
epic.framework.EPInference.scala Maven / Gradle / Ivy
package epic.framework
/*
Copyright 2012 David Hall
Licensed under the Apache License, Version 2.0 (the "License")
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
import collection.mutable.ArrayBuffer
import epic.util.SafeLogging
import nak.inference.{ExpectationPropagation, Factor}
import java.util.concurrent.atomic.AtomicLong
import epic.parser.ParseMarginal
class EPInference[Datum, Augment <: AnyRef](val inferences: IndexedSeq[ProjectableInference[Datum, Augment]],
val maxEPIter: Int,
val epInGold: Boolean = false)(implicit aIsFactor: Augment <:< Factor[Augment]) extends ProjectableInference[Datum, Augment] with SafeLogging with Serializable {
type Marginal = EPMarginal[Augment, ProjectableInference[Datum, Augment]#Marginal]
type ExpectedCounts = EPExpectedCounts
type Scorer = EPScorer[ProjectableInference[Datum, Augment]#Scorer]
def baseAugment(v: Datum) = inferences.filter(_ ne null).head.baseAugment(v)
def project(v: Datum, s: Scorer, m: Marginal, oldAugment: Augment): Augment = m.q
def scorer(v: Datum): Scorer = EPScorer(inferences.map(_.scorer(v)))
override def forTesting = new EPInference(inferences.map(_.forTesting), maxEPIter, epInGold)
// ugh code duplication...
def goldMarginal(scorer: Scorer, datum: Datum, augment: Augment): Marginal = {
if(!epInGold) {
val marginals = for(i <- 0 until inferences.length) yield {
val inf = inferences(i)
if(inf eq null)
null.asInstanceOf[ProjectableInference[Datum, Augment]#Marginal]
else
inf.goldMarginal(scorer.scorers(i).asInstanceOf[inf.Scorer], datum)
}
val ((inf, m), iScorer) = (inferences zip marginals zip scorer.scorers).filter(_._1._2 != null).head
EPMarginal(marginals.filter(_ ne null).map(_.logPartition).sum, inf.project(datum, iScorer.asInstanceOf[inf.Scorer], m.asInstanceOf[inf.Marginal], augment), marginals)
} else {
EPInference.doInference(datum, augment, inferences, scorer, (inf:ProjectableInference[Datum, Augment], scorer: ProjectableInference[Datum, Augment]#Scorer, q: Augment) => inf.goldMarginal(scorer.asInstanceOf[inf.Scorer], datum, q), maxEPIter)
}
}
def marginal(scorer: Scorer, datum: Datum, augment: Augment): Marginal = {
EPInference.doInference(datum, augment, inferences, scorer, (inf:ProjectableInference[Datum, Augment], scorer: ProjectableInference[Datum, Augment]#Scorer, q: Augment) => inf.marginal(scorer.asInstanceOf[inf.Scorer], datum, q), maxEPIter)
}
}
case class EPMarginal[Augment, Marginal](logPartition: Double, q: Augment, marginals: IndexedSeq[Marginal]) extends epic.framework.Marginal
object EPInference extends SafeLogging {
val iters, calls = new AtomicLong(0)
def doInference[Datum, Augment <: AnyRef,
Marginal <: ProjectableInference[Datum, Augment]#Marginal,
Scorer](datum: Datum,
augment: Augment, inferences: IndexedSeq[ProjectableInference[Datum, Augment]],
scorer: EPScorer[Scorer],
infType: (ProjectableInference[Datum, Augment],Scorer, Augment)=>Marginal,
maxEPIter: Int = 5,
convergenceThreshold: Double = 1E-4)
(implicit aIsFactor: Augment <:< Factor[Augment]):EPMarginal[Augment, Marginal] = {
var iter = 0
val marginals = ArrayBuffer.fill(inferences.length)(null.asInstanceOf[Marginal])
def project(q: Augment, i: Int) = {
val inf = inferences(i)
marginals(i) = null.asInstanceOf[Marginal]
val iScorer = scorer.scorers(i)
var marg = infType(inf, iScorer, q)
var contributionToLikelihood = marg.logPartition
if (contributionToLikelihood.isInfinite || contributionToLikelihood.isNaN) {
logger.error(s"Model $i is misbehaving ($contributionToLikelihood) on iter $iter! Datum: $datum" )
throw new RuntimeException("EP is being sad!")
/*
marg = inf.marginal(datum)
contributionToLikelihood = marg.logPartition
if (contributionToLikelihood.isInfinite || contributionToLikelihood.isNaN) {
throw new RuntimeException(s"Model $i is misbehaving ($contributionToLikelihood) on iter $iter! Datum: " + datum )
}
*/
}
val newAugment = inf.project(datum, iScorer.asInstanceOf[inf.Scorer], marg.asInstanceOf[inf.Marginal], q)
marginals(i) = marg
// println("Leaving " + i)
newAugment -> contributionToLikelihood
}
val ep = new ExpectationPropagation(project _, convergenceThreshold)
val inferencesToUse = (0 until inferences.length).filter(inferences(_) ne null)
var state: ep.State = null
val iterates = ep.inference(augment, inferencesToUse, inferencesToUse.map(i => inferences(i).baseAugment(datum)))
while (iter < maxEPIter && iterates.hasNext) {
val s = iterates.next()
iter += 1
state = s
}
EPInference.iters.addAndGet(iter)
if(EPInference.calls.incrementAndGet % 1000 == 0) {
val calls = EPInference.calls.get()
val iters = EPInference.iters.get()
logger.info(s"EP Stats $iters $calls ${iters * 1.0 / calls} $maxEPIter")
EPInference.calls.set(0)
EPInference.iters.set(0)
}
logger.debug(f"guess($iter%d:${state.logPartition}%.1f)")
EPMarginal(state.logPartition, state.q, marginals)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy