org.scalactic.anyvals.NonEmptyString.scala Maven / Gradle / Ivy
/*
* Copyright 2001-2013 Artima, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.scalactic.anyvals
import scala.annotation.unchecked.{ uncheckedVariance => uV }
import scala.collection.GenIterable
import scala.collection.GenSeq
import scala.collection.GenTraversableOnce
import scala.collection.generic.CanBuildFrom
import scala.collection.mutable.Buffer
import scala.reflect.ClassTag
import scala.collection.immutable
import scala.collection.mutable.ArrayBuffer
import org.scalactic.Every
import org.scalactic.Resources
// Can't be a LinearSeq[T] because Builder would be able to create an empty one.
/**
* A non-empty list: an ordered, immutable, non-empty collection of elements with LinearSeq
performance characteristics.
*
*
* The purpose of NonEmptyString
is to allow you to express in a type that a String
is non-empty, thereby eliminating the
* need for (and potential exception from) a run-time check for non-emptiness. For a non-empty sequence with IndexedSeq
* performance, see Every
.
*
*
* Constructing NonEmptyString
s
*
*
* You can construct a NonEmptyString
by passing one or more elements to the NonEmptyString.apply
factory method:
*
*
*
* scala> NonEmptyString(1, 2, 3)
* res0: org.scalactic.anyvals.NonEmptyString[Int] = NonEmptyString(1, 2, 3)
*
*
*
* Alternatively you can cons elements onto the End
singleton object, similar to making a String
starting with Nil
:
*
*
*
* scala> 1 :: 2 :: 3 :: Nil
* res0: String[Int] = String(1, 2, 3)
*
* scala> 1 :: 2 :: 3 :: End
* res1: org.scalactic.NonEmptyString[Int] = NonEmptyString(1, 2, 3)
*
*
*
* Note that although Nil
is a String[Nothing]
, End
is
* not a NonEmptyString[Nothing]
, because no empty NonEmptyString
exists. (A non-empty list is a series
* of connected links; if you have no links, you have no non-empty list.)
*
*
*
* scala> val nil: String[Nothing] = Nil
* nil: String[Nothing] = String()
*
* scala> val nada: NonEmptyString[Nothing] = End
* <console>:16: error: type mismatch;
* found : org.scalactic.anyvals.End.type
* required: org.scalactic.anyvals.NonEmptyString[Nothing]
* val nada: NonEmptyString[Nothing] = End
* ^
*
*
* Working with NonEmptyString
s
*
*
* NonEmptyString
does not extend Scala's Seq
or Traversable
traits because these require that
* implementations may be empty. For example, if you invoke tail
on a Seq
that contains just one element,
* you'll get an empty Seq
:
*
*
*
* scala> String(1).tail
* res6: String[Int] = String()
*
*
*
* On the other hand, many useful methods exist on Seq
that when invoked on a non-empty Seq
are guaranteed
* to not result in an empty Seq
. For convenience, NonEmptyString
defines a method corresponding to every such Seq
* method. Here are some examples:
*
*
*
* NonEmptyString(1, 2, 3).map(_ + 1) // Result: NonEmptyString(2, 3, 4)
* NonEmptyString(1).map(_ + 1) // Result: NonEmptyString(2)
* NonEmptyString(1, 2, 3).containsSlice(NonEmptyString(2, 3)) // Result: true
* NonEmptyString(1, 2, 3).containsSlice(NonEmptyString(3, 4)) // Result: false
* NonEmptyString(-1, -2, 3, 4, 5).minBy(_.abs) // Result: -1
*
*
*
* NonEmptyString
does not currently define any methods corresponding to Seq
methods that could result in
* an empty Seq
. However, an implicit converison from NonEmptyString
to String
* is defined in the NonEmptyString
companion object that will be applied if you attempt to call one of the missing methods. As a
* result, you can invoke filter
on an NonEmptyString
, even though filter
could result
* in an empty sequence—but the result type will be String
instead of NonEmptyString
:
*
*
*
* NonEmptyString(1, 2, 3).filter(_ < 10) // Result: String(1, 2, 3)
* NonEmptyString(1, 2, 3).filter(_ > 10) // Result: String()
*
*
*
*
* You can use NonEmptyString
s in for
expressions. The result will be an NonEmptyString
unless
* you use a filter (an if
clause). Because filters are desugared to invocations of filter
, the
* result type will switch to a String
at that point. Here are some examples:
*
*
*
* scala> import org.scalactic.anyvals._
* import org.scalactic.anyvals._
*
* scala> for (i <- NonEmptyString(1, 2, 3)) yield i + 1
* res0: org.scalactic.anyvals.NonEmptyString[Int] = NonEmptyString(2, 3, 4)
*
* scala> for (i <- NonEmptyString(1, 2, 3) if i < 10) yield i + 1
* res1: String[Int] = String(2, 3, 4)
*
* scala> for {
* | i <- NonEmptyString(1, 2, 3)
* | j <- NonEmptyString('a', 'b', 'c')
* | } yield (i, j)
* res3: org.scalactic.anyvals.NonEmptyString[(Int, Char)] =
* NonEmptyString((1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c))
*
* scala> for {
* | i <- NonEmptyString(1, 2, 3) if i < 10
* | j <- NonEmptyString('a', 'b', 'c')
* | } yield (i, j)
* res6: String[(Int, Char)] =
* String((1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c))
*
*
*/
final class NonEmptyString private (val theString: String) extends AnyVal {
/**
* Returns a new NonEmptyString
containing this NonEmptyString
followed by the passed NonEmptyString
.
*
* @param other the NonEmptyString
to append
* @return a new NonEmptyString
that contains this NonEmptyString
followed by other
.
*/
def ++(other: NonEmptyString): NonEmptyString = new NonEmptyString(theString ++ other.theString)
/**
* Returns a new NonEmptyString
containing this NonEmptyString
followed by the characters of the passed Every
.
*
* @param other the Every
of Char
to append
* @return a new NonEmptyString
that contains this NonEmptyString
followed by all characters of other
.
*/
def ++(other: Every[Char]): NonEmptyString = new NonEmptyString(theString ++ other.mkString)
// TODO: Have I added these extra ++, etc. methods to Every that take a NonEmptyString?
/**
* Returns a new NonEmptyString
containing this NonEmptyString
followed by the characters of the passed GenTraversableOnce
.
*
* @param other the GenTraversableOnce
of Char
to append
* @return a new NonEmptyString
that contains this NonEmptyString
followed by all characters of other
.
*/
def ++(other: GenTraversableOnce[Char]): NonEmptyString =
if (other.isEmpty) this else new NonEmptyString(theString ++ other.mkString)
/**
* Fold left: applies a binary operator to a start value, z
, and all elements of this NonEmptyString
, going left to right.
*
*
* Note: /:
is alternate syntax for the foldLeft
method; z
/:
non-empty string
is the
* same as non-empty string
foldLeft
z
.
*
*
* @tparam B the result of the binary operator
* @param z the start value
* @param op the binary operator
* @return the result of inserting op
between consecutive elements of this NonEmptyString
, going left to right, with the start value,
* z
, on the left:
*
*
* op(...op(op(z, x_1), x_2), ..., x_n)
*
*
*
* where x1, ..., xn are the elements of this NonEmptyString
.
*
*/
final def /:[B](z: B)(op: (B, Char) => B): B = theString./:(z)(op)
/**
* Fold right: applies a binary operator to all elements of this NonEmptyString
and a start value, going right to left.
*
*
* Note: :\
is alternate syntax for the foldRight
method; non-empty string
:\
z
is the same
* as non-empty string
foldRight
z
.
*
*
* @tparam B the result of the binary operator
* @param z the start value
* @param op the binary operator
* @return the result of inserting op
between consecutive elements of this NonEmptyString
, going right to left, with the start value,
* z
, on the right:
*
*
* op(x_1, op(x_2, ... op(x_n, z)...))
*
*
*
* where x1, ..., xn are the elements of this NonEmptyString
.
*
*/
final def :\[B](z: B)(op: (Char, B) => B): B = theString.:\(z)(op)
/**
* Returns a new NonEmptyString
with the given character prepended.
*
*
* Note that :-ending operators are right associative. A mnemonic for +:
vs. :+
is: the COLon goes on the COLlection side.
*
*
* @param c the character to prepend to this NonEmptyString
* @return a new NonEmptyString
consisting of c
followed by all characters of this NonEmptyString
.
*/
final def +:(c: Char): NonEmptyString = new NonEmptyString(c +: theString)
/**
* Returns a new NonEmptyString
with the given character appended.
*
*
* Note a mnemonic for +:
vs. :+
is: the COLon goes on the COLlection side.
*
*
* @param c the character to append to this NonEmptyString
* @return a new NonEmptyString
consisting of all characters of this NonEmptyString
followed by the given c
.
*/
def :+(c: Char): NonEmptyString = new NonEmptyString(theString :+ c)
/**
* Appends all characters of this NonEmptyString
to a string builder. The written text will consist of a concatenation of the result of invoking toString
* on of every element of this NonEmptyString
, without any separator string.
*
* @param sb the string builder to which characters will be appended
* @return the string builder, sb
, to which elements were appended.
*/
final def addString(sb: StringBuilder): StringBuilder = theString.addString(sb)
/**
* Appends all characters of this NonEmptyString
to a string builder using a separator string. The written text will consist of a concatenation of the
* result of invoking toString
* on of every character of this NonEmptyString
, separated by the string sep
.
*
* @param sb the string builder to which characters will be appended
* @param sep the separator string
* @return the string builder, sb
, to which characters were appended.
*/
final def addString(sb: StringBuilder, sep: String): StringBuilder = theString.addString(sb, sep)
/**
* Appends all characters of this NonEmptyString
to a string builder using start, end, and separator strings. The written text will consist of a concatenation of
* the string start
; the result of invoking toString
on all characters of this NonEmptyString
,
* separated by the string sep
; and the string end
*
* @param sb the string builder to which characters will be appended
* @param start the starting string
* @param sep the separator string
* @param end the ending string
* @return the string builder, sb
, to which characters were appended.
*/
final def addString(sb: StringBuilder, start: String, sep: String, end: String): StringBuilder = theString.addString(sb, start, sep, end)
/**
* Selects a character by its index in the NonEmptyString
.
*
* @return the character of this NonEmptyString
at index idx
, where 0 indicates the first element.
*/
final def apply(idx: Int): Char = theString(idx)
/**
* Gets a character by its index in the NonEmptyString
.
*
* @return the character of this NonEmptyString
at index idx
, where 0 indicates the first element.
*/
final def charAt(idx: Int): Char = theString.charAt(idx)
/**
* Finds the first character of this NonEmptyString
for which the given partial function is defined, if any, and applies the partial function to it.
*
* @param pf the partial function
* @return an Option
containing pf
applied to the first character for which it is defined, or None
if
* the partial function was not defined for any character.
*/
final def collectFirst[U](pf: PartialFunction[Char, U]): Option[U] = theString.collectFirst(pf)
/**
* Indicates whether this NonEmptyString
contains a given value as an character.
*
* @param c the element to look for
* @return true if this NonEmptyString
has an character that is equal (as determined by ==)
to c
, false otherwise.
*/
final def contains(c: Char): Boolean = theString.contains(c)
/**
* Indicates whether this NonEmptyString
contains a given GenSeq
of characters as a slice.
*
* @param that the GenSeq
character slice to look for
* @return true if this NonEmptyString
contains a slice with the same characters as that
, otherwise false
.
*/
final def containsSlice(that: GenSeq[Char]): Boolean = theString.containsSlice(that)
/**
* Indicates whether this NonEmptyString
contains a given Every
of character as a slice.
*
* @param that the Every
character slice to look for
* @return true if this NonEmptyString
contains a character slice with the same characters as that
, otherwise false
.
*/
final def containsSlice(that: Every[Char]): Boolean = theString.containsSlice(that.toVector)
/**
* Indicates whether this NonEmptyString
contains a given NonEmptyString
as a slice.
*
* @param that the NonEmptyString
slice to look for
* @return true if this NonEmptyString
contains a slice with the same characters as that
, otherwise false
.
*/
final def containsSlice(that: NonEmptyString): Boolean = theString.containsSlice(that.theString)
/**
* Copies characters of this NonEmptyString
to an array. Fills the given array arr
with characters of this NonEmptyString
. Copying
* will stop once either the end of the current NonEmptyString
is reached, or the end of the array is reached.
*
* @param arr the array to fill
*/
final def copyToArray(arr: Array[Char]): Unit = theString.copyToArray(arr, 0)
/**
* Copies characters of this NonEmptyString
to an array. Fills the given array arr
with characters of this NonEmptyString
, beginning at
* index start
. Copying will stop once either the end of the current NonEmptyString
is reached, or the end of the array is reached.
*
* @param arr the array to fill
* @param start the starting index
*/
final def copyToArray(arr: Array[Char], start: Int): Unit = theString.copyToArray(arr, start)
/**
* Copies characters of this NonEmptyString
to an array. Fills the given array arr
with at most len
characters of this NonEmptyString
, beginning at
* index start
. Copying will stop once either the end of the current NonEmptyString
is reached, the end of the array is reached, or
* len
elements have been copied.
*
* @param arr the array to fill
* @param start the starting index
* @param len the maximum number of elements to copy
*/
final def copyToArray(arr: Array[Char], start: Int, len: Int): Unit = theString.copyToArray(arr, start, len)
/**
* Copies all characters of this NonEmptyString
to a buffer.
*
* @param buf the buffer to which characters are copied
*/
final def copyToBuffer(buf: Buffer[Char]): Unit = theString.copyToBuffer(buf)
/**
* Indicates whether every character of this NonEmptyString
relates to the corresponding element of a given GenSeq
by satisfying a given predicate.
*
* @tparam B the type of the elements of that
* @param that the GenSeq
to compare for correspondence
* @param p the predicate, which relates elements from this NonEmptyString
and the passed GenSeq
* @return true if this NonEmptyString
and the passed GenSeq
have the same length and p(x, y)
is true
* for all corresponding elements x
of this NonEmptyString
and y
of that, otherwise false
.
*/
final def corresponds[B](that: GenSeq[B])(p: (Char, B) => Boolean): Boolean = theString.corresponds(that)(p)
/**
* Indicates whether every character of this NonEmptyString
relates to the corresponding element of a given Every
by satisfying a given predicate.
*
* @tparam B the type of the elements of that
* @param that the Every
to compare for correspondence
* @param p the predicate, which relates elements from this NonEmptyString
and the passed Every
* @return true if this NonEmptyString
and the passed Every
have the same length and p(x, y)
is true
* for all corresponding elements x
of this NonEmptyString
and y
of that, otherwise false
.
*/
final def corresponds[B](that: Every[B])(p: (Char, B) => Boolean): Boolean = theString.corresponds(that.toVector)(p)
/**
* Indicates whether every character of this NonEmptyString
relates to the corresponding character of a given NonEmptyString
by satisfying a given predicate.
*
* @param that the NonEmptyString
to compare for correspondence
* @param p the predicate, which relates elements from this and the passed NonEmptyString
* @return true if this and the passed NonEmptyString
have the same length and p(x, y)
is true
* for all corresponding characters x
of this NonEmptyString
and y
of that, otherwise false
.
*/
final def corresponds(that: NonEmptyString)(p: (Char, Char) => Boolean): Boolean = theString.corresponds(that.theString)(p)
/**
* Counts the number of characters in this NonEmptyString
that satisfy a predicate.
*
* @param p the predicate used to test characters.
* @return the number of characters satisfying the predicate p
.
*/
final def count(p: Char => Boolean): Int = theString.count(p)
/**
* Builds a new NonEmptyString
from this NonEmptyString
without any duplicate characters.
*
* @return A new NonEmptyString
that contains the first occurrence of every character of this NonEmptyString
.
*/
final def distinct: NonEmptyString = new NonEmptyString(theString.distinct)
/**
* Indicates whether this NonEmptyString
ends with the given GenSeq
of Char.
*
* @param that the sequence to test
* @return true
if this NonEmptyString
has that
as a suffix, false
otherwise.
*/
final def endsWith[B](that: GenSeq[B]): Boolean = theString.endsWith(that)
/**
* Indicates whether this NonEmptyString
ends with the given Every
.
*
* @param that the Every
to test
* @return true
if this NonEmptyString
has that
as a suffix, false
otherwise.
*/
final def endsWith[B](that: Every[B]): Boolean = theString.endsWith(that.toVector)
// TODO: Search for that: Every in here and add a that: NonEmptyString in Every.
/**
* Indicates whether this NonEmptyString
ends with the given NonEmptyString
.
*
* @param that the NonEmptyString
to test
* @return true
if this NonEmptyString
has that
as a suffix, false
otherwise.
*/
final def endsWith(that: NonEmptyString): Boolean = theString.endsWith(that.theString)
/*
override def equals(o: Any): Boolean =
o match {
case nonEmptyString: NonEmptyString[_] => toString == nonEmptyString.toString
case _ => false
}
*/
/**
* Indicates whether a predicate holds for at least one of the characters of this NonEmptyString
.
*
* @param p the predicate used to test characters.
* @return true
if the given predicate p
holds for some of the elements of this NonEmptyString
, otherwise false
.
*/
final def exists(p: Char => Boolean): Boolean = theString.exists(p)
/**
* Finds the first character of this NonEmptyString
that satisfies the given predicate, if any.
*
* @param p the predicate used to test characters
* @return an Some
containing the first character in this NonEmptyString
that satisfies p
, or None
if none exists.
*/
final def find(p: Char => Boolean): Option[Char] = theString.find(p)
/**
* Builds a new NonEmptyString
by applying a function to all characters of this NonEmptyString
and using the characters of the resulting NonEmptyString
s.
*
* @param f the function to apply to each character.
* @return a new NonEmptyString
containing characters obtained by applying the given function f
to each character of this NonEmptyString
and concatenating
* the characters of resulting NonEmptyString
s.
*/
final def flatMap(f: Char => NonEmptyString): NonEmptyString = {
val buf = new ArrayBuffer[Char]
for (c <- theString)
buf ++= f(c).theString
new NonEmptyString(buf.mkString)
}
/**
* Folds the characters of this NonEmptyString
using the specified associative binary operator.
*
*
* The order in which operations are performed on characters is unspecified and may be nondeterministic.
*
*
* @param z a neutral character for the fold operation; may be added to the result an arbitrary number of
* times, and must not change the result (e.g., Nil
for list concatenation,
* 0 for addition, or 1 for multiplication.)
* @param op a binary operator that must be associative
* @return the result of applying fold operator op
between all the elements and z
*/
final def fold(z: Char)(op: (Char, Char) => Char): Char = theString.fold(z)(op)
/**
* Applies a binary operator to a start value and all characters of this NonEmptyString
, going left to right.
*
* @tparam B the result type of the binary operator.
* @param z the start value.
* @param op the binary operator.
* @return the result of inserting op
between consecutive characters of this NonEmptyString
, going left to right, with the start value,
* z
, on the left:
*
*
* op(...op(op(z, x_1), x_2), ..., x_n)
*
*
*
* where x1, ..., xn are the elements of this NonEmptyString
.
*
*/
final def foldLeft[B](z: B)(op: (B, Char) => B): B = theString.foldLeft(z)(op)
/**
* Applies a binary operator to all characters of this NonEmptyString
and a start value, going right to left.
*
* @tparam B the result of the binary operator
* @param z the start value
* @param op the binary operator
* @return the result of inserting op
between consecutive characters of this NonEmptyString
, going right to left, with the start value,
* z
, on the right:
*
*
* op(x_1, op(x_2, ... op(x_n, z)...))
*
*
*
* where x1, ..., xn are the elements of this NonEmptyString
.
*
*/
final def foldRight[B](z: B)(op: (Char, B) => B): B = theString.foldRight(z)(op)
/**
* Indicates whether a predicate holds for all characters of this NonEmptyString
.
*
* @param p the predicate used to test characters.
* @return true
if the given predicate p
holds for all characters of this NonEmptyString
, otherwise false
.
*/
final def forall(p: Char => Boolean): Boolean = theString.forall(p)
/**
* Applies a function f
to all characters of this NonEmptyString
.
*
* @param f the function that is applied for its side-effect to every character. The result of function f
is discarded.
*/
final def foreach(f: Char => Unit): Unit = theString.foreach(f)
/**
* Partitions this NonEmptyString
into a map of NonEmptyString
s according to some discriminator function.
*
* @tparam K the type of keys returned by the discriminator function.
* @param f the discriminator function.
* @return A map from keys to NonEmptyString
s such that the following invariant holds:
*
*
* (nonEmptyString.toString partition f)(k) = xs filter (x => f(x) == k)
*
*
*
* That is, every key k
is bound to a NonEmptyString
of those elements x
for which f(x)
equals k
.
*
*/
final def groupBy[K](f: Char => K): Map[K, NonEmptyString] = {
val mapKToString = theString.groupBy(f)
mapKToString.mapValues { list => new NonEmptyString(list) }.toMap
}
/**
* Partitions characters into fixed size NonEmptyString
s.
*
* @param size the number of characters per group
* @return An iterator producing NonEmptyString
s of size size
, except the last will be truncated if the characters don't divide evenly.
*/
final def grouped(size: Int): Iterator[NonEmptyString] = {
if (size > 0) {
val itOfString = theString.grouped(size)
itOfString.map { list => new NonEmptyString(list) }
}
else
throw new IllegalArgumentException(Resources.invalidSize(size))
}
/**
* Returns true
to indicate this NonEmptyString
has a definite size, since all NonEmptyString
s are strict collections.
*/
final def hasDefiniteSize: Boolean = true
// override def hashCode: Int = toString.hashCode
/**
* Selects the first character of this NonEmptyString
.
*
* @return the first character of this NonEmptyString
.
*/
final def head: Char = theString.head
// Methods like headOption I can't get rid of because of the implicit conversion to GenTraversable.
// Users can call any of the methods I've left out on a NonEmptyString, and get whatever String would return
// for that method call. Eventually I'll probably implement them all to save the implicit conversion.
/**
* Selects the first character of this NonEmptyString
and returns it wrapped in a Some
.
*
* @return the first character of this NonEmptyString
, wrapped in a Some
.
*/
final def headOption: Option[Char] = theString.headOption
/**
* Finds index of first occurrence of some value in this NonEmptyString
.
*
* @param c the character value to search for.
* @return the index of the first character of this NonEmptyString
that is equal (as determined by ==
) to c
,
* or -1
, if none exists.
*/
final def indexOf(c: Char): Int = theString.indexOf(c, 0)
/**
* Finds index of first occurrence of some value in this NonEmptyString
after or at some start index.
*
* @param c the character value to search for.
* @param from the start index
* @return the index >=
from
of the first element of this NonEmptyString
that is equal (as determined by ==
) to elem
,
* or -1
, if none exists.
*/
final def indexOf(c: Char, from: Int): Int = theString.indexOf(c, from)
/**
* Finds first index where this NonEmptyString
contains a given GenSeq[Char]
as a slice.
