
nak.liblinear.Train Maven / Gradle / Ivy
The newest version!
package nak.liblinear;
import static nak.liblinear.Linear.atof;
import static nak.liblinear.Linear.atoi;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.StringTokenizer;
public class Train {
public static void main(String[] args) throws IOException, InvalidInputDataException {
new Train().run(args);
}
private double bias = 1;
private boolean cross_validation = false;
private String inputFilename;
private String modelFilename;
private int nr_fold;
private Parameter param = null;
private Problem prob = null;
private void do_cross_validation() {
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double[] target = new double[prob.l];
long start, stop;
start = System.currentTimeMillis();
Linear.crossValidation(prob, param, nr_fold, target);
stop = System.currentTimeMillis();
System.out.println("time: " + (stop - start) + " ms");
if (param.solverType.isSupportVectorRegression()) {
for (int i = 0; i < prob.l; i++) {
double y = prob.y[i];
double v = target[i];
total_error += (v - y) * (v - y);
sumv += v;
sumy += y;
sumvv += v * v;
sumyy += y * y;
sumvy += v * y;
}
System.out.printf("Cross Validation Mean squared error = %g%n", total_error / prob.l);
System.out.printf("Cross Validation Squared correlation coefficient = %g%n", //
((prob.l * sumvy - sumv * sumy) * (prob.l * sumvy - sumv * sumy)) / ((prob.l * sumvv - sumv * sumv) * (prob.l * sumyy - sumy * sumy)));
} else {
int total_correct = 0;
for (int i = 0; i < prob.l; i++)
if (target[i] == prob.y[i]) ++total_correct;
System.out.printf("correct: %d%n", total_correct);
System.out.printf("Cross Validation Accuracy = %g%%%n", 100.0 * total_correct / prob.l);
}
}
private void exit_with_help() {
System.out.printf("Usage: train [options] training_set_file [model_file]%n" //
+ "options:%n"
+ "-s type : set type of solver (default 1)%n"
+ " for multi-class classification%n"
+ " 0 -- L2-regularized logistic regression (primal)%n"
+ " 1 -- L2-regularized L2-loss support vector classification (dual)%n"
+ " 2 -- L2-regularized L2-loss support vector classification (primal)%n"
+ " 3 -- L2-regularized L1-loss support vector classification (dual)%n"
+ " 4 -- support vector classification by Crammer and Singer%n"
+ " 5 -- L1-regularized L2-loss support vector classification%n"
+ " 6 -- L1-regularized logistic regression%n"
+ " 7 -- L2-regularized logistic regression (dual)%n"
+ " for regression%n"
+ " 11 -- L2-regularized L2-loss support vector regression (primal)%n"
+ " 12 -- L2-regularized L2-loss support vector regression (dual)%n"
+ " 13 -- L2-regularized L1-loss support vector regression (dual)%n"
+ "-c cost : set the parameter C (default 1)%n"
+ "-p epsilon : set the epsilon in loss function of SVR (default 0.1)%n"
+ "-e epsilon : set tolerance of termination criterion%n"
+ " -s 0 and 2%n" + " |f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,%n"
+ " where f is the primal function and pos/neg are # of%n"
+ " positive/negative data (default 0.01)%n" + " -s 11%n"
+ " |f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.001)%n"
+ " -s 1, 3, 4 and 7%n" + " Dual maximal violation <= eps; similar to libsvm (default 0.1)%n"
+ " -s 5 and 6%n"
+ " |f'(w)|_1 <= eps*min(pos,neg)/l*|f'(w0)|_1,%n"
+ " where f is the primal function (default 0.01)%n"
+ " -s 12 and 13\n"
+ " |f'(alpha)|_1 <= eps |f'(alpha0)|,\n"
+ " where f is the dual function (default 0.1)\n"
+ "-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)%n"
+ "-wi weight: weights adjust the parameter C of different classes (see README for details)%n"
+ "-v n: n-fold cross validation mode%n"
+ "-q : quiet mode (no outputs)%n");
System.exit(1);
}
Problem getProblem() {
return prob;
}
double getBias() {
return bias;
}
Parameter getParameter() {
return param;
}
void parse_command_line(String argv[]) {
int i;
// eps: see setting below
param = new Parameter(SolverType.L2R_L2LOSS_SVC_DUAL, 1, Double.POSITIVE_INFINITY, 0.1);
// default values
bias = -1;
cross_validation = false;
// parse options
for (i = 0; i < argv.length; i++) {
if (argv[i].charAt(0) != '-') break;
if (++i >= argv.length) exit_with_help();
switch (argv[i - 1].charAt(1)) {
case 's':
param.solverType = SolverType.getById(atoi(argv[i]));
break;
case 'c':
param.setC(atof(argv[i]));
break;
case 'p':
param.setP(atof(argv[i]));
break;
case 'e':
param.setEps(atof(argv[i]));
break;
case 'B':
bias = atof(argv[i]);
break;
case 'w':
int weightLabel = atoi(argv[i - 1].substring(2));
double weight = atof(argv[i]);
param.weightLabel = addToArray(param.weightLabel, weightLabel);
param.weight = addToArray(param.weight, weight);
break;
case 'v':
cross_validation = true;
nr_fold = atoi(argv[i]);
if (nr_fold < 2) {
System.err.println("n-fold cross validation: n must >= 2");
exit_with_help();
}
break;
case 'q':
i--;
Linear.disableDebugOutput();
break;
default:
System.err.println("unknown option");
exit_with_help();
}
}
// determine filenames
if (i >= argv.length) exit_with_help();
inputFilename = argv[i];
if (i < argv.length - 1)
modelFilename = argv[i + 1];
else {
int p = argv[i].lastIndexOf('/');
++p; // whew...
