Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package breeze.stats.distributions
/*
Copyright 2009 David Hall, Daniel Ramage
Licensed under the Apache License, Version 2.0 (the "License")
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
import breeze.numerics.Bessel
import math._
import breeze.optimize._
import breeze.linalg.DenseVector
/**
* Represents a Von Mises distribution, which is
* a distribution over angles.
*
* @param mu is the mean of the distribution, ~ gaussian mean
* @param k is the concentration, which is like 1/gaussian variance
*
* @author dlwh
*/
case class VonMises(mu: Double, k: Double)(implicit rand: RandBasis=Rand) extends ContinuousDistr[Double] with Moments[Double, Double] {
require( k >= 0, "K must be positive")
require(mu <= math.Pi * 2 && mu >= 0, "Mu must be in the range [0,2pi]")
override def unnormalizedLogPdf(theta:Double) = cos(theta - mu) * k
lazy val logNormalizer = math.log(Bessel.i0(k) * 2* Pi)
private val r = {
val tau = 1.0 + sqrt(1.0 + 4.0 * k *k)
val rho = (tau - sqrt(2.0 * tau)) / (2.0*k)
(1.0 + rho * rho) / (2 * rho)
}
// rejection sampler based on the colt implementation
private val myRandom = for {
v <- rand.uniform
u <- rand.uniform
z = cos(Pi * u)
w = (1.0 + r* z) / (r+z)
c = k * (r - w)
accept = v < (c * (2.0 - c)) || v <= c * exp(1.0-c)
if accept
choice <- rand.uniform
theta = if(choice > 0.5) mu + acos(w) else mu -acos(w)
} yield theta
def draw = {
myRandom.draw
}
override lazy val toString = "VonMises(mu=" + mu + ", k=" + k + ")"
def mean = mu
def mode = mean
def variance = 1 - Bessel.i1(k) / Bessel.i0(k)
def entropy = -k * Bessel.i1(k) / Bessel.i0(k) + math.log(2 * math.Pi * Bessel.i0(k))
}
object VonMises extends ExponentialFamily[VonMises,Double] {
type Parameter = (Double,Double)
case class SufficientStatistic(n: Double, sines: Double, cosines: Double) extends breeze.stats.distributions.SufficientStatistic[SufficientStatistic] {
def +(t: SufficientStatistic) = new SufficientStatistic(n + t.n, sines + t.sines, cosines + t.cosines)
def *(weight: Double) = SufficientStatistic(weight * n, weight * sines, weight * cosines)
}
def emptySufficientStatistic = SufficientStatistic(0,0,0)
def sufficientStatisticFor(t: Double) = SufficientStatistic(1,sin(t),cos(t))
def distribution(p: Parameter) = new VonMises(p._1,p._2)
def mle(stats: SufficientStatistic): (Double, Double) = {
import breeze.linalg.DenseVector.TupleIsomorphisms._
val lensed = likelihoodFunction(stats).throughLens[DenseVector[Double]]
// Starting points due to Sra, 2009... not as good as these old ones that I forgot about
// http://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution
// val startingMu = {
// val m = asin(stats.sines/stats.n)
// if(m < 0)
// m + 2 * math.Pi
// else m
// }
// val rhat = sqrt(stats.sines * stats.sines + stats.cosines * stats.cosines) / stats.n
// val startingK = rhat * (2 - rhat * rhat) / (1-rhat * rhat)
val cosineSum = stats.cosines
val sineSum = stats.sines
val muPart = signum(cosineSum) * signum(sineSum) * atan(abs(sineSum/cosineSum))
val mu = (muPart + {
if(cosineSum < 0) Pi
else if (cosineSum > 0 && sineSum < 0) 2 * Pi
else 0.0
} ) % (2 * Pi)
val t = sqrt(pow(cosineSum/stats.n,2) + pow(sineSum / stats.n,2))
val k = (1.28 - 0.53*pow(t,2)) * tan(Pi/2*t)
val kx = {
if(t < 0.53) t * (2 + t *t * (1 + 5 * t * t / 6))
else if(t < 0.85) -0.4 + 1.39 * t + (0.43)/(1-t)
else 1/( t* (3 + t * (-4 + t)))
}
val result = minimize(lensed,DenseVector(mu,kx))
val res@(a,b) = (result(0),result(1))
res
}
def likelihoodFunction(stats: SufficientStatistic) = new DiffFunction[(Double,Double)] {
def calculate(x: (Double,Double)) = {
val DELTA = 1E-5
val (mu,k) = x
if( mu < 0 || mu > 2*Pi || k < 0) (Double.PositiveInfinity,(0.0,0.0))
else {
val (sinx,cosx) = (sin(mu),cos(mu))
val bessel_k = Bessel.i0(k)
val logprob = stats.n * math.log(bessel_k * 2* Pi) - (stats.sines * sinx + stats.cosines * cosx)*k
val mugrad = -k * (stats.sines * cos(mu) - stats.cosines * sin(mu))
val kgrad = stats.n * (Bessel.i1(k)/bessel_k) - (stats.sines * sinx + stats.cosines * cosx)
(logprob,(mugrad,kgrad))
}
}
}
/*
/**
* Returns the maximum likelihood estimate of this distribution
* For the given observations with (possibly pseudo-)counts
*/
def mle(obs: Counter[Double,Double]) = {
val sufStats = for {
(o,count) <- obs.pairs
} yield {
(count * cos(o),count * sin(o))
}
val cosineSum = sufStats.iterator.map(_._1) reduceLeft(_ + _)
val sineSum = sufStats.iterator.map(_._2) reduceLeft( _ + _ )
val muPart = signum(cosineSum) * signum(sineSum) * atan(abs(sineSum/cosineSum))
val mu = (muPart + {
if(cosineSum < 0) Pi
else if (cosineSum > 0 && sineSum < 0) 2 * Pi
else 0.0
} ) % (2 * Pi)
val t = sqrt(pow(cosineSum/obs.sum,2) + pow(sineSum / obs.sum,2))
val k = (1.28 - 0.53*pow(t,2)) * tan(Pi/2*t)
/*
val kx = {
if(t < 0.53) t * (2 + t *t * (1 + 5 * t * t / 6))
else if(t < 0.85) -0.4 + 1.39 * t + (0.43)/(1-t)
else 1/( t* (3 + t * (-4 + t)))
} */
VonMises(mu,k)
}
*/
}