
org.scalactic.anyvals.PosInt.scala Maven / Gradle / Ivy
/*
* Copyright 2001-2014 Artima, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.scalactic.anyvals
import scala.collection.immutable.Range
import scala.language.implicitConversions
/**
* An AnyVal
for positive Int
s.
*
* Note: a PosInt
may not equal 0. If you want positive
* number or 0, use [[PosZInt]].
*
*
* Because PosInt
is an AnyVal
it will usually be
* as efficient as an Int
, being boxed only when an Int
* would have been boxed.
*
*
*
* The PosInt.apply
factory method is implemented in terms of a macro that
* checks literals for validity at compile time. Calling PosInt.apply
with
* a literal Int
value will either produce a valid PosInt
instance
* at run time or an error at compile time. Here's an example:
*
*
* * scala> import anyvals._
* import anyvals._
*
* scala> PosInt(1)
* res0: org.scalactic.anyvals.PosInt = PosInt(1)
*
* scala> PosInt(0)
* <console>:14: error: PosInt.apply can only be invoked on a positive (i > 0) integer literal, like PosInt(42).
* PosInt(0)
* ^
*
*
*
* PosInt.apply
cannot be used if the value being passed is a variable (i.e., not a literal), because
* the macro cannot determine the validity of variables at compile time (just literals). If you try to pass a variable
* to PosInt.apply
, you'll get a compiler error that suggests you use a different factor method,
* PosInt.from
, instead:
*
*
* * scala> val x = 1
* x: Int = 1
*
* scala> PosInt(x)
* <console>:15: error: PosInt.apply can only be invoked on an integer literal, like PosInt(42). Please use PosInt.from instead.
* PosInt(x)
* ^
*
*
*
* The PosInt.from
factory method will inspect the value at runtime and return an Option[PosInt]
. If
* the value is valid, PosInt.from
will return a Some[PosInt]
, else it will return a None
.
* Here's an example:
*
*
* * scala> PosInt.from(x)
* res3: Option[org.scalactic.anyvals.PosInt] = Some(PosInt(1))
*
* scala> val y = 0
* y: Int = 0
*
* scala> PosInt.from(y)
* res4: Option[org.scalactic.anyvals.PosInt] = None
*
*
*
* The PosInt.apply
factory method is marked implicit, so that you can pass literal Int
s
* into methods that require PosInt
, and get the same compile-time checking you get when calling
* PosInt.apply
explicitly. Here's an example:
*
*
* * scala> def invert(pos: PosInt): Int = Int.MaxValue - pos
* invert: (pos: org.scalactic.anyvals.PosInt)Int
*
* scala> invert(1)
* res0: Int = 2147483646
*
* scala> invert(Int.MaxValue)
* res1: Int = 0
*
* scala> invert(0)
* <console>:15: error: PosInt.apply can only be invoked on a positive (i > 0) integer literal, like PosInt(42).
* invert(0)
* ^
*
* scala> invert(-1)
* <console>:15: error: PosInt.apply can only be invoked on a positive (i > 0) integer literal, like PosInt(42).
* invert(-1)
* ^
*
*
*
*
* This example also demonstrates that the PosInt
companion object also defines implicit widening conversions
* when either no loss of precision will occur or a similar conversion is provided in Scala. (For example, the implicit
* conversion from Int
to
Float in Scala can lose precision.) This makes it convenient to
* use a PosInt
where an Int
or wider type is needed. An example is the subtraction in the body
* of the invert
method defined above, Int.MaxValue - pos
. Although Int.MaxValue
is
* an Int
, which has no -
method that takes a PosInt
(the type of pos
),
* you can still subtract pos
, because the PosInt
will be implicitly widened to Int
.
*
*
* @param value The Int
value underlying this PosInt
.
*/
final class PosInt private (val value: Int) extends AnyVal {
/**
* A string representation of this PosInt
.
*/
override def toString: String = s"PosInt($value)"
/**
* Converts this PosInt
to a Byte
.
*/
def toByte: Byte = value.toByte
/**
* Converts this PosInt
to a Short
.
*/
def toShort: Short = value.toShort
/**
* Converts this PosInt
to a Char
.
*/
def toChar: Char = value.toChar
/**
* Converts this PosInt
to an Int
.
*/
def toInt: Int = value.toInt
/**
* Converts this PosInt
to a Long
.
*/
def toLong: Long = value.toLong
/**
* Converts this PosInt
to a Float
.
*/
def toFloat: Float = value.toFloat
/**
* Converts this PosInt
to a Double
.
*/
def toDouble: Double = value.toDouble
/**
* Returns the bitwise negation of this value.
* @example {{{
* ~5 == -6
* // in binary: ~00000101 ==
* // 11111010
* }}}
*/
def unary_~ : Int = ~value
/** Returns this value, unmodified. */
def unary_+ : PosInt = this
/** Returns the negation of this value. */
def unary_- : Int = -value
/**
* Converts this PosInt
's value to a string then concatenates the given string.
*/
def +(x: String): String = value + x
/**
* Returns this value bit-shifted left by the specified number of bits,
* filling in the new right bits with zeroes.
* @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}}
*/
def <<(x: Int): Int = value << x
/**
* Returns this value bit-shifted left by the specified number of bits,
* filling in the new right bits with zeroes.
* @example {{{ 6 << 3 == 48 // in binary: 0110 << 3 == 0110000 }}}
*/
def <<(x: Long): Int = value << x
/**
* Returns this value bit-shifted right by the specified number of bits,
* filling the new left bits with zeroes.
* @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}}
* @example {{{
* -21 >>> 3 == 536870909
* // in binary: 11111111 11111111 11111111 11101011 >>> 3 ==
* // 00011111 11111111 11111111 11111101
* }}}
*/
def >>>(x: Int): Int = value >>> x
/**
* Returns this value bit-shifted right by the specified number of bits,
* filling the new left bits with zeroes.
* @example {{{ 21 >>> 3 == 2 // in binary: 010101 >>> 3 == 010 }}}
* @example {{{
* -21 >>> 3 == 536870909
* // in binary: 11111111 11111111 11111111 11101011 >>> 3 ==
* // 00011111 11111111 11111111 11111101
* }}}
*/
def >>>(x: Long): Int = value >>> x
/**
* Returns this value bit-shifted left by the specified number of bits,
* filling in the right bits with the same value as the left-most bit of this.
* The effect of this is to retain the sign of the value.
* @example {{{
* -21 >> 3 == -3
* // in binary: 11111111 11111111 11111111 11101011 >> 3 ==
* // 11111111 11111111 11111111 11111101
* }}}
*/
def >>(x: Int): Int = value >> x
/**
* Returns this value bit-shifted left by the specified number of bits,
* filling in the right bits with the same value as the left-most bit of this.
* The effect of this is to retain the sign of the value.
* @example {{{
* -21 >> 3 == -3
* // in binary: 11111111 11111111 11111111 11101011 >> 3 ==
* // 11111111 11111111 11111111 11111101
* }}}
*/
def >>(x: Long): Int = value >> x
/** Returns `true` if this value is less than x, `false` otherwise. */
def <(x: Byte): Boolean = value < x
/** Returns `true` if this value is less than x, `false` otherwise. */
def <(x: Short): Boolean = value < x
/** Returns `true` if this value is less than x, `false` otherwise. */
def <(x: Char): Boolean = value < x
/** Returns `true` if this value is less than x, `false` otherwise. */
def <(x: Int): Boolean = value < x
/** Returns `true` if this value is less than x, `false` otherwise. */
def <(x: Long): Boolean = value < x
/** Returns `true` if this value is less than x, `false` otherwise. */
def <(x: Float): Boolean = value < x
/** Returns `true` if this value is less than x, `false` otherwise. */
def <(x: Double): Boolean = value < x
/** Returns `true` if this value is less than or equal to x, `false` otherwise. */
def <=(x: Byte): Boolean = value <= x
/** Returns `true` if this value is less than or equal to x, `false` otherwise. */
def <=(x: Short): Boolean = value <= x
/** Returns `true` if this value is less than or equal to x, `false` otherwise. */
def <=(x: Char): Boolean = value <= x
/** Returns `true` if this value is less than or equal to x, `false` otherwise. */
def <=(x: Int): Boolean = value <= x
/** Returns `true` if this value is less than or equal to x, `false` otherwise. */
def <=(x: Long): Boolean = value <= x
/** Returns `true` if this value is less than or equal to x, `false` otherwise. */
def <=(x: Float): Boolean = value <= x
/** Returns `true` if this value is less than or equal to x, `false` otherwise. */
def <=(x: Double): Boolean = value <= x
/** Returns `true` if this value is greater than x, `false` otherwise. */
def >(x: Byte): Boolean = value > x
/** Returns `true` if this value is greater than x, `false` otherwise. */
def >(x: Short): Boolean = value > x
/** Returns `true` if this value is greater than x, `false` otherwise. */
def >(x: Char): Boolean = value > x
/** Returns `true` if this value is greater than x, `false` otherwise. */
def >(x: Int): Boolean = value > x
/** Returns `true` if this value is greater than x, `false` otherwise. */
def >(x: Long): Boolean = value > x
/** Returns `true` if this value is greater than x, `false` otherwise. */
def >(x: Float): Boolean = value > x
/** Returns `true` if this value is greater than x, `false` otherwise. */
def >(x: Double): Boolean = value > x
/** Returns `true` if this value is greater than or equal to x, `false` otherwise. */
def >=(x: Byte): Boolean = value >= x
/** Returns `true` if this value is greater than or equal to x, `false` otherwise. */
def >=(x: Short): Boolean = value >= x
/** Returns `true` if this value is greater than or equal to x, `false` otherwise. */
def >=(x: Char): Boolean = value >= x
/** Returns `true` if this value is greater than or equal to x, `false` otherwise. */
def >=(x: Int): Boolean = value >= x
/** Returns `true` if this value is greater than or equal to x, `false` otherwise. */
def >=(x: Long): Boolean = value >= x
/** Returns `true` if this value is greater than or equal to x, `false` otherwise. */
def >=(x: Float): Boolean = value >= x
/** Returns `true` if this value is greater than or equal to x, `false` otherwise. */
def >=(x: Double): Boolean = value >= x
/**
* Returns the bitwise OR of this value and `x`.
* @example {{{
* (0xf0 | 0xaa) == 0xfa
* // in binary: 11110000
* // | 10101010
* // --------
* // 11111010
* }}}
*/
def |(x: Byte): Int = value | x
/**
* Returns the bitwise OR of this value and `x`.
* @example {{{
* (0xf0 | 0xaa) == 0xfa
* // in binary: 11110000
* // | 10101010
* // --------
* // 11111010
* }}}
*/
def |(x: Short): Int = value | x
/**
* Returns the bitwise OR of this value and `x`.
* @example {{{
* (0xf0 | 0xaa) == 0xfa
* // in binary: 11110000
* // | 10101010
* // --------
* // 11111010
* }}}
*/
def |(x: Char): Int = value | x
/**
* Returns the bitwise OR of this value and `x`.
* @example {{{
* (0xf0 | 0xaa) == 0xfa
* // in binary: 11110000
* // | 10101010
* // --------
* // 11111010
* }}}
*/
def |(x: Int): Int = value | x
/**
* Returns the bitwise OR of this value and `x`.
* @example {{{
* (0xf0 | 0xaa) == 0xfa
* // in binary: 11110000
* // | 10101010
* // --------
* // 11111010
* }}}
*/
def |(x: Long): Long = value | x
/**
* Returns the bitwise AND of this value and `x`.