modelFilename = argv[i].substring(p) + ".model";
}
if (param.eps == Double.POSITIVE_INFINITY) {
switch (param.solverType) {
case L2R_LR:
case L2R_L2LOSS_SVC:
param.setEps(0.01);
break;
case L2R_L2LOSS_SVR:
param.setEps(0.001);
break;
case L2R_L2LOSS_SVC_DUAL:
case L2R_L1LOSS_SVC_DUAL:
case MCSVM_CS:
case L2R_LR_DUAL:
param.setEps(0.1);
break;
case L1R_L2LOSS_SVC:
case L1R_LR:
param.setEps(0.01);
break;
case L2R_L1LOSS_SVR_DUAL:
case L2R_L2LOSS_SVR_DUAL:
param.setEps(0.1);
break;
default:
throw new IllegalStateException("unknown solver type: " + param.solverType);
}
}
}
/**
* reads a problem from LibSVM format
* @param file the SVM file
* @throws IOException obviously in case of any I/O exception ;)
* @throws InvalidInputDataException if the input file is not correctly formatted
*/
public static Problem readProblem(File file, double bias) throws IOException, InvalidInputDataException {
BufferedReader fp = new BufferedReader(new FileReader(file));
List vy = new ArrayList();
List vx = new ArrayList();
int max_index = 0;
int lineNr = 0;
try {
while (true) {
String line = fp.readLine();
if (line == null) break;
lineNr++;
StringTokenizer st = new StringTokenizer(line, " \t\n\r\f:");
String token;
try {
token = st.nextToken();
} catch (NoSuchElementException e) {
throw new InvalidInputDataException("empty line", file, lineNr, e);
}
try {
vy.add(atof(token));
} catch (NumberFormatException e) {
throw new InvalidInputDataException("invalid label: " + token, file, lineNr, e);
}
int m = st.countTokens() / 2;
Feature[] x;
if (bias >= 0) {
x = new Feature[m + 1];
} else {
x = new Feature[m];
}
int indexBefore = 0;
for (int j = 0; j < m; j++) {
token = st.nextToken();
int index;
try {
index = atoi(token);
} catch (NumberFormatException e) {
throw new InvalidInputDataException("invalid index: " + token, file, lineNr, e);
}
// assert that indices are valid and sorted
if (index < 0) throw new InvalidInputDataException("invalid index: " + index, file, lineNr);
if (index <= indexBefore) throw new InvalidInputDataException("indices must be sorted in ascending order", file, lineNr);
indexBefore = index;
token = st.nextToken();
try {
double value = atof(token);
x[j] = new FeatureNode(index, value);
} catch (NumberFormatException e) {
throw new InvalidInputDataException("invalid value: " + token, file, lineNr);
}
}
if (m > 0) {
max_index = Math.max(max_index, x[m - 1].getIndex());
}
vx.add(x);
}
return constructProblem(vy, vx, max_index, bias);
}
finally {
fp.close();
}
}
void readProblem(String filename) throws IOException, InvalidInputDataException {
prob = Train.readProblem(new File(filename), bias);
}
private static int[] addToArray(int[] array, int newElement) {
int length = array != null ? array.length : 0;
int[] newArray = new int[length + 1];
if (array != null && length > 0) {
System.arraycopy(array, 0, newArray, 0, length);
}
newArray[length] = newElement;
return newArray;
}
private static double[] addToArray(double[] array, double newElement) {
int length = array != null ? array.length : 0;
double[] newArray = new double[length + 1];
if (array != null && length > 0) {
System.arraycopy(array, 0, newArray, 0, length);
}
newArray[length] = newElement;
return newArray;
}
private static Problem constructProblem(List vy, List vx, int max_index, double bias) {
Problem prob = new Problem();
prob.bias = bias;
prob.l = vy.size();
prob.n = max_index;
if (bias >= 0) {
prob.n++;
}
prob.x = new Feature[prob.l][];
for (int i = 0; i < prob.l; i++) {
prob.x[i] = vx.get(i);
if (bias >= 0) {
assert prob.x[i][prob.x[i].length - 1] == null;
prob.x[i][prob.x[i].length - 1] = new FeatureNode(max_index + 1, bias);
}
}
prob.y = new double[prob.l];
for (int i = 0; i < prob.l; i++)
prob.y[i] = vy.get(i).doubleValue();
return prob;
}
private void run(String[] args) throws IOException, InvalidInputDataException {
parse_command_line(args);
readProblem(inputFilename);
if (cross_validation)
do_cross_validation();
else {
Model model = Linear.train(prob, param);
Linear.saveModel(new File(modelFilename), model);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy