org.scalactic.anyvals.PosInt.scala Maven / Gradle / Ivy
/* * Copyright 2001-2014 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalactic.anyvals import scala.language.implicitConversions import scala.collection.immutable.Range /** * AnFloat in Scala can lose precision.) This makes it convenient to * use aAnyValfor positiveInts. * * Note: aPosIntmay not equal 0. If you want positive * number or 0, use [[PosZInt]]. * ** Because
* *PosIntis anAnyValit will usually be * as efficient as anInt, being boxed only when anInt* would have been boxed. ** The
* *PosInt.applyfactory method is implemented in terms of a macro that * checks literals for validity at compile time. CallingPosInt.applywith * a literalIntvalue will either produce a validPosIntinstance * at run time or an error at compile time. Here's an example: ** scala> import anyvals._ * import anyvals._ * * scala> PosInt(1) * res0: org.scalactic.anyvals.PosInt = PosInt(1) * * scala> PosInt(0) * <console>:14: error: PosInt.apply can only be invoked on a positive (i > 0) integer literal, like PosInt(42). * PosInt(0) * ^ ** **
* *PosInt.applycannot be used if the value being passed is a variable (i.e., not a literal), because * the macro cannot determine the validity of variables at compile time (just literals). If you try to pass a variable * toPosInt.apply, you'll get a compiler error that suggests you use a different factor method, *PosInt.from, instead: ** scala> val x = 1 * x: Int = 1 * * scala> PosInt(x) * <console>:15: error: PosInt.apply can only be invoked on an integer literal, like PosInt(42). Please use PosInt.from instead. * PosInt(x) * ^ ** ** The
* *PosInt.fromfactory method will inspect the value at runtime and return anOption[PosInt]. If * the value is valid,PosInt.fromwill return aSome[PosInt], else it will return aNone. * Here's an example: ** scala> PosInt.from(x) * res3: Option[org.scalactic.anyvals.PosInt] = Some(PosInt(1)) * * scala> val y = 0 * y: Int = 0 * * scala> PosInt.from(y) * res4: Option[org.scalactic.anyvals.PosInt] = None ** ** The
* *PosInt.applyfactory method is marked implicit, so that you can pass literalInts * into methods that requirePosInt, and get the same compile-time checking you get when calling *PosInt.applyexplicitly. Here's an example: ** scala> def invert(pos: PosInt): Int = Int.MaxValue - pos * invert: (pos: org.scalactic.anyvals.PosInt)Int * * scala> invert(1) * res0: Int = 2147483646 * * scala> invert(Int.MaxValue) * res1: Int = 0 * * scala> invert(0) * <console>:15: error: PosInt.apply can only be invoked on a positive (i > 0) integer literal, like PosInt(42). * invert(0) * ^ * * scala> invert(-1) * <console>:15: error: PosInt.apply can only be invoked on a positive (i > 0) integer literal, like PosInt(42). * invert(-1) * ^ * ** ** This example also demonstrates that the
PosIntcompanion object also defines implicit widening conversions * when either no loss of precision will occur or a similar conversion is provided in Scala. (For example, the implicit * conversion fromInttoPosIntwhere anIntor wider type is needed. An example is the subtraction in the body * of theinvertmethod defined above,Int.MaxValue - pos. AlthoughInt.MaxValueis * anInt, which has no-method that takes aPosInt(the type ofpos), * you can still subtractpos, because thePosIntwill be implicitly widened toInt. * * * @param value TheIntvalue underlying thisPosInt. */ final class PosInt private (val value: Int) extends AnyVal { /** * A string representation of thisPosInt. */ override def toString: String = s"PosInt($value)" /** * Converts thisPosIntto aByte. */ def toByte: Byte = value.toByte /** * Converts thisPosIntto aShort. */ def toShort: Short = value.toShort /** * Converts thisPosIntto aChar. */ def toChar: Char = value.toChar /** * Converts thisPosIntto anInt. */ def toInt: Int = value.toInt /** * Converts thisPosIntto aLong. */ def toLong: Long = value.toLong /** * Converts thisPosIntto aFloat. */ def toFloat: Float = value.toFloat /** * Converts thisPosIntto aDouble. */ def toDouble: Double = value.toDouble /** * Returns the bitwise negation of this value. * @example {{{ * ~5 == -6 * // in binary: ~00000101 == * // 11111010 * }}} */ def unary_~ : Int = ~value /** Returns this value, unmodified. */ def unary_+ : PosInt = this /** Returns the negation of this value. */ def unary_- : Int = -value /** * Converts thisPosInt's value to a string then concatenates the given string. */ def +(x: String): String = value + x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the new right bits with zeroes. * @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}} */ def <<(x: Int): Int = value << x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the new right bits with zeroes. * @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}} */ def <<(x: Long): Int = value << x /** * Returns this value bit-shifted right by the specified number of bits, * filling the new left bits with zeroes. * @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}} * @example {{{ * -21 >>> 3 == 536870909 * // in binary: 11111111 11111111 11111111 11101011 >>> 3 == * // 00011111 11111111 11111111 11111101 * }}} */ def >>>(x: Int): Int = value >>> x /** * Returns this value bit-shifted right by the specified number of bits, * filling the new left bits with zeroes. * @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}} * @example {{{ * -21 >>> 3 == 536870909 * // in binary: 11111111 11111111 11111111 11101011 >>> 3 == * // 00011111 11111111 11111111 11111101 * }}} */ def >>>(x: Long): Int = value >>> x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the right bits with the same value as the left-most bit of this. * The effect of this is to retain the sign of the value. * @example {{{ * -21 >> 3 == -3 * // in binary: 11111111 11111111 11111111 11101011 >> 3 == * // 11111111 11111111 11111111 11111101 * }}} */ def >>(x: Int): Int = value >> x /** * Returns this value bit-shifted left by the specified number of bits, * filling in the right bits with the same value as the left-most bit of this. * The effect of this is to retain the sign of the value. * @example {{{ * -21 >> 3 == -3 * // in binary: 11111111 11111111 11111111 11101011 >> 3 == * // 11111111 11111111 11111111 11111101 * }}} */ def >>(x: Long): Int = value >> x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Byte): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Short): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Char): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Int): Int = value | x /** * Returns the bitwise OR of this value and `x`. * @example {{{ * (0xf0 | 0xaa) == 0xfa * // in binary: 11110000 * // | 10101010 * // -------- * // 11111010 * }}} */ def |(x: Long): Long = value | x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Byte): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Short): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Char): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Int): Int = value & x /** * Returns the bitwise AND of this value and `x`. * @example {{{ * (0xf0 & 0xaa) == 0xa0 * // in binary: 11110000 * // & 10101010 * // -------- * // 10100000 * }}} */ def &(x: Long): Long = value & x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Byte): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Short): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Char): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Int): Int = value ^ x /** * Returns the bitwise XOR of this value and `x`. * @example {{{ * (0xf0 ^ 0xaa) == 0x5a * // in binary: 11110000 * // ^ 10101010 * // -------- * // 01011010 * }}} */ def ^(x: Long): Long = value ^ x /** Returns the sum of this value and `x`. */ def +(x: Byte): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Int = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Long = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Int = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Long = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Int = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Long = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Int = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Long = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Int = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Long = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from RichInt: /** * Returns a string representation of thisPosInt's underlyingIntas an * unsigned integer in base 2. * ** The unsigned integer value is the argument plus 232 * if this
* * @return the string representation of the unsigned integer value * represented by thisPosInt's underlyingIntis negative; otherwise it is equal to the * underlyingInt. This value is converted to a string of ASCII digits * in binary (base 2) with no extra leading0s. * If the unsigned magnitude is zero, it is represented by a * single zero character'0'* ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The characters'0'* ('\u0030') and'1'* ('\u0031') are used as binary digits. *PosInt's underlyingIntin binary (base 2). */ def toBinaryString: String = java.lang.Integer.toBinaryString(value) /** * Returns a string representation of thisPosInt's underlyingIntas an * unsigned integer in base 16. * ** The unsigned integer value is the argument plus 232 * if this
* *PosInt's underlyingIntis negative; otherwise, it is equal to the * thisPosInt's underlyingIntThis value is converted to a string of ASCII digits * in hexadecimal (base 16) with no extra leading *0s. If the unsigned magnitude is zero, it is * represented by a single zero character'0'* ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as * hexadecimal digits: *** * These are the characters0123456789abcdef*'\u0030'through *'\u0039'and'\u0061'through *'\u0066'. If uppercase letters are * desired, thetoUpperCasemethod may * be called on the result. * * @return the string representation of the unsigned integer value * represented by thisPosInt's underlyingIntin hexadecimal (base 16). */ def toHexString: String = java.lang.Integer.toHexString(value) /** * Returns a string representation of thisPosInt's underlyingIntas an * unsigned integer in base 8. * *The unsigned integer value is this
PosInt's underlyingIntplus 232 * if the underlyingIntis negative; otherwise, it is equal to the * underlyingInt. This value is converted to a string of ASCII digits * in octal (base 8) with no extra leading0s. * *If the unsigned magnitude is zero, it is represented by a * single zero character
'0'* ('\u0030'); otherwise, the first character of * the representation of the unsigned magnitude will not be the * zero character. The following characters are used as octal * digits: * *** * These are the characters01234567*'\u0030'through *'\u0037'. * * @return the string representation of the unsigned integer value * represented by thisPosInt's underlyingIntin octal (base 8). */ def toOctalString: String = java.lang.Integer.toOctalString(value) /** * Create aRangefrom thisPosIntvalue * until the specifiedend(exclusive) with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range]] from `this` up to but * not including `end`. */ def until(end: Int): Range = Range(value, end) /** * Create aRangefrom thisPosIntvalue * until the specifiedend(exclusive) with the specifiedstepvalue. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.Range]] from `this` up to but * not including `end`. */ def until(end: Int, step: Int): Range = Range(value, end, step) /** * Create an inclusiveRangefrom thisPosIntvalue * to the specifiedendwith step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range]] from `'''this'''` up to * and including `end`. */ def to(end: Int): Range.Inclusive = Range.inclusive(value, end) /** * Create an inclusiveRangefrom thisPosIntvalue * to the specifiedendwith the specifiedstepvalue. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.Range]] from `'''this'''` up to * and including `end`. */ def to(end: Int, step: Int): Range.Inclusive = Range.inclusive(value, end, step) // No point to call abs on a PosInt. /** * Returnsthisifthis > thatorthatotherwise. */ def max(that: PosInt): PosInt = if (math.max(value, that.value) == value) this else that /** * Returnsthisifthis < thatorthatotherwise. */ def min(that: PosInt): PosInt = if (math.min(value, that.value) == value) this else that } /** * The companion object forPosIntthat offers factory methods that * producePosInts, implicit widening conversions fromPosInt* to other numeric types, and maximum and minimum constant values forPosInt. */ object PosInt { /** * The largest value representable as a positiveInt, which isPosInt(2147483647). */ final val MaxValue: PosInt = PosInt.from(Int.MaxValue).get /** * The smallest value representable as a positiveInt, which isPosInt(1). */ final val MinValue: PosInt = PosInt.from(1).get // Can't use the macro here // TODO: Use one method for validation, as suggested in I think the UK. /** * A factory method that produces anOption[PosInt]given an *Intvalue. * ** This method will inspect the passed
