Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
breeze.linalg.Matrix.scala Maven / Gradle / Ivy
package breeze.linalg
/*
Copyright 2012 David Hall
Licensed under the Apache License, Version 2.0 (the "License")
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
import breeze.linalg.support.CanTraverseValues.ValuesVisitor
import scala.{specialized=>spec}
import breeze.storage.Zero
import breeze.util.Terminal
import breeze.linalg.support._
import breeze.math._
import breeze.linalg.operators._
import scala.reflect.ClassTag
import scala.annotation.unchecked.uncheckedVariance
import breeze.stats.distributions.Rand
/**
*
* @author dlwh
*/
trait MatrixLike[@spec(Double, Int, Float, Long) V, +Self <: Matrix[V]] extends Tensor[(Int, Int), V] with TensorLike[(Int, Int), V, Self] {
def map[V2, That](fn: V=>V2)(implicit canMapValues: CanMapValues[Self @uncheckedVariance , V, V2, That]):That = values map fn
}
trait Matrix[@spec(Double, Int, Float, Long) V] extends MatrixLike[V, Matrix[V]] {
final def apply(i: (Int, Int)) = apply(i._1, i._2)
final def update(i: (Int, Int), e: V): Unit = {
update(i._1, i._2, e)
}
def apply(i: Int, j: Int): V
def update(i: Int, j: Int, e: V): Unit
def size = rows * cols
def rows: Int
def cols: Int
def keySet: Set[(Int, Int)] = new Set[(Int, Int)] {
def contains(elem: (Int, Int)): Boolean = elem._1 >= 0 && elem._1 < rows && elem._2 >= 0 && elem._2 < cols
def +(elem: (Int, Int)): Set[(Int, Int)] = Set() ++ iterator + elem
def -(elem: (Int, Int)): Set[(Int, Int)] = Set() ++ iterator - elem
def iterator: Iterator[(Int, Int)] = for{ j <- Iterator.range(0, cols); i <- Iterator.range(0, rows)} yield (i, j)
}
def iterator = for(i <- Iterator.range(0, rows); j <- Iterator.range(0, cols)) yield (i -> j) -> apply(i, j)
def valuesIterator = for(i <- Iterator.range(0, rows); j <- Iterator.range(0, cols)) yield apply(i, j)
def keysIterator = for(i <- Iterator.range(0, rows); j <- Iterator.range(0, cols)) yield (i -> j)
def toString(maxLines : Int = Terminal.terminalHeight - 3,
maxWidth : Int = Terminal.terminalWidth) : String = {
val showRows = if (rows > maxLines) maxLines - 1 else rows
def colWidth(col : Int) =
if (showRows > 0) (0 until showRows).map(row => if(this(row,col)!=null) this(row,col).toString.length+2 else 3).max else 0
val colWidths = new scala.collection.mutable.ArrayBuffer[Int]
var col = 0
while (col < cols && colWidths.sum < maxWidth) {
colWidths += colWidth(col)
col += 1
}
// make space for "... (K total)"
if (colWidths.size < cols) {
while (colWidths.sum + cols.toString.length + 12 >= maxWidth) {
if (colWidths.isEmpty) {
return "%d x %d matrix".format(rows, cols)
}
colWidths.remove(colWidths.length - 1)
}
}
val newline = Terminal.newline
val rv = new scala.StringBuilder
for (row <- 0 until showRows; col <- 0 until colWidths.length) {
val cell = if (this(row,col)!=null) this(row,col).toString else "--"
rv.append(cell)
rv.append(" " * (colWidths(col) - cell.length))
if (col == colWidths.length - 1) {
if (col < cols - 1) {
rv.append("...")
if (row == 0) {
rv.append(" (")
rv.append(cols)
rv.append(" total)")
}
}
if (row + 1 < showRows) {
rv.append(newline)
}
}
}
if (rows > showRows) {
rv.append(newline)
rv.append("... (")
rv.append(rows)
rv.append(" total)")
}
rv.toString
}
override def toString : String = toString(Terminal.terminalHeight, Terminal.terminalWidth)
def toDenseMatrix(implicit cm: ClassTag[V], zero: Zero[V]) = {
DenseMatrix.tabulate(rows, cols){ (i,j) => apply(i, j)}
}
def copy: Matrix[V]
def flatten(view: View=View.Prefer): Vector[V]
override def equals(p1: Any) : Boolean = p1 match {
case x: Matrix[_] =>
this.rows == x.rows && this.cols == x.cols &&
keysIterator.forall(k => this(k) == x(k))
case _ =>
return false
}
}
object Matrix extends MatrixConstructors[Matrix]
with LowPriorityMatrix
with MatrixGenericOps
with MatrixOpsLowPrio
with MatrixOps
with MatrixMultOps {
def zeros[@spec(Double, Int, Float, Long) V: ClassTag:Zero](rows: Int, cols: Int): Matrix[V] = DenseMatrix.zeros(rows, cols)
def create[@spec(Double, Int, Float, Long) V:Zero](rows: Int, cols: Int, data: Array[V]): Matrix[V] = DenseMatrix.create(rows, cols, data)
private[linalg] def zeroRows[V:ClassTag](cols: Int):Matrix[V] = emptyMatrix(0, cols)
private[linalg] def zeroCols[V:ClassTag](rows: Int):Matrix[V] = emptyMatrix(rows, 0)
private[linalg] def emptyMatrix[V:ClassTag](_rows: Int, _cols: Int):Matrix[V] = new Matrix[V] {
def activeIterator: Iterator[((Int, Int), V)] = Iterator.empty
def activeValuesIterator: Iterator[V] = Iterator.empty
def activeKeysIterator: Iterator[(Int, Int)] = Iterator.empty
def apply(i: Int, j: Int): V = throw new IndexOutOfBoundsException("Empty matrix!")
def update(i: Int, j: Int, e: V) {
throw new IndexOutOfBoundsException("Empty matrix!")
}
def rows: Int = _rows
def cols: Int = _cols
def copy: Matrix[V] = this
def activeSize: Int = 0
def repr: Matrix[V] = this
def flatten(view: View) = Vector[V]()
}
implicit def canTraverseKeyValuePairs[V]: CanTraverseKeyValuePairs[Matrix[V], (Int, Int), V] = {
new CanTraverseKeyValuePairs[Matrix[V], (Int, Int), V] {
def isTraversableAgain(from: Matrix[V]): Boolean = true
/** Iterates all key-value pairs from the given collection. */
def traverse(from: Matrix[V], fn: CanTraverseKeyValuePairs.KeyValuePairsVisitor[(Int, Int), V]): Unit = {
from.iterator.foreach((fn.visit _).tupled)
}
}
}
implicit def canTraverseValues[V]: CanTraverseValues[Matrix[V], V] = {
new CanTraverseValues[Matrix[V], V] {
def isTraversableAgain(from: Matrix[V]): Boolean = true
/** Iterates all key-value pairs from the given collection. */
def traverse(from: Matrix[V], fn: ValuesVisitor[V]): Unit = {
from.valuesIterator.foreach(fn.visit)
}
}
}
}
trait MatrixConstructors[Mat[T]<:Matrix[T]] {
def zeros[@spec(Double, Int, Float, Long) V:ClassTag:Zero](rows: Int, cols: Int):Mat[V]
def create[@spec(Double, Int, Float, Long) V:Zero](rows: Int, cols: Int, data: Array[V]):Mat[V]
/**
* Creates a matrix of all ones.
* @param rows
* @param cols
* @tparam V
* @return
*/
def ones[@spec(Double, Int, Float, Long) V:ClassTag:Zero:Semiring](rows: Int, cols: Int):Mat[V] = {
fill(rows,cols)(implicitly[Semiring[V]].one)
}
def fill[@spec(Double, Int, Float, Long) V:ClassTag:Zero](rows: Int, cols: Int)(v: =>V):Mat[V] = create(rows, cols, Array.fill(rows * cols)(v))
def tabulate[@spec(Double, Int, Float, Long) V:ClassTag:Zero](rows: Int, cols: Int)(f: (Int,Int)=>V):Mat[V]= {
val z = zeros(rows, cols)
for(c <- 0 until cols; r <- 0 until rows) {
z(r, c) = f(r, c)
}
z
}
def rand[T:ClassTag:Zero](rows: Int, cols: Int, rand: Rand[T] = Rand.uniform): Mat[T] = {
fill(rows, cols)(rand.draw())
}
// @specialized() R because of https://issues.scala-lang.org/browse/SI-8886
/** Static constructor for a literal matrix. */
def apply[@specialized(/* Don't remove until SI-8886 is closed*/) R,
@spec(Double, Int, Float, Long) V](rows : R*)(implicit rl : LiteralRow[R,V], man : ClassTag[V], zero: Zero[V]) = {
val nRows = rows.length
val ns = rows.headOption match {
case None => 0
case Some(firstRow) => rl.length(firstRow)
}
val rv = zeros(nRows, ns)
finishLiteral(rv, rl, rows)
rv
}
implicit def canCreateZeros[T:ClassTag:Zero]: CanCreateZeros[Mat[T],(Int,Int)] =
new CanCreateZeros[Mat[T],(Int,Int)] {
def apply(dims: (Int,Int)): Mat[T] = {
zeros[T](dims._1,dims._2)
}
}
implicit def canTabulate[T:ClassTag:Zero] = new CanTabulate[(Int,Int),Mat[T],T] {
def apply(d: (Int, Int), f: ((Int, Int)) => T): Mat[T] = tabulate[T](d._1,d._2)((r: Int, c: Int) => f((r,c)))
}
// This method only exists because of trouble in Scala-specialization land.
// basically, we turn off specialization for this loop, since it's not going to be fast anyway.
private def finishLiteral[V, R](rv: Matrix[V], rl : LiteralRow[R,V], rows: Seq[R]) {
for ((row,i) <- rows.zipWithIndex) {
rl.foreach(row, {(j, v) => rv(i,j) = v})
}
}
}
trait LowPriorityMatrix {
implicit def canSliceTensorBooleanRows[V: Semiring : ClassTag]: CanSlice2[Matrix[V], Tensor[Int, Boolean], ::.type, SliceMatrix[Int, Int, V]] = {
new CanSlice2[Matrix[V], Tensor[Int, Boolean], ::.type, SliceMatrix[Int, Int, V]] {
def apply(from: Matrix[V], rows: Tensor[Int, Boolean], cols: ::.type): SliceMatrix[Int, Int, V] = {
val cols = 0 until from.cols
new SliceMatrix(from, SliceUtils.mapRowSeq(rows.findAll(_ == true), from.rows), cols)
}
}
}
implicit def canSliceTensorBooleanCols[V: Semiring : ClassTag]: CanSlice2[Matrix[ V], ::.type, Tensor[Int, Boolean], SliceMatrix[Int, Int, V]] = {
new CanSlice2[Matrix[V], ::.type, Tensor[Int, Boolean], SliceMatrix[Int, Int, V]] {
def apply(from: Matrix[V], rows: ::.type, cols: Tensor[Int, Boolean]): SliceMatrix[Int, Int, V] = {
val rows = 0 until from.rows
new SliceMatrix(from, rows, SliceUtils.mapColumnSeq(cols.findAll(_ == true), from.cols))
}
}
}
implicit def canSliceTensorBooleanRowsAndCol[V: Semiring : ClassTag]: CanSlice2[Matrix[V], Tensor[Int, Boolean], Int, SliceVector[(Int, Int), V]] = {
new CanSlice2[Matrix[V], Tensor[Int, Boolean], Int, SliceVector[(Int, Int), V]] {
def apply(from: Matrix[V], sliceRows: Tensor[Int, Boolean], sliceCol: Int): SliceVector[(Int, Int), V] = {
val rows = SliceUtils.mapRowSeq(sliceRows.findAll(_ == true), from.rows)
val col = SliceUtils.mapColumn(sliceCol, from.cols)
new SliceVector(from, slices = rows.map(row => (row, col)))
}
}
}
implicit def canSliceRowAndTensorBooleanCols[V: Semiring : ClassTag]: CanSlice2[Matrix[V], Int, Tensor[Int, Boolean], Transpose[SliceVector[(Int, Int), V]]] = {
new CanSlice2[Matrix[V], Int, Tensor[Int, Boolean], Transpose[SliceVector[(Int, Int), V]]] {
def apply(from: Matrix[V], sliceRow: Int, sliceCols: Tensor[Int, Boolean]): Transpose[SliceVector[(Int, Int), V]] = {
val row = SliceUtils.mapRow(sliceRow, from.rows)
val cols = SliceUtils.mapColumnSeq(sliceCols.findAll(_ == true), from.cols)
new SliceVector(from, slices = cols.map(col => (row, col))).t
}
}
}
implicit def canSliceTensorBooleanRowsAndCols[V: Semiring : ClassTag]: CanSlice2[Matrix[V], Tensor[Int, Boolean], Tensor[Int, Boolean], SliceMatrix[Int, Int, V]] = {
new CanSlice2[Matrix[V], Tensor[Int, Boolean], Tensor[Int, Boolean], SliceMatrix[Int, Int, V]] {
def apply(from: Matrix[V], sliceRows: Tensor[Int, Boolean], sliceCols: Tensor[Int, Boolean]): SliceMatrix[Int, Int, V] = {
val rows = SliceUtils.mapRowSeq(sliceRows.findAll(_ == true), from.rows)
val cols = SliceUtils.mapColumnSeq(sliceCols.findAll(_ == true), from.cols)
new SliceMatrix(from, rows, cols)
}
}
}
implicit def canSliceTensorBooleanRowsAndWeirdCols[V: Semiring : ClassTag]: CanSlice2[Matrix[V], Tensor[Int, Boolean], Seq[Int], SliceMatrix[Int, Int, V]] = {
new CanSlice2[Matrix[V], Tensor[Int, Boolean], Seq[Int], SliceMatrix[Int, Int, V]] {
def apply(from: Matrix[V], sliceRows: Tensor[Int, Boolean], sliceCols: Seq[Int]): SliceMatrix[Int, Int, V] = {
val rows = SliceUtils.mapRowSeq(sliceRows.findAll(_ == true), from.rows)
val cols = SliceUtils.mapColumnSeq(sliceCols, from.cols)
new SliceMatrix(from, rows, cols)
}
}
}
implicit def canSliceWeirdRowsAndTensorBooleanCols[V: Semiring : ClassTag]: CanSlice2[Matrix[V], Seq[Int], Tensor[Int, Boolean], SliceMatrix[Int, Int, V]] = {
new CanSlice2[Matrix[V], Seq[Int], Tensor[Int, Boolean], SliceMatrix[Int, Int, V]] {
def apply(from: Matrix[V], sliceRows: Seq[Int], sliceCols: Tensor[Int, Boolean]): SliceMatrix[Int, Int, V] = {
val rows = SliceUtils.mapRowSeq(sliceRows, from.rows)
val cols = SliceUtils.mapColumnSeq(sliceCols.findAll(_ == true), from.cols)
new SliceMatrix(from, rows, cols)
}
}
}
}