element at position idx, false otherwise. */ final def isDefinedAt(idx: Int): Boolean = toArray.isDefinedAt(idx) /** * Returns false to indicate this NonEmptyArray, like all NonEmptyArrays, is non-empty. * * @return false */ final def isEmpty: Boolean = false /** * Returns true to indicate this NonEmptyArray, like all NonEmptyArrays, can be traversed repeatedly. * * @return true */ final def isTraversableAgain: Boolean = true /** * Creates and returns a new iterator over all elements contained in this NonEmptyArray. * * @return the new iterator */ final def iterator: Iterator[T] = toArray.iterator /** * Selects the last element of this NonEmptyArray. * * @return the last element of this NonEmptyArray. */ final def last: T = toArray.last /** * Finds the index of the last occurrence of some value in this NonEmptyArray. * * @param elem the element value to search for. * @return the index of the last element of this NonEmptyArray that is equal (as determined by ==) to elem, * or -1, if none exists. */ final def lastIndexOf(elem: T): Int = toArray.lastIndexOf(elem) /** * Finds the index of the last occurrence of some value in this NonEmptyArray before or at a given end index. * * @param elem the element value to search for. * @param end the end index. * @return the index >= end of the last element of this NonEmptyArray that is equal (as determined by ==) * to elem, or -1, if none exists. */ final def lastIndexOf(elem: T, end: Int): Int = toArray.lastIndexOf(elem, end) /** * Finds the last index where this NonEmptyArray contains a given GenSeq as a slice. * * @param that the GenSeq defining the slice to look for * @return the last index at which the elements of this NonEmptyArray starting at that index match the elements of * GenSeq that, or -1 of no such subsequence exists. */ final def lastIndexOfSlice[U >: T](that: GenSeq[U]): Int = toArray.lastIndexOfSlice(that) /** * Finds the last index before or at a given end index where this NonEmptyArray contains a given GenSeq as a slice. * * @param that the GenSeq defining the slice to look for * @param end the end index * @return the last index >= end at which the elements of this NonEmptyArray starting at that index match the elements of * GenSeq that, or -1 of no such subsequence exists. */ final def lastIndexOfSlice[U >: T](that: GenSeq[U], end: Int): Int = toArray.lastIndexOfSlice(that, end) /** * Finds the last index where this NonEmptyArray contains a given Every as a slice. * * @param that the Every defining the slice to look for * @return the last index at which the elements of this NonEmptyArray starting at that index match the elements of * Every that, or -1 of no such subsequence exists. */ final def lastIndexOfSlice[U >: T](that: Every[U]): Int = toArray.lastIndexOfSlice(that.toVector) /** * Finds the last index where this NonEmptyArray contains a given NonEmptyArray as a slice. * * @param that the NonEmptyArray defining the slice to look for * @return the last index at which the elements of this NonEmptyArray starting at that index match the elements of * NonEmptyArray that, or -1 of no such subsequence exists. */ final def lastIndexOfSlice[U >: T](that: NonEmptyArray[U]): Int = toArray.lastIndexOfSlice(that.toArray) /** * Finds the last index before or at a given end index where this NonEmptyArray contains a given Every as a slice. * * @param that the Every defining the slice to look for * @param end the end index * @return the last index >= end at which the elements of this NonEmptyArray starting at that index match the elements of * Every that, or -1 of no such subsequence exists. */ final def lastIndexOfSlice[U >: T](that: Every[U], end: Int): Int = toArray.lastIndexOfSlice(that.toVector, end) /** * Finds the last index before or at a given end index where this NonEmptyArray contains a given NonEmptyArray as a slice. * * @param that the NonEmptyArray defining the slice to look for * @param end the end index * @return the last index >= end at which the elements of this NonEmptyArray starting at that index match the elements of * NonEmptyArray that, or -1 of no such subsequence exists. */ final def lastIndexOfSlice[U >: T](that: NonEmptyArray[U], end: Int): Int = toArray.lastIndexOfSlice(that.toArray, end) /** * Finds index of last element satisfying some predicate. * * @param p the predicate used to test elements. * @return the index of the last element of this NonEmptyArray that satisfies the predicate p, or -1, if none exists. */ final def lastIndexWhere(p: T => Boolean): Int = toArray.lastIndexWhere(p) /** * Finds index of last element satisfying some predicate before or at given end index. * * @param p the predicate used to test elements. * @param end the end index * @return the index >= end of the last element of this NonEmptyArray that satisfies the predicate p, * or -1, if none exists. */ final def lastIndexWhere(p: T => Boolean, end: Int): Int = toArray.lastIndexWhere(p, end) /** * Returns the last element of this NonEmptyArray, wrapped in a Some. * * @return the last element, wrapped in a Some. */ final def lastOption: Option[T] = toArray.lastOption // Will always return a Some /** * The length of this NonEmptyArray. * *

* Note: length and size yield the same result, which will be >= 1. *

* * @return the number of elements in this NonEmptyArray. */ final def length: Int = toArray.length /** * Compares the length of this NonEmptyArray to a test value. * * @param len the test value that gets compared with the length. * @return a value x where * *
    * x < 0 if this.length < len
    * x == 0 if this.length == len
    * x > 0 if this.length > len
    * 
*/ final def lengthCompare(len: Int): Int = toArray.lengthCompare(len) /** * Builds a new NonEmptyArray by applying a function to all elements of this NonEmptyArray. * * @tparam U the element type of the returned NonEmptyArray. * @param f the function to apply to each element. * @return a new NonEmptyArray resulting from applying the given function f to each element of this NonEmptyArray and collecting the results. */ final def map[U](f: T => U)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(toArray.map(f).toArray) /** * Finds the largest element. * * @return the largest element of this NonEmptyArray. */ final def max[U >: T](implicit cmp: Ordering[U]): T = toArray.max(cmp) /** * Finds the largest result after applying the given function to every element. * * @return the largest result of applying the given function to every element of this NonEmptyArray. */ final def maxBy[U](f: T => U)(implicit cmp: Ordering[U]): T = toArray.maxBy(f)(cmp) /** * Finds the smallest element. * * @return the smallest element of this NonEmptyArray. */ final def min[U >: T](implicit cmp: Ordering[U]): T = toArray.min(cmp) /** * Finds the smallest result after applying the given function to every element. * * @return the smallest result of applying the given function to every element of this NonEmptyArray. */ final def minBy[U](f: T => U)(implicit cmp: Ordering[U]): T = toArray.minBy(f)(cmp) /** * Displays all elements of this NonEmptyArray in a string. * * @return a string representation of this NonEmptyArray. In the resulting string, the result of invoking toString on all elements of this * NonEmptyArray follow each other without any separator string. */ final def mkString: String = toArray.mkString /** * Displays all elements of this NonEmptyArray in a string using a separator string. * * @param sep the separator string * @return a string representation of this NonEmptyArray. In the resulting string, the result of invoking toString on all elements of this * NonEmptyArray are separated by the string sep. */ final def mkString(sep: String): String = toArray.mkString(sep) /** * Displays all elements of this NonEmptyArray in a string using start, end, and separator strings. * * @param start the starting string. * @param sep the separator string. * @param end the ending string. * @return a string representation of this NonEmptyArray. The resulting string begins with the string start and ends with the string * end. Inside, In the resulting string, the result of invoking toString on all elements of this NonEmptyArray are * separated by the string sep. */ final def mkString(start: String, sep: String, end: String): String = toArray.mkString(start, sep, end) /** * Returns true to indicate this NonEmptyArray, like all NonEmptyArrays, is non-empty. * * @return true */ final def nonEmpty: Boolean = true /** * A copy of this NonEmptyArray with an element value appended until a given target length is reached. * * @param len the target length * @param elem he padding value * @return a new NonEmptyArray consisting of all elements of this NonEmptyArray followed by the minimal number of occurrences * of elem so that the resulting NonEmptyArray has a length of at least len. */ final def padTo[U >: T](len: Int, elem: U)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(toArray.padTo(len, elem).toArray) /** * Produces a new NonEmptyArray where a slice of elements in this NonEmptyArray is replaced by another NonEmptyArray * * @param from the index of the first replaced element * @param that the NonEmptyArray whose elements should replace a slice in this NonEmptyArray * @param replaced the number of elements to drop in the original NonEmptyArray */ final def patch[U >: T](from: Int, that: NonEmptyArray[U], replaced: Int)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(toArray.patch(from, that.toVector, replaced).toArray) /** * Iterates over distinct permutations. * *

* Here's an example: *

* *
    * NonEmptyArray('a', 'b', 'b').permutations.toArray = Array(NonEmptyArray(a, b, b), NonEmptyArray(b, a, b), NonEmptyArray(b, b, a))
    * 
* * @return an iterator that traverses the distinct permutations of this NonEmptyArray. */ final def permutations(implicit classTag: ClassTag[T]): Iterator[NonEmptyArray[T]] = { val it = toArray.toList.permutations // toList and implicit ClassTag is required to compile in scala 2.10. it map { list => new NonEmptyArray(list.toArray) } } /** * Returns the length of the longest prefix whose elements all satisfy some predicate. * * @param p the predicate used to test elements. * @return the length of the longest prefix of this NonEmptyArray such that every element * of the segment satisfies the predicate p. */ final def prefixLength(p: T => Boolean): Int = toArray.prefixLength(p) /** * The result of multiplying all the elements of this NonEmptyArray. * *

* This method can be invoked for any NonEmptyArray[T] for which an implicit Numeric[T] exists. *

* * @return the product of all elements */ final def product[U >: T](implicit num: Numeric[U]): U = toArray.product(num) /** * Reduces the elements of this NonEmptyArray using the specified associative binary operator. * *

* The order in which operations are performed on elements is unspecified and may be nondeterministic. *

* * @tparam U a type parameter for the binary operator, a supertype of T. * @param op a binary operator that must be associative. * @return the result of applying reduce operator op between all the elements of this NonEmptyArray. */ final def reduce[U >: T](op: (U, U) => U): U = toArray.reduce(op) /** * Applies a binary operator to all elements of this NonEmptyArray, going left to right. * * @tparam U the result type of the binary operator. * @param op the binary operator. * @return the result of inserting op between consecutive elements of this NonEmptyArray, going left to right: * *
    * op(...op(op(x_1, x_2), x_3), ..., x_n)
    * 
* *

* where x1, ..., xn are the elements of this NonEmptyArray. *

*/ final def reduceLeft[U >: T](op: (U, T) => U): U = toArray.reduceLeft(op) /** * Applies a binary operator to all elements of this NonEmptyArray, going left to right, returning the result in a Some. * * @tparam U the result type of the binary operator. * @param op the binary operator. * @return a Some containing the result of reduceLeft(op) *

*/ final def reduceLeftOption[U >: T](op: (U, T) => U): Option[U] = toArray.reduceLeftOption(op) final def reduceOption[U >: T](op: (U, U) => U): Option[U] = toArray.reduceOption(op) /** * Applies a binary operator to all elements of this NonEmptyArray, going right to left. * * @tparam U the result of the binary operator * @param op the binary operator * @return the result of inserting op between consecutive elements of this NonEmptyArray, going right to left: * *
    * op(x_1, op(x_2, ... op(x_{n-1}, x_n)...))
    * 
* *

* where x1, ..., xn are the elements of this NonEmptyArray. *

*/ final def reduceRight[U >: T](op: (T, U) => U): U = toArray.reduceRight(op) /** * Applies a binary operator to all elements of this NonEmptyArray, going right to left, returning the result in a Some. * * @tparam U the result of the binary operator * @param op the binary operator * @return a Some containing the result of reduceRight(op) */ final def reduceRightOption[U >: T](op: (T, U) => U): Option[U] = toArray.reduceRightOption(op) /** * Returns new NonEmptyArray with elements in reverse order. * * @return a new NonEmptyArray with all elements of this NonEmptyArray in reversed order. */ final def reverse: NonEmptyArray[T] = new NonEmptyArray(toArray.reverse) /** * An iterator yielding elements in reverse order. * *

* Note: nonEmptyArray.reverseIterator is the same as nonEmptyArray.reverse.iterator, but might be more efficient. *

* * @return an iterator yielding the elements of this NonEmptyArray in reversed order */ final def reverseIterator: Iterator[T] = toArray.reverseIterator /** * Builds a new NonEmptyArray by applying a function to all elements of this NonEmptyArray and collecting the results in reverse order. * *

* Note: nonEmptyArray.reverseMap(f) is the same as nonEmptyArray.reverse.map(f), but might be more efficient. *

* * @tparam U the element type of the returned NonEmptyArray. * @param f the function to apply to each element. * @return a new NonEmptyArray resulting from applying the given function f to each element of this NonEmptyArray * and collecting the results in reverse order. */ final def reverseMap[U](f: T => U)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(toArray.reverseMap(f).toArray) /** * Checks if the given GenIterable contains the same elements in the same order as this NonEmptyArray. * * @param that the GenIterable with which to compare * @return true, if both this NonEmptyArray and the given GenIterable contain the same elements * in the same order, false otherwise. */ final def sameElements[U >: T](that: GenIterable[U]): Boolean = toArray.sameElements(that) /** * Checks if the given Every contains the same elements in the same order as this NonEmptyArray. * * @param that the Every with which to compare * @return true, if both this and the given Every contain the same elements * in the same order, false otherwise. */ final def sameElements[U >: T](that: Every[U]): Boolean = toArray.sameElements(that.toVector) /** * Checks if the given NonEmptyArray contains the same elements in the same order as this NonEmptyArray. * * @param that the NonEmptyArray with which to compare * @return true, if both this and the given NonEmptyArray contain the same elements * in the same order, false otherwise. */ final def sameElements[U >: T](that: NonEmptyArray[U]): Boolean = toArray.sameElements(that.toArray) /** * Computes a prefix scan of the elements of this NonEmptyArray. * *

* Note: The neutral element z may be applied more than once. *

* *

* Here are some examples: *

* *
    * NonEmptyArray(1, 2, 3).scan(0)(_ + _) == NonEmptyArray(0, 1, 3, 6)
    * NonEmptyArray(1, 2, 3).scan("z")(_ + _.toString) == NonEmptyArray("z", "z1", "z12", "z123")
    * 
* * @tparam U a type parameter for the binary operator, a supertype of T, and the type of the resulting NonEmptyArray. * @param z a neutral element for the scan operation; may be added to the result an arbitrary number of * times, and must not change the result (e.g., Nil for list concatenation, * 0 for addition, or 1 for multiplication.) * @param op a binary operator that must be associative * @return a new NonEmptyArray containing the prefix scan of the elements in this NonEmptyArray */ final def scan[U >: T](z: U)(op: (U, U) => U)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(toArray.scan(z)(op).toArray) /** * Produces a NonEmptyArray containing cumulative results of applying the operator going left to right. * *

* Here are some examples: *

* *
    * NonEmptyArray(1, 2, 3).scanLeft(0)(_ + _) == NonEmptyArray(0, 1, 3, 6)
    * NonEmptyArray(1, 2, 3).scanLeft("z")(_ + _) == NonEmptyArray("z", "z1", "z12", "z123")
    * 
* * @tparam B the result type of the binary operator and type of the resulting NonEmptyArray * @param z the start value. * @param op the binary operator. * @return a new NonEmptyArray containing the intermediate results of inserting op between consecutive elements of this NonEmptyArray, * going left to right, with the start value, z, on the left. */ final def scanLeft[B](z: B)(op: (B, T) => B)(implicit classTag: ClassTag[B]): NonEmptyArray[B] = new NonEmptyArray(toArray.scanLeft(z)(op).toArray) /** * Produces a NonEmptyArray containing cumulative results of applying the operator going right to left. * *

* Here are some examples: *

* *
    * NonEmptyArray(1, 2, 3).scanRight(0)(_ + _) == NonEmptyArray(6, 5, 3, 0)
    * NonEmptyArray(1, 2, 3).scanRight("z")(_ + _) == NonEmptyArray("123z", "23z", "3z", "z")
    * 
* * @tparam B the result of the binary operator and type of the resulting NonEmptyArray * @param z the start value * @param op the binary operator * @return a new NonEmptyArray containing the intermediate results of inserting op between consecutive elements of this NonEmptyArray, * going right to left, with the start value, z, on the right. */ final def scanRight[B](z: B)(op: (T, B) => B)(implicit classTag: ClassTag[B]): NonEmptyArray[B] = new NonEmptyArray(toArray.scanRight(z)(op).toArray) /** * Computes length of longest segment whose elements all satisfy some predicate. * * @param p the predicate used to test elements. * @param from the index where the search starts. * @param the length of the longest segment of this NonEmptyArray starting from index from such that every element of the * segment satisfies the predicate p. */ final def segmentLength(p: T => Boolean, from: Int): Int = toArray.segmentLength(p, from) /** * Groups elements in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.) * * @param size the number of elements per group * @return an iterator producing NonEmptyArrays of size size, except the last and the only element will be truncated * if there are fewer elements than size. */ final def sliding(size: Int)(implicit classTag: ClassTag[T]): Iterator[NonEmptyArray[T]] = toArray.toList.sliding(size).map(l => new NonEmptyArray(l.toArray)) // toList and implicit ClassTag is required to compile in scala 2.10. /** * Groups elements in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.), * moving the sliding window by a given step each time. * * @param size the number of elements per group * @param step the distance between the first elements of successive groups * @return an iterator producing NonEmptyArrays of size size, except the last and the only element will be truncated * if there are fewer elements than size. */ final def sliding(size: Int, step: Int)(implicit classTag: ClassTag[T]): Iterator[NonEmptyArray[T]] = toArray.toList.sliding(size, step).map(l => new NonEmptyArray(l.toArray)) // toList and implicit ClassTag is required to compile in scala 2.10. /** * The size of this NonEmptyArray. * *

* Note: length and size yield the same result, which will be >= 1. *

* * @return the number of elements in this NonEmptyArray. */ final def size: Int = toArray.size /** * Sorts this NonEmptyArray according to the Ordering of the result of applying the given function to every element. * * @tparam U the target type of the transformation f, and the type where the Ordering ord is defined. * @param f the transformation function mapping elements to some other domain U. * @param ord the ordering assumed on domain U. * @return a NonEmptyArray consisting of the elements of this NonEmptyArray sorted according to the Ordering where * x < y if ord.lt(f(x), f(y)). */ final def sortBy[U](f: T => U)(implicit ord: Ordering[U]): NonEmptyArray[T] = new NonEmptyArray(toArray.sortBy(f)) /** * Sorts this NonEmptyArray according to a comparison function. * *

* The sort is stable. That is, elements that are equal (as determined by lt) appear in the same order in the * sorted NonEmptyArray as in the original. *

* * @param the comparison function that tests whether its first argument precedes its second argument in the desired ordering. * @return a NonEmptyArray consisting of the elements of this NonEmptyArray sorted according to the comparison function lt. */ final def sortWith(lt: (T, T) => Boolean): NonEmptyArray[T] = new NonEmptyArray(toArray.sortWith(lt)) /** * Sorts this NonEmptyArray according to an Ordering. * *

* The sort is stable. That is, elements that are equal (as determined by lt) appear in the same order in the * sorted NonEmptyArray as in the original. *

* * @param ord the Ordering to be used to compare elements. * @param the comparison function that tests whether its first argument precedes its second argument in the desired ordering. * @return a NonEmptyArray consisting of the elements of this NonEmptyArray sorted according to the comparison function lt. */ final def sorted[U >: T](implicit ord: Ordering[U], classTag: ClassTag[U]): NonEmptyArray[U] = new NonEmptyArray(toArray.sorted(ord).toArray) /** * Indicates whether this NonEmptyArray starts with the given GenSeq. * * @param that the GenSeq slice to look for in this NonEmptyArray * @return true if this NonEmptyArray has that as a prefix, false otherwise. */ final def startsWith[B](that: GenSeq[B]): Boolean = toArray.startsWith(that) /** * Indicates whether this NonEmptyArray starts with the given GenSeq at the given index. * * @param that the GenSeq slice to look for in this NonEmptyArray * @param offset the index at which this NonEmptyArray is searched. * @return true if this NonEmptyArray has that as a slice at the index offset, false otherwise. */ final def startsWith[B](that: GenSeq[B], offset: Int): Boolean = toArray.startsWith(that, offset) /** * Indicates whether this NonEmptyArray starts with the given Every. * * @param that the Every to test * @return true if this collection has that as a prefix, false otherwise. */ final def startsWith[B](that: Every[B]): Boolean = toArray.startsWith(that.toVector) /** * Indicates whether this NonEmptyArray starts with the given NonEmptyArray. * * @param that the NonEmptyArray to test * @return true if this collection has that as a prefix, false otherwise. */ final def startsWith[B](that: NonEmptyArray[B]): Boolean = toArray.startsWith(that.toArray.toSeq) /** * Indicates whether this NonEmptyArray starts with the given Every at the given index. * * @param that the Every slice to look for in this NonEmptyArray * @param offset the index at which this NonEmptyArray is searched. * @return true if this NonEmptyArray has that as a slice at the index offset, false otherwise. */ final def startsWith[B](that: Every[B], offset: Int): Boolean = toArray.startsWith(that.toVector, offset) /** * Indicates whether this NonEmptyArray starts with the given NonEmptyArray at the given index. * * @param that the NonEmptyArray slice to look for in this NonEmptyArray * @param offset the index at which this NonEmptyArray is searched. * @return true if this NonEmptyArray has that as a slice at the index offset, false otherwise. */ final def startsWith[B](that: NonEmptyArray[B], offset: Int): Boolean = toArray.startsWith(that.toArray.toSeq, offset) /** * Returns "NonEmptyArray", the prefix of this object's toString representation. * * @return the string "NonEmptyArray" */ def stringPrefix: String = "NonEmptyArray" /** * The result of summing all the elements of this NonEmptyArray. * *

* This method can be invoked for any NonEmptyArray[T] for which an implicit Numeric[T] exists. *

* * @return the sum of all elements */ final def sum[U >: T](implicit num: Numeric[U]): U = toArray.sum(num) import scala.language.higherKinds /** * Converts this NonEmptyArray to a list. * * @return a list containing all elements of this NonEmptyArray. A ClassTag must be available for the element type of this NonEmptyArray. */ final def toList[U >: T]: List[U] = toArray.toList /** * Converts this NonEmptyArray to a Vector. * * @return a Vector containing all elements of this NonEmptyArray. */ final def toVector: Vector[T] = toArray.toVector /** * Converts this NonEmptyArray to a mutable buffer. * * @return a buffer containing all elements of this NonEmptyArray. */ final def toBuffer[U >: T]: Buffer[U] = toArray.toBuffer /** * Converts this NonEmptyArray to an immutable IndexedSeq. * * @return an immutable IndexedSeq containing all elements of this NonEmptyArray. */ final def toIndexedSeq: collection.immutable.IndexedSeq[T] = toArray.toVector /** * Converts this NonEmptyArray to an iterable collection. * * @return an Iterable containing all elements of this NonEmptyArray. */ final def toIterable: Iterable[T] = toArray.toIterable /** * Returns an Iterator over the elements in this NonEmptyArray. * * @return an Iterator containing all elements of this NonEmptyArray. */ final def toIterator: Iterator[T] = toArray.toIterator /** * Converts this NonEmptyArray to a list. * * @return a list containing all elements of this NonEmptyArray. */ // final def toArray: Array[T] = toArray /** * Converts this NonEmptyArray to a map. * *

* This method is unavailable unless the elements are members of Tuple2, each ((K, V)) becoming a key-value pair * in the map. Duplicate keys will be overwritten by later keys. *