* *Intvalue and if * it is a positiveInt, i.e., a value greater * than 0, it will return aPosIntrepresenting that value, * wrapped in aSome. Otherwise, the passedInt* value is 0 or negative, so this method will returnNone. ** This factory method differs from the
* * @param value theapplyfactory method * in thatapplyis implemented via a macro that inspects *Intliterals at compile time, whereasfrominspects *Intvalues at run time. *Intto inspect, and if positive, return * wrapped in aSome[PosInt]. * @return the specifiedIntvalue wrapped * in aSome[PosInt], if it is positive, elseNone. */ def from(value: Int): Option[PosInt] = if (PosIntMacro.isValid(value)) Some(new PosInt(value)) else None import language.experimental.macros /** * A factory method, implemented via a macro, that produces aPosInt* if passed a validIntliteral, otherwise a compile time error. * ** The macro that implements this method will inspect the specified
* *Int* expression at compile time. If * the expression is a positiveIntliteral, i.e., with a * value greater than 0, it will return aPosIntrepresenting that value. * Otherwise, the passedInt* expression is either a literal that is 0 or negative, or is not a literal, so * this method will give a compiler error. ** This factory method differs from the
* * @param value thefromfactory method * in that this method is implemented via a macro that inspects *Intliterals at compile time, whereasfrominspects *Intvalues at run time. *Intliteral expression to inspect at compile time, * and if positive, to return wrapped in aPosIntat run time. * @return the specified, validIntliteral value wrapped * in aPosInt. (If the specified expression is not a valid *Intliteral, the invocation of this method will not * compile.) */ implicit def apply(value: Int): PosInt = macro PosIntMacro.apply /** * Implicit widening conversion fromPosInttoInt. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt. */ implicit def widenToInt(pos: PosInt): Int = pos.value /** * Implicit widening conversion fromPosInttoLong. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toLong. */ implicit def widenToLong(pos: PosInt): Long = pos.value /** * Implicit widening conversion fromPosInttoFloat. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toFloat. */ implicit def widenToFloat(pos: PosInt): Float = pos.value /** * Implicit widening conversion fromPosInttoDouble. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toDouble. */ implicit def widenToDouble(pos: PosInt): Double = pos.value /** * Implicit widening conversion fromPosInttoPosLong. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toLongand wrapped in aPosLong. */ implicit def widenToPosLong(pos: PosInt): PosLong = PosLong.from(pos.value).get /** * Implicit widening conversion fromPosInttoPosFloat. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toFloatand wrapped in aPosFloat. */ implicit def widenToPosFloat(pos: PosInt): PosFloat = PosFloat.from(pos.value).get /** * Implicit widening conversion fromPosInttoPosDouble. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toDoubleand wrapped in aPosDouble. */ implicit def widenToPosDouble(pos: PosInt): PosDouble = PosDouble.from(pos.value).get /** * Implicit widening conversion fromPosInttoPosZInt. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, wrapped in aPosZInt. */ implicit def widenToPosZInt(pos: PosInt): PosZInt = PosZInt.from(pos.value).get /** * Implicit widening conversion fromPosInttoPosZLong. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toLongand wrapped in aPosZLong. */ implicit def widenToPosZLong(pos: PosInt): PosZLong = PosZLong.from(pos.value).get /** * Implicit widening conversion fromPosInttoPosZFloat. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toFloatand wrapped in aPosZFloat. */ implicit def widenToPosZFloat(pos: PosInt): PosZFloat = PosZFloat.from(pos.value).get /** * Implicit widening conversion fromPosInttoPosZDouble. * * @param pos thePosIntto widen * @return theIntvalue underlying the specifiedPosInt, * widened toDoubleand wrapped in aPosZDouble. */ implicit def widenToPosZDouble(pos: PosInt): PosZDouble = PosZDouble.from(pos.value).get /** * Implicit Ordering instance. */ implicit val posIntOrd: Ordering[PosInt] = new Ordering[PosInt] { def compare(x: PosInt, y: PosInt): Int = x - y } }