*
* @param that the GenSeq[Char]
defining the slice to look for
* @return the first index at which the elements of this NonEmptyString
starting at that index match the characters of
* GenSeq
that
, or -1
of no such subsequence exists.
*/
final def indexOfSlice(that: GenSeq[Char]): Int = theString.indexOfSlice(that)
/**
* Finds first index after or at a start index where this NonEmptyString
contains a given GenSeq[Char]
as a slice.
*
* @param that the GenSeq[Char]
defining the slice to look for
* @param from the start index
* @return the first index >=
from
at which the characters of this NonEmptyString
starting at that index match the characters of
* GenSeq[Char]
that
, or -1
of no such subsequence exists.
*/
final def indexOfSlice(that: GenSeq[Char], from: Int): Int = theString.indexOfSlice(that, from)
/**
* Finds first index where this NonEmptyString
contains a given Every
as a slice.
*
* @param that the Every
defining the slice to look for
* @return the first index such that the characters of this NonEmptyString
starting at this index match the characters of
* Every
that
, or -1
of no such subsequence exists.
*/
final def indexOfSlice(that: Every[Char]): Int = theString.indexOfSlice(that.toVector)
/**
* Finds first index where this NonEmptyString
contains a given NonEmptyString
as a slice.
*
* @param that the NonEmptyString
defining the slice to look for
* @return the first index such that the characters of this NonEmptyString
starting at this index match the characters of
* NonEmptyString
that
, or -1
of no such subsequence exists.
*/
final def indexOfSlice(that: NonEmptyString): Int = theString.indexOfSlice(that.theString)
/**
* Finds first index after or at a start index where this NonEmptyString
contains a given Every
as a slice.
*
* @param that the Every
defining the slice to look for
* @param from the start index
* @return the first index >=
from
such that the characters of this NonEmptyString
starting at this index match the characters of
* Every
that
, or -1
of no such subsequence exists.
*/
final def indexOfSlice(that: Every[Char], from: Int): Int = theString.indexOfSlice(that.toVector, from)
/**
* Finds first index after or at a start index where this NonEmptyString
contains a given NonEmptyString
as a slice.
*
* @param that the NonEmptyString
defining the slice to look for
* @param from the start index
* @return the first index >=
from
such that the characters of this NonEmptyString
starting at this index match the characters of
* NonEmptyString
that
, or -1
of no such subsequence exists.
*/
final def indexOfSlice(that: NonEmptyString, from: Int): Int = theString.indexOfSlice(that.theString, from)
/**
* Finds index of the first character satisfying some predicate.
*
* @param p the predicate used to test characters.
* @return the index of the first character of this NonEmptyString
that satisfies the predicate p
,
* or -1
, if none exists.
*/
final def indexWhere(p: Char => Boolean): Int = theString.indexWhere(p)
/**
* Finds index of the first character satisfying some predicate after or at some start index.
*
* @param p the predicate used to test characters.
* @param from the start index
* @return the index >=
from
of the first character of this NonEmptyString
that satisfies the predicate p
,
* or -1
, if none exists.
*/
final def indexWhere(p: Char => Boolean, from: Int): Int = theString.indexWhere(p, from)
/**
* Produces the range of all indices of this NonEmptyString
.
*
* @return a Range
value from 0
to one less than the length of this NonEmptyString
.
*/
final def indices: Range = theString.indices
/**
* Tests whether this NonEmptyString
contains given index.
*
* @param idx the index to test
* @return true if this NonEmptyString
contains an character at position idx
, false
otherwise.
*/
final def isDefinedAt(idx: Int): Boolean = theString.isDefinedAt(idx)
/**
* Returns false
to indicate this NonEmptyString
, like all NonEmptyStrings, is non-empty.
*
* @return false
*/
final def isEmpty: Boolean = false
/**
* Returns true
to indicate this NonEmptyString
, like all NonEmptyString
s, can be traversed repeatedly.
*
* @return true
*/
final def isTraversableAgain: Boolean = true
/**
* Creates and returns a new iterator over all characters contained in this NonEmptyString
.
*
* @return the new iterator
*/
final def iterator: Iterator[Char] = theString.iterator
/**
* Selects the last character of this NonEmptyString
.
*
* @return the last character of this NonEmptyString
.
*/
final def last: Char = theString.last
/**
* Finds the index of the last occurrence of some value in this NonEmptyString
.
*
* @param c the character value to search for.
* @return the index of the last character of this NonEmptyString
that is equal (as determined by ==
) to c
,
* or -1
, if none exists.
*/
final def lastIndexOf(c: Char): Int = theString.lastIndexOf(c)
/**
* Finds the index of the last occurrence of some value in this NonEmptyString
before or at a given end
index.
*
* @param c the character value to search for.
* @param end the end index.
* @return the index >=
end
of the last character of this NonEmptyString
that is equal (as determined by ==
)
* to elem
, or -1
, if none exists.
*/
final def lastIndexOf(c: Char, end: Int): Int = theString.lastIndexOf(c, end)
/**
* Finds the last index where this NonEmptyString
contains a given GenSeq
as a slice.
*
* @param that the GenSeq
defining the slice to look for
* @return the last index at which the elements of this NonEmptyString
starting at that index match the characters of
* GenSeq
that
, or -1
of no such subsequence exists.
*/
final def lastIndexOfSlice(that: GenSeq[Char]): Int = theString.lastIndexOfSlice(that)
/**
* Finds the last index before or at a given end index where this NonEmptyString
contains a given GenSeq
as a slice.
*
* @param that the GenSeq
defining the slice to look for
* @param end the end index
* @return the last index >=
end
at which the elements of this NonEmptyString
starting at that index match the characters of
* GenSeq
that
, or -1
of no such subsequence exists.
*/
final def lastIndexOfSlice(that: GenSeq[Char], end: Int): Int = theString.lastIndexOfSlice(that, end)
/**
* Finds the last index where this NonEmptyString
contains a given Every
as a slice.
*
* @param that the Every
defining the slice to look for
* @return the last index at which the elements of this NonEmptyString
starting at that index match the characters of
* Every
that
, or -1
of no such subsequence exists.
*/
final def lastIndexOfSlice(that: Every[Char]): Int = theString.lastIndexOfSlice(that.toVector)
/**
* Finds the last index where this NonEmptyString
contains a given NonEmptyString
as a slice.
*
* @param that the NonEmptyString
defining the slice to look for
* @return the last index at which the elements of this NonEmptyString
starting at that index match the characters of
* NonEmptyString
that
, or -1
of no such subsequence exists.
*/
final def lastIndexOfSlice(that: NonEmptyString): Int = theString.lastIndexOfSlice(that.theString)
/**
* Finds the last index before or at a given end index where this NonEmptyString
contains a given Every
as a slice.
*
* @param that the Every
defining the slice to look for
* @param end the end index
* @return the last index >=
end
at which the elements of this NonEmptyString
starting at that index match the characters of
* Every
that
, or -1
of no such subsequence exists.
*/
final def lastIndexOfSlice(that: Every[Char], end: Int): Int = theString.lastIndexOfSlice(that.toVector, end)
/**
* Finds the last index before or at a given end index where this NonEmptyString
contains a given NonEmptyString
as a slice.
*
* @param that the NonEmptyString
defining the slice to look for
* @param end the end index
* @return the last index >=
end
at which the characters of this NonEmptyString
starting at that index match the characters of
* NonEmptyString
that
, or -1
of no such subsequence exists.
*/
final def lastIndexOfSlice(that: NonEmptyString, end: Int): Int = theString.lastIndexOfSlice(that.theString, end)
/**
* Finds index of last character satisfying some predicate.
*
* @param p the predicate used to test characters.
* @return the index of the last character of this NonEmptyString
that satisfies the predicate p
, or -1
, if none exists.
*/
final def lastIndexWhere(p: Char => Boolean): Int = theString.lastIndexWhere(p)
/**
* Finds index of last character satisfying some predicate before or at given end index.
*
* @param p the predicate used to test characters.
* @param end the end index
* @return the index >=
end
of the last character of this NonEmptyString
that satisfies the predicate p
,
* or -1
, if none exists.
*/
final def lastIndexWhere(p: Char => Boolean, end: Int): Int = theString.lastIndexWhere(p, end)
/**
* Returns the last element of this NonEmptyString
, wrapped in a Some
.
*
* @return the last element, wrapped in a Some
.
*/
final def lastOption: Option[Char] = theString.lastOption // Will always return a Some
/**
* The length of this NonEmptyString
.
*
*
* Note: length
and size
yield the same result, which will be >
= 1.
*
*
* @return the number of characters in this NonEmptyString
.
*/
final def length: Int = theString.length
/**
* Compares the length of this NonEmptyString
to a test value.
*
* @param len the test value that gets compared with the length.
* @return a value x
where
*
*
* x < 0 if this.length < len
* x == 0 if this.length == len
* x > 0 if this.length > len
*
*/
final def lengthCompare(len: Int): Int = theString.lengthCompare(len)
/**
* Builds a new NonEmptyString
by applying a function to all characters of this NonEmptyString
.
*
* @tparam U the character type of the returned NonEmptyString
.
* @param f the function to apply to each character.
* @return a new NonEmptyString
resulting from applying the given function f
to each character of this NonEmptyString
and collecting the results.
*/
final def map[U](f: Char => U): NonEmptyString = {
//NonEmptyString("test")
new NonEmptyString(
theString.map { c =>
f(c) + ""
}.mkString
)
}
/**
* Finds the largest character.
*
* @return the largest element of this NonEmptyString
.
*/
final def max(implicit cmp: Ordering[Char]): Char = theString.max(cmp)
/**
* Finds the largest result after applying the given function to every character.
*
* @return the largest result of applying the given function to every character of this NonEmptyString
.
*/
final def maxBy[U](f: Char => U)(implicit cmp: Ordering[U]): Char = theString.maxBy(f)(cmp)
/**
* Finds the smallest character.
*
* @return the smallest character of this NonEmptyString
.
*/
final def min(implicit cmp: Ordering[Char]): Char = theString.min(cmp)
/**
* Finds the smallest result after applying the given function to every character.
*
* @return the smallest result of applying the given function to every character of this NonEmptyString
.
*/
final def minBy[U](f: Char => U)(implicit cmp: Ordering[U]): Char = theString.minBy(f)(cmp)
/**
* Displays all characters of this NonEmptyString
in a string.
*
* @return a string representation of this NonEmptyString
. In the resulting string, the result of invoking toString
on all characters of this
* NonEmptyString
follow each other without any separator string.
*/
final def mkString: String = theString.mkString
/**
* Displays all elements of this NonEmptyString
in a string using a separator string.
*
* @param sep the separator string
* @return a string representation of this NonEmptyString
. In the resulting string, the result of invoking toString
on all elements of this
* NonEmptyString
are separated by the string sep
.
*/
final def mkString(sep: String): String = theString.mkString(sep)
/**
* Displays all characters of this NonEmptyString
in a string using start, end, and separator strings.
*
* @param start the starting string.
* @param sep the separator string.
* @param end the ending string.
* @return a string representation of this NonEmptyString
. The resulting string begins with the string start
and ends with the string
* end
. Inside, In the resulting string, the result of invoking toString
on all characters of this NonEmptyString
are
* separated by the string sep
.
*/
final def mkString(start: String, sep: String, end: String): String = theString.mkString(start, sep, end)
/**
* Returns true
to indicate this NonEmptyString
, like all NonEmptyString
s, is non-empty.
*
* @return true
*/
final def nonEmpty: Boolean = true
/**
* A copy of this NonEmptyString
with an element value appended until a given target length is reached.
*
* @param len the target length
* @param c the padding character
* @return a new NonEmptyString
consisting of all characters of this NonEmptyString
followed by the minimal number of occurrences
* of elem
so that the resulting NonEmptyString
has a length of at least len
.
*/
final def padTo(len: Int, c: Char): NonEmptyString =
new NonEmptyString(theString.padTo(len, c))
/**
* Produces a new NonEmptyString
where a slice of characters in this NonEmptyString
is replaced by another NonEmptyString
*
* @param from the index of the first replaced character
* @param that the NonEmptyString
whose characters should replace a slice in this NonEmptyString
* @param replaced the number of characters to drop in the original NonEmptyString
*/
final def patch(from: Int, that: NonEmptyString, replaced: Int): NonEmptyString =
new NonEmptyString(theString.patch(from, that.theString, replaced))
/**
* Iterates over distinct permutations.
*
*
* Here's an example:
*
*
*
* NonEmptyString("abb").permutations.toList == list(NonEmptyString("abb"), NonEmptyString("bab"), NonEmptyString("bba"))
*
*
* @return an iterator that traverses the distinct permutations of this NonEmptyString
.
*/
final def permutations: Iterator[NonEmptyString] = {
val it = theString.permutations
it map { list => new NonEmptyString(list) }
}
/**
* Returns the length of the longest prefix whose characters all satisfy some predicate.
*
* @param p the predicate used to test characters.
* @return the length of the longest prefix of this NonEmptyString
such that every characters
* of the segment satisfies the predicate p
.
*/
final def prefixLength(p: Char => Boolean): Int = theString.prefixLength(p)
/**
* The result of multiplying all the characters of this NonEmptyString
.
*
*
* This method can be invoked for any NonEmptyString
for which an implicit Numeric[T]
exists.
*
*
* @return the product of all elements
*/
final def product(implicit num: Numeric[Char]): Char = theString.product(num)
/**
* Reduces the elements of this NonEmptyString
using the specified associative binary operator.
*
*
* The order in which operations are performed on characters is unspecified and may be nondeterministic.
*
*
* @param op a binary operator that must be associative.
* @return the result of applying reduce operator op
between all the characters of this NonEmptyString
.
*/
final def reduce(op: (Char, Char) => Char): Char = theString.reduce(op)
/**
* Applies a binary operator to all characters of this NonEmptyString
, going left to right.
*
* @param op the binary operator.
* @return the result of inserting op
between consecutive characters of this NonEmptyString
, going left to right:
*
*
* op(...op(op(x_1, x_2), x_3), ..., x_n)
*
*
*
* where x1, ..., xn are the characters of this NonEmptyString
.
*
*/
final def reduceLeft(op: (Char, Char) => Char): Char = theString.reduceLeft(op)
/**
* Applies a binary operator to all characters of this NonEmptyString
, going left to right, returning the result in a Some
.
*
* @param op the binary operator.
* @return a Some
containing the result of reduceLeft(op)
*
*/
final def reduceLeftOption(op: (Char, Char) => Char): Option[Char] = theString.reduceLeftOption(op)
final def reduceOption(op: (Char, Char) => Char): Option[Char] = theString.reduceOption(op)
/**
* Applies a binary operator to all characters of this NonEmptyString
, going right to left.
*
* @param op the binary operator
* @return the result of inserting op
between consecutive characters of this NonEmptyString
, going right to left:
*
*
* op(x_1, op(x_2, ... op(x_{n-1}, x_n)...))
*
*
*
* where x1, ..., xn are the elements of this NonEmptyString
.
*
*/
final def reduceRight(op: (Char, Char) => Char): Char = theString.reduceRight(op)
/**
* Applies a binary operator to all elements of this NonEmptyString
, going right to left, returning the result in a Some
.
*
* @param op the binary operator
* @return a Some
containing the result of reduceRight(op)
*/
final def reduceRightOption(op: (Char, Char) => Char): Option[Char] = theString.reduceRightOption(op)
/**
* Returns new NonEmptyString
with characters in reverse order.
*
* @return a new NonEmptyString
with all characters of this NonEmptyString
in reversed order.
*/
final def reverse: NonEmptyString =
new NonEmptyString(theString.reverse)
/**
* An iterator yielding characters in reverse order.
*
*
* Note: nonEmptyString.reverseIterator
is the same as nonEmptyString.reverse.iterator
, but might be more efficient.
*
*
* @return an iterator yielding the characters of this NonEmptyString
in reversed order
*/
final def reverseIterator: Iterator[Char] = theString.reverseIterator
/**
* Builds a new GenIterable
by applying a function to all characters of this NonEmptyString
and collecting the results in reverse order.
*
*
* Note: nonEmptyString.reverseMap(f)
is the same as nonEmptyString.reverse.map(f)
, but might be more efficient.
*
*
* @tparam U the element type of the returned GenIterable
.
* @param f the function to apply to each character.
* @return a new GenIterable
resulting from applying the given function f
to each character of this NonEmptyString
* and collecting the results in reverse order.
*/
final def reverseMap[U](f: Char => U): GenIterable[U] = theString.reverseMap(f)
/**
* Checks if the given GenIterable
contains the same characters in the same order as this NonEmptyString
.
*
* @param that the GenIterable
with which to compare
* @return true
, if both this NonEmptyString
and the given GenIterable
contain the same characters
* in the same order, false
otherwise.
*/
final def sameElements(that: GenIterable[Char]): Boolean = theString.sameElements(that)
/**
* Checks if the given Every
contains the same characters in the same order as this NonEmptyString
.
*
* @param that the Every
with which to compare
* @return true
, if both this and the given Every
contain the same characters
* in the same order, false
otherwise.
*/
final def sameElements(that: Every[Char]): Boolean = theString.sameElements(that.toVector)
/**
* Checks if the given NonEmptyString
contains the same characters in the same order as this NonEmptyString
.
*
* @param that the NonEmptyString
with which to compare
* @return true
, if both this and the given NonEmptyString
contain the same characters
* in the same order, false
otherwise.
*/
final def sameElements(that: NonEmptyString): Boolean = theString.sameElements(that.theString)
/**
* Computes a prefix scan of the characters of this NonEmptyString
.
*
*
* Note: The neutral character z may be applied more than once.
*
*
*
* Here are some examples:
*
*
*
* NonEmptyString("123").scan(0)(_ + _) == NonEmptyString(0, 1, 3, 6)
* NonEmptyString("123").scan("z")(_ + _.toString) == NonEmptyString("z", "z1", "z12", "z123")
*
*
* @param z a neutral element for the scan operation; may be added to the result an arbitrary number of
* times, and must not change the result (e.g., Nil
for list concatenation,
* 0 for addition, or 1 for multiplication.)
* @param op a binary operator that must be associative
* @return a new NonEmptyString
containing the prefix scan of the elements in this NonEmptyString
*/
final def scan(z: Char)(op: (Char, Char) => Char): NonEmptyString = new NonEmptyString(theString.scan(z)(op).mkString)
/**
* Produces a NonEmptyString
containing cumulative results of applying the operator going left to right.
*
*
* Here are some examples:
*
*
*
* NonEmptyString("123").scanLeft(0)(_ + _.toString.toInt) == Vector(0, 1, 3, 6)
* NonEmptyString("123").scanLeft("z")(_ + _) == Vector("z", "z1", "z12", "z123")
*
*
* @tparam B the result type of the binary operator and type of the resulting NonEmptyString
* @param z the start value.
* @param op the binary operator.
* @return a new NonEmptyString
containing the intermediate results of inserting op
between consecutive characters of this NonEmptyString
,
* going left to right, with the start value, z
, on the left.
*/
final def scanLeft[B](z: B)(op: (B, Char) => B): GenIterable[B] = theString.scanLeft(z)(op)
/**
* Produces a NonEmptyString
containing cumulative results of applying the operator going right to left.
*
*
* Here are some examples:
*
*
*
* NonEmptyString("123").scanRight(0)(_.toString.toInt + _) == NonEmptyString(6, 5, 3, 0)
* NonEmptyString("123").scanRight("z")(_ + _) == NonEmptyString("123z", "23z", "3z", "z")
*
*
* @tparam B the result of the binary operator and type of the resulting NonEmptyString
* @param z the start value
* @param op the binary operator
* @return a new NonEmptyString
containing the intermediate results of inserting op
between consecutive characters of this NonEmptyString
,
* going right to left, with the start value, z
, on the right.
*/
final def scanRight[B](z: B)(op: (Char, B) => B): GenIterable[B] = theString.scanRight(z)(op)
/**
* Computes length of longest segment whose characters all satisfy some predicate.
*
* @param p the predicate used to test elements.
* @param from the index where the search starts.
* @return the length of the longest segment of this NonEmptyString
starting from index from
such that every character of the
* segment satisfies the predicate p
.
*/
final def segmentLength(p: Char => Boolean, from: Int): Int = theString.segmentLength(p, from)
/**
* Groups characters in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.)
*
* @param size the number of characters per group
* @return an iterator producing NonEmptyString
s of size size
, except the last and the only element will be truncated
* if there are fewer characters than size
.
*/
final def sliding(size: Int): Iterator[NonEmptyString] = theString.sliding(size).map(new NonEmptyString(_))
/**
* Groups characters in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.),
* moving the sliding window by a given step
each time.
*
* @param size the number of characters per group
* @param step the distance between the first characters of successive groups
* @return an iterator producing NonEmptyString
s of size size
, except the last and the only character will be truncated
* if there are fewer characters than size
.
*/
final def sliding(size: Int, step: Int): Iterator[NonEmptyString] = theString.sliding(size, step).map(new NonEmptyString(_))
/**
* The size of this NonEmptyString
.
*
*
* Note: length
and size
yield the same result, which will be >
= 1.
*
*
* @return the number of characters in this NonEmptyString
.
*/
final def size: Int = theString.size
/**
* Sorts this NonEmptyString
according to the Ordering
of the result of applying the given function to every character.
*
* @tparam U the target type of the transformation f
, and the type where the Ordering
ord
is defined.
* @param f the transformation function mapping elements to some other domain U
.
* @param ord the ordering assumed on domain U
.
* @return a NonEmptyString
consisting of the elements of this NonEmptyString
sorted according to the Ordering
where
* x < y if ord.lt(f(x), f(y))
.
*/
final def sortBy[U](f: Char => U)(implicit ord: Ordering[U]): NonEmptyString = new NonEmptyString(theString.sortBy(f))
/**
* Sorts this NonEmptyString
according to a comparison function.
*
*
* The sort is stable. That is, characters that are equal (as determined by lt
) appear in the same order in the
* sorted NonEmptyString
as in the original.
*
*
* @param lt the comparison function that tests whether its first argument precedes its second argument in the desired ordering.
* @return a NonEmptyString
consisting of the elements of this NonEmptyString
sorted according to the comparison function lt
.
*/
final def sortWith(lt: (Char, Char) => Boolean): NonEmptyString = new NonEmptyString(theString.sortWith(lt))
/**
* Sorts this NonEmptyString
according to an Ordering
.
*
*
* The sort is stable. That is, elements that are equal (as determined by lt
) appear in the same order in the
* sorted NonEmptyString
as in the original.
*
*
* @param ord the Ordering
to be used to compare elements.
* @return a NonEmptyString
consisting of the characters of this NonEmptyString
sorted according to the ordering defined by ord
.
*/
final def sorted(implicit ord: Ordering[Char]): NonEmptyString = new NonEmptyString(theString.sorted(ord))
/**
* Indicates whether this NonEmptyString
starts with the given GenSeq
.
*
* @param that the GenSeq
slice to look for in this NonEmptyString
* @return true
if this NonEmptyString
has that
as a prefix, false
otherwise.
*/
final def startsWith(that: GenSeq[Char]): Boolean = theString.startsWith(that)
/**
* Indicates whether this NonEmptyString
starts with the given GenSeq
at the given index.
*
* @param that the GenSeq
slice to look for in this NonEmptyString
* @param offset the index at which this NonEmptyString
is searched.
* @return true
if this NonEmptyString
has that
as a slice at the index offset
, false
otherwise.
*/
final def startsWith(that: GenSeq[Char], offset: Int): Boolean = theString.startsWith(that, offset)
/**
* Indicates whether this NonEmptyString
starts with the given Every
.
*
* @param that the Every
to test
* @return true
if this collection has that
as a prefix, false
otherwise.
*/
final def startsWith(that: Every[Char]): Boolean = theString.startsWith(that.toVector)
/**
* Indicates whether this NonEmptyString
starts with the given NonEmptyString
.
*
* @param that the NonEmptyString
to test
* @return true
if this collection has that
as a prefix, false
otherwise.
*/
final def startsWith(that: NonEmptyString): Boolean = theString.startsWith(that.theString)
/**
* Indicates whether this NonEmptyString
starts with the given Every
at the given index.
*
* @param that the Every
slice to look for in this NonEmptyString
* @param offset the index at which this NonEmptyString
is searched.
* @return true
if this NonEmptyString
has that
as a slice at the index offset
, false
otherwise.
*/
final def startsWith(that: Every[Char], offset: Int): Boolean = theString.startsWith(that.toVector, offset)
/**
* Indicates whether this NonEmptyString
starts with the given NonEmptyString
at the given index.
*
* @param that the NonEmptyString
slice to look for in this NonEmptyString
* @param offset the index at which this NonEmptyString
is searched.
* @return true
if this NonEmptyString
has that
as a slice at the index offset
, false
otherwise.
*/
final def startsWith(that: NonEmptyString, offset: Int): Boolean = theString.startsWith(that.theString, offset)
/**
* Returns "NonEmptyString"
, the prefix of this object's toString
representation.
*
* @return the string "NonEmptyString"
*/
def stringPrefix: String = "NonEmptyString"
/**
* The result of summing all the characters of this NonEmptyString
.
*
*
* This method can be invoked for any NonEmptyString
for which an implicit Numeric[Char]
exists.
*
*
* @return the sum of all elements
*/
final def sum(implicit num: Numeric[Char]): Long = theString.sum(num)
import scala.language.higherKinds
/**
* Converts this NonEmptyString
into a collection of type Col
by copying all elements.
*
* @tparam Col the collection type to build.
* @return a new collection containing all elements of this NonEmptyString
.
*/
final def to[Col[_]](factory: org.scalactic.ColCompatHelper.Factory[Char, Col[Char @ uV]]): Col[Char @ uV] =
theString.to(factory)
/**
* Converts this NonEmptyString
to an array.
*
* @return an array containing all characters of this NonEmptyString
. A ClassTag
must be available for the element type of this NonEmptyString
.
*/
final def toArray(implicit classTag: ClassTag[Char]): Array[Char] = theString.toArray
/**
* Converts this NonEmptyString
to a Vector
.
*
* @return a Vector
containing all characters of this NonEmptyString
.
*/
final def toVector: Vector[Char] = theString.toVector
/**
* Converts this NonEmptyString
to a mutable buffer.
*
* @return a buffer containing all characters of this NonEmptyString
.
*/
final def toBuffer: Buffer[Char] = theString.toBuffer
/**
* Converts this NonEmptyString
to an immutable IndexedSeq
.
*
* @return an immutable IndexedSeq
containing all characters of this NonEmptyString
.
*/
final def toIndexedSeq: collection.immutable.IndexedSeq[Char] = theString.toVector
/**
* Converts this NonEmptyString
to an iterable collection.
*
* @return an Iterable
containing all characters of this NonEmptyString
.
*/
final def toIterable: Iterable[Char] = theString.toIterable
/**
* Returns an Iterator
over the elements in this NonEmptyString
.
*
* @return an Iterator
containing all characters of this NonEmptyString
.
*/
final def toIterator: Iterator[Char] = theString.toIterator
/**
* Converts this NonEmptyString
to a map.
*
*
* This method is unavailable unless the elements are members of Tuple2
, each ((K, V))
becoming a key-value pair
* in the map. Duplicate keys will be overwritten by later keys.
*
*
* @return a map of type immutable.Map[Int, Char]
containing all index/character pairs of type (Int, Char)
of this NonEmptyString
.
*/
final def toMap: Map[Int, Char] = Map.empty[Int, Char] ++ theString.zipWithIndex.map(e => e._2 -> e._1)
/**
* Converts this NonEmptyString
to an immutable IndexedSeq
.
*
* @return an immutable IndexedSeq
containing all characters of this NonEmptyString
.
*/
final def toSeq: collection.immutable.Seq[Char] = theString
/**
* Converts this NonEmptyString
to a set.
*
* @return a set containing all characters of this NonEmptyString
.
*/
final def toSet: Set[Char] = theString.toSet
/**
* Converts this NonEmptyString
to a stream.
*
* @return a stream containing all characters of this NonEmptyString
.
*/
final def toStream: Stream[Char] = theString.toStream
/**
* Returns a string representation of this NonEmptyString
.
*
* @return the string "NonEmptyString"
followed by the result of invoking toString
on
* this NonEmptyString
's elements, surrounded by parentheses.
*/
override def toString: String = stringPrefix + "(" + theString + ")"
/**
* Produces a new NonEmptyString
that contains all characters of this NonEmptyString
and also all characters of a given Every
.
*
*
* nonEmptyStringX
union
everyY
is equivalent to nonEmptyStringX
++
everyY
.
*
*
*
* Another way to express this is that nonEmptyStringX
union
everyY
computes the order-presevring multi-set union
* of nonEmptyStringX
and everyY
. This union
method is hence a counter-part of diff
and intersect
that
* also work on multi-sets.
*
*
* @param that the Every
to add.
* @return a new NonEmptyString
that contains all characters of this NonEmptyString
followed by all characters of that
Every
.
*/
final def union(that: Every[Char]): NonEmptyString = new NonEmptyString((theString union that.toVector).mkString)
/**
* Produces a new NonEmptyString
that contains all characters of this NonEmptyString
and also all characters of a given NonEmptyString
.
*
*
* nonEmptyStringX
union
nonEmptyStringY
is equivalent to nonEmptyStringX
++
nonEmptyStringY
.
*
*
*
* Another way to express this is that nonEmptyStringX
union
nonEmptyStringY
computes the order-presevring multi-set union
* of nonEmptyStringX
and nonEmptyStringY
. This union
method is hence a counter-part of diff
and intersect
that
* also work on multi-sets.
*
*
* @param that the NonEmptyString
to add.
* @return a new NonEmptyString
that contains all elements of this NonEmptyString
followed by all characters of that
.
*/
final def union(that: NonEmptyString): NonEmptyString = new NonEmptyString((theString union that.theString).mkString)
/**
* Produces a new NonEmptyString
that contains all characters of this NonEmptyString
and also all characters of a given GenSeq
.
*
*
* nonEmptyStringX
union
ys
is equivalent to nonEmptyStringX
++
ys
.
*
*
*
* Another way to express this is that nonEmptyStringX
union
ys
computes the order-presevring multi-set union
* of nonEmptyStringX
and ys
. This union
method is hence a counter-part of diff
and intersect
that
* also work on multi-sets.
*
*
* @param that the GenSeq
to add.
* @return a new NonEmptyString
that contains all elements of this NonEmptyString
followed by all elements of that
GenSeq
.
*/
final def union(that: GenSeq[Char]): NonEmptyString = new NonEmptyString((theString.union(that)).mkString)
/**
* Converts this NonEmptyString
of pairs into two NonEmptyString
s of the first and second half of each pair.
*
* @tparam L the type of the first half of the character pairs
* @tparam R the type of the second half of the character pairs
* @param asPair an implicit conversion that asserts that the character type of this NonEmptyString
is a pair.
* @return a pair of NonEmptyString
s, containing the first and second half, respectively, of each character pair of this NonEmptyString
.
*/
final def unzip[L, R](implicit asPair: Char => (L, R)): (GenIterable[L], GenIterable[R]) = {
val unzipped = theString.unzip
(unzipped._1, unzipped._2)
}
/**
* Converts this NonEmptyString
of triples into three NonEmptyString
s of the first, second, and and third character of each triple.
*
* @tparam L the type of the first member of the character triples
* @tparam R the type of the second member of the character triples
* @tparam R the type of the third member of the character triples
* @param asTriple an implicit conversion that character that the character type of this NonEmptyString
is a triple.
* @return a triple of NonEmptyString
s, containing the first, second, and third member, respectively, of each character triple of this NonEmptyString
.
*/
final def unzip3[L, M, R](implicit asTriple: Char => (L, M, R)): (GenIterable[L], GenIterable[M], GenIterable[R]) = {
val unzipped = theString.unzip3
(unzipped._1, unzipped._2, unzipped._3)
}
/**
* A copy of this NonEmptyString
with one single replaced character.
*
* @param idx the position of the replacement
* @param c the replacing character
* @throws IndexOutOfBoundsException if the passed index is greater than or equal to the length of this NonEmptyString
* @return a copy of this NonEmptyString
with the character at position idx
replaced by c
.
*/
final def updated(idx: Int, c: Char): NonEmptyString =
try new NonEmptyString(theString.updated(idx, c))
catch { case _: UnsupportedOperationException => throw new IndexOutOfBoundsException(idx.toString) } // This is needed for 2.10 support. Can drop after.
// Because 2.11 throws IndexOutOfBoundsException.
/**
* Returns a NonEmptyString
formed from this NonEmptyString
and an iterable collection by combining corresponding
* elements in pairs. If one of the two collections is shorter than the other, placeholder elements will be used to extend the
* shorter collection to the length of the longer.
*
* @tparam O the element type of the other
* @param other the Iterable
providing the second half of each result pair
* @param thisElem the element to be used to fill up the result if this NonEmptyString
is shorter than that
Iterable
.
* @param otherElem the element to be used to fill up the result if that
Iterable
is shorter than this NonEmptyString
.
* @return a new NonEmptyString
containing pairs consisting of corresponding characters of this NonEmptyString
and that
. The
* length of the returned collection is the maximum of the lengths of this NonEmptyString
and that
. If this NonEmptyString
* is shorter than that
, thisElem
values are used to pad the result. If that
is shorter than this
* NonEmptyString
, thatElem
values are used to pad the result.
*/
final def zipAll[O](other: collection.Iterable[O], thisElem: Char, otherElem: O): GenIterable[(Char, O)] =
theString.zipAll(other, thisElem, otherElem)
/**
* Returns a NonEmptyString
formed from this NonEmptyString
and another NonEmptyString
combining corresponding
* elements in pairs. If one of the two
is shorter than the other, placeholder elements will be used to extend the
* shorter collection to the length of the longer.
*
* @param other the NonEmptyString
providing the second half of each result pair
* @param thisElem the character to be used to fill up the result if this NonEmptyString
is shorter than that
NonEmptyString
.
* @param otherElem the character to be used to fill up the result if that
Iterable
is shorter than this NonEmptyString
.
* @return a new NonEmptyString
containing pairs consisting of corresponding characters of this NonEmptyString
and that
. The
* length of the returned collection is the maximum of the lengths of this NonEmptyString
and that
. If this NonEmptyString
* is shorter than that
, thisElem
values are used to pad the result. If that
is shorter than this
* NonEmptyString
, thatElem
values are used to pad the result.
*/
final def zipAll(other: NonEmptyString, thisElem: Char, otherElem: Char): GenIterable[(Char, Char)] =
theString.zipAll(other.theString, thisElem, otherElem)
/**
* Zips this NonEmptyString
with its indices.
*
* @return A new NonEmptyString
containing pairs consisting of all elements of this NonEmptyString
paired with their index. Indices start at 0.
*/
final def zipWithIndex: Iterable[(Char, Int)] = theString.zipWithIndex
}
/**
* Companion object for class NonEmptyString
.
*/
object NonEmptyString {
/**
* Constructs a new NonEmptyString
given at least one element.
*
* @param s the String
represented by this NonEmptyString
*/
def apply(s: String): NonEmptyString = new NonEmptyString(s)
/**
* Constructs a new NonEmptyString
given at least one character.
*
* @param firstChar the first character (with index 0) contained in this NonEmptyString
* @param otherChars a varargs of zero or more other characters (with index 1, 2, 3, ...) contained in this NonEmptyString
*/
def apply(firstChar: Char, otherChars: Char*): NonEmptyString = new NonEmptyString(firstChar + otherChars.mkString)
/**
* Variable argument extractor for NonEmptyString
s.
*
* @param nonEmptyString: the NonEmptyString
containing the elements to extract
* @return an Seq
containing this NonEmptyString
s elements, wrapped in a Some
*/
//def unapplySeq(nonEmptyString: NonEmptyString): Option[Seq[Char]] = Some(nonEmptyString.theString)
def unapplySeq(nonEmptyString: NonEmptyString): Option[Seq[String]] = Some(Seq(nonEmptyString.theString))
/*
// TODO: Figure out how to get case NonEmptyString() to not compile
def unapplySeq[T](nonEmptyString: NonEmptyString[T]): Option[(T, Seq[T])] = Some(nonEmptyString.head, nonEmptyString.tail)
*/
/**
* Optionally construct a NonEmptyString
containing the characters, if any, of a given GenSeq
.
*
* @param seq the GenSeq
of Char
with which to construct a NonEmptyString
* @return a NonEmptyString
containing the elements of the given GenSeq
, if non-empty, wrapped in
* a Some
; else None
if the GenSeq
is empty
*/
def from[T](seq: GenSeq[Char]): Option[NonEmptyString] =
seq.headOption match {
case None => None
case Some(first) => Some(new NonEmptyString(seq.mkString))
}
import scala.language.implicitConversions
/**
* Implicit conversion from NonEmptyString
to GenTraversableOnce[Char]
.
*
*
* One use case for this implicit conversion is to enable GenSeq[NonEmptyString]
s to be flattened.
* Here's an example:
*
*
*
* scala> Vector(NonEmptyString("123"), NonEmptyString("34"), NonEmptyString("5678")).flatten
* res0: scala.collection.immutable.Vector[Char] = Vector('1', '2', '3', '3', '4', '5', '6', '7', '8')
*
*
* @param nonEmptyString the NonEmptyString
to convert to a GenTraversableOnce[Char]
* @return a GenTraversableOnce[Char]
containing the elements, in order, of this NonEmptyString
*/
implicit def nonEmptyStringToGenTraversableOnceOfChar(nonEmptyString: NonEmptyString): GenTraversableOnce[Char] = nonEmptyString.theString
implicit def nonEmptyStringToPartialFunction(nonEmptyString: NonEmptyString): PartialFunction[Int, Char] =
new PartialFunction[Int, Char] {
def isDefinedAt(idx: Int): Boolean = nonEmptyString.theString.isDefinedAt(idx)
def apply(idx: Int): Char = nonEmptyString.theString(idx)
}
}