* * @return a map of type immutable.Map[K, V] containing all key/value pairs of type (K, V) of this NonEmptyArray. */ final def toMap[K, V](implicit ev: T <:< (K, V)): Map[K, V] = toArray.toMap /** * Converts this NonEmptyArray to an immutable IndexedSeq. * * @return an immutable IndexedSeq containing all elements of this NonEmptyArray. */ final def toSeq: collection.immutable.Seq[T] = toArray.toList /** * Converts this NonEmptyArray to a set. * * @return a set containing all elements of this NonEmptyArray. */ final def toSet[U >: T]: Set[U] = toArray.toSet /** * Converts this NonEmptyArray to a stream. * * @return a stream containing all elements of this NonEmptyArray. */ final def toStream: Stream[T] = toArray.toStream /** * Returns a string representation of this NonEmptyArray. * * @return the string "NonEmptyArray" followed by the result of invoking toString on * this NonEmptyArray's elements, surrounded by parentheses. */ override def toString: String = "NonEmptyArray(" + toArray.mkString(", ") + ")" final def transpose[U](implicit ev: T <:< NonEmptyArray[U], classTag: ClassTag[U]): NonEmptyArray[NonEmptyArray[U]] = { val asArrays = toArray.map(ev) val list = asArrays.toList.transpose // toList and implicit ClassTag is required to compile in scala 2.10. new NonEmptyArray(list.map(l => new NonEmptyArray(l.toArray)).toArray) } /** * Converts this NonEmptyArray of pairs into two NonEmptyArrays of the first and second half of each pair. * * @tparam L the type of the first half of the element pairs * @tparam R the type of the second half of the element pairs * @param asPair an implicit conversion that asserts that the element type of this NonEmptyArray is a pair. * @return a pair of NonEmptyArrays, containing the first and second half, respectively, of each element pair of this NonEmptyArray. */ final def unzip[L, R](implicit asPair: T => (L, R), classTagL: ClassTag[L], classTagR: ClassTag[R]): (NonEmptyArray[L], NonEmptyArray[R]) = { val unzipped = toArray.unzip (new NonEmptyArray(unzipped._1.toArray), new NonEmptyArray(unzipped._2.toArray)) } /** * Converts this NonEmptyArray of triples into three NonEmptyArrays of the first, second, and and third element of each triple. * * @tparam L the type of the first member of the element triples * @tparam R the type of the second member of the element triples * @tparam R the type of the third member of the element triples * @param asTriple an implicit conversion that asserts that the element type of this NonEmptyArray is a triple. * @return a triple of NonEmptyArrays, containing the first, second, and third member, respectively, of each element triple of this NonEmptyArray. */ final def unzip3[L, M, R](implicit asTriple: T => (L, M, R), classTagL: ClassTag[L], classTagM: ClassTag[M], classTagR: ClassTag[R]): (NonEmptyArray[L], NonEmptyArray[M], NonEmptyArray[R]) = { val unzipped = toArray.unzip3 (new NonEmptyArray(unzipped._1.toArray), new NonEmptyArray(unzipped._2.toArray), new NonEmptyArray(unzipped._3.toArray)) } /** * A copy of this NonEmptyArray with one single replaced element. * * @param idx the position of the replacement * @param elem the replacing element * @throws IndexOutOfBoundsException if the passed index is greater than or equal to the length of this NonEmptyArray * @return a copy of this NonEmptyArray with the element at position idx replaced by elem. */ final def updated[U >: T](idx: Int, elem: U)(implicit classTag: ClassTag[U]): NonEmptyArray[U] = try new NonEmptyArray(toArray.updated(idx, elem).toArray) catch { case _: UnsupportedOperationException => throw new IndexOutOfBoundsException(idx.toString) } // This is needed for 2.10 support. Can drop after. // Because 2.11 throws IndexOutOfBoundsException. /** * Returns a NonEmptyArray formed from this NonEmptyArray and an iterable collection by combining corresponding * elements in pairs. If one of the two collections is shorter than the other, placeholder elements will be used to extend the * shorter collection to the length of the longer. * * @tparm O the type of the second half of the returned pairs * @tparm U the type of the first half of the returned pairs * @param other the Iterable providing the second half of each result pair * @param thisElem the element to be used to fill up the result if this NonEmptyArray is shorter than that Iterable. * @param thatElem the element to be used to fill up the result if that Iterable is shorter than this NonEmptyArray. * @return a new NonEmptyArray containing pairs consisting of corresponding elements of this NonEmptyArray and that. The * length of the returned collection is the maximum of the lengths of this NonEmptyArray and that. If this NonEmptyArray * is shorter than that, thisElem values are used to pad the result. If that is shorter than this * NonEmptyArray, thatElem values are used to pad the result. */ final def zipAll[O, U >: T](other: collection.Iterable[O], thisElem: U, otherElem: O): NonEmptyArray[(U, O)] = new NonEmptyArray(toArray.zipAll(other, thisElem, otherElem)) /** * Zips this NonEmptyArray with its indices. * * @return A new NonEmptyArray containing pairs consisting of all elements of this NonEmptyArray paired with their index. Indices start at 0. */ final def zipWithIndex: NonEmptyArray[(T, Int)] = new NonEmptyArray(toArray.zipWithIndex) } /** * Companion object for class NonEmptyArray. */ object NonEmptyArray { /** * Constructs a new NonEmptyArray given at least one element. * * @tparam T the type of the element contained in the new NonEmptyArray * @param firstElement the first element (with index 0) contained in this NonEmptyArray * @param otherElements a varargs of zero or more other elements (with index 1, 2, 3, ...) contained in this NonEmptyArray */ def apply[T](firstElement: T, otherElements: T*)(implicit classTag: ClassTag[T]): NonEmptyArray[T] = new NonEmptyArray((Array.empty[T] :+ firstElement) ++ otherElements) /** * Variable argument extractor for NonEmptyArrays. * * @param nonEmptyArray: the NonEmptyArray containing the elements to extract * @return an Seq containing this NonEmptyArrays elements, wrapped in a Some */ def unapplySeq[T](nonEmptyArray: NonEmptyArray[T]): Option[Seq[T]] = Some(nonEmptyArray.toArray) /* // TODO: Figure out how to get case NonEmptyArray() to not compile def unapplySeq[T](nonEmptyArray: NonEmptyArray[T]): Option[(T, Seq[T])] = Some(nonEmptyArray.head, nonEmptyArray.tail) */ /** * Optionally construct a NonEmptyArray containing the elements, if any, of a given GenSeq. * * @param seq the GenSeq with which to construct a NonEmptyArray * @return a NonEmptyArray containing the elements of the given GenSeq, if non-empty, wrapped in * a Some; else None if the GenSeq is empty */ def from[T](seq: GenSeq[T])(implicit classTag: ClassTag[T]): Option[NonEmptyArray[T]] = seq.headOption match { case None => None case Some(first) => Some(new NonEmptyArray((Array.empty[T] :+ first) ++ seq.tail)) } import scala.language.implicitConversions /** * Implicit conversion from NonEmptyArray to Array. * *

* One use case for this implicit conversion is to enable GenSeq[NonEmptyArray]s to be flattened. * Here's an example: *

* *
    * scala> Vector(NonEmptyArray(1, 2, 3), NonEmptyArray(3, 4), NonEmptyArray(5, 6, 7, 8)).flatten
    * res0: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 3, 4, 5, 6, 7, 8)
    * 
* * @param nonEmptyArray the NonEmptyArray to convert to a Array * @return a Array containing the elements, in order, of this NonEmptyArray */ implicit def nonEmptyArrayToArray[E](nonEmptyArray: NonEmptyArray[E]): Array[E] = nonEmptyArray.toArray //implicit def nonEmptyArrayToTraversable[E](nonEmptyArray: NonEmptyArray[E]): Traversable[E] = nonEmptyArray.toTraversable implicit def nonEmptyArrayToIterable[E](nonEmptyArray: NonEmptyArray[E]): Iterable[E] = nonEmptyArray.toIterable implicit def nonEmptyArrayToPartialFunction[E](nonEmptyArray: NonEmptyArray[E]): PartialFunction[Int, E] = new PartialFunction[Int, E] { def apply(idx: Int): E = nonEmptyArray(idx) def isDefinedAt(idx: Int): Boolean = nonEmptyArray.isDefinedAt(idx) } }