* @example {{{
* (0xf0 & 0xaa) == 0xa0
* // in binary: 11110000
* // & 10101010
* // --------
* // 10100000
* }}}
*/
def &(x: Byte): Int = value & x
/**
* Returns the bitwise AND of this value and `x`.
* @example {{{
* (0xf0 & 0xaa) == 0xa0
* // in binary: 11110000
* // & 10101010
* // --------
* // 10100000
* }}}
*/
def &(x: Short): Int = value & x
/**
* Returns the bitwise AND of this value and `x`.
* @example {{{
* (0xf0 & 0xaa) == 0xa0
* // in binary: 11110000
* // & 10101010
* // --------
* // 10100000
* }}}
*/
def &(x: Char): Int = value & x
/**
* Returns the bitwise AND of this value and `x`.
* @example {{{
* (0xf0 & 0xaa) == 0xa0
* // in binary: 11110000
* // & 10101010
* // --------
* // 10100000
* }}}
*/
def &(x: Int): Int = value & x
/**
* Returns the bitwise AND of this value and `x`.
* @example {{{
* (0xf0 & 0xaa) == 0xa0
* // in binary: 11110000
* // & 10101010
* // --------
* // 10100000
* }}}
*/
def &(x: Long): Long = value & x
/**
* Returns the bitwise XOR of this value and `x`.
* @example {{{
* (0xf0 ^ 0xaa) == 0x5a
* // in binary: 11110000
* // ^ 10101010
* // --------
* // 01011010
* }}}
*/
def ^(x: Byte): Int = value ^ x
/**
* Returns the bitwise XOR of this value and `x`.
* @example {{{
* (0xf0 ^ 0xaa) == 0x5a
* // in binary: 11110000
* // ^ 10101010
* // --------
* // 01011010
* }}}
*/
def ^(x: Short): Int = value ^ x
/**
* Returns the bitwise XOR of this value and `x`.
* @example {{{
* (0xf0 ^ 0xaa) == 0x5a
* // in binary: 11110000
* // ^ 10101010
* // --------
* // 01011010
* }}}
*/
def ^(x: Char): Int = value ^ x
/**
* Returns the bitwise XOR of this value and `x`.
* @example {{{
* (0xf0 ^ 0xaa) == 0x5a
* // in binary: 11110000
* // ^ 10101010
* // --------
* // 01011010
* }}}
*/
def ^(x: Int): Int = value ^ x
/**
* Returns the bitwise XOR of this value and `x`.
* @example {{{
* (0xf0 ^ 0xaa) == 0x5a
* // in binary: 11110000
* // ^ 10101010
* // --------
* // 01011010
* }}}
*/
def ^(x: Long): Long = value ^ x
/** Returns the sum of this value and `x`. */
def +(x: Byte): Int = value + x
/** Returns the sum of this value and `x`. */
def +(x: Short): Int = value + x
/** Returns the sum of this value and `x`. */
def +(x: Char): Int = value + x
/** Returns the sum of this value and `x`. */
def +(x: Int): Int = value + x
/** Returns the sum of this value and `x`. */
def +(x: Long): Long = value + x
/** Returns the sum of this value and `x`. */
def +(x: Float): Float = value + x
/** Returns the sum of this value and `x`. */
def +(x: Double): Double = value + x
/** Returns the difference of this value and `x`. */
def -(x: Byte): Int = value - x
/** Returns the difference of this value and `x`. */
def -(x: Short): Int = value - x
/** Returns the difference of this value and `x`. */
def -(x: Char): Int = value - x
/** Returns the difference of this value and `x`. */
def -(x: Int): Int = value - x
/** Returns the difference of this value and `x`. */
def -(x: Long): Long = value - x
/** Returns the difference of this value and `x`. */
def -(x: Float): Float = value - x
/** Returns the difference of this value and `x`. */
def -(x: Double): Double = value - x
/** Returns the product of this value and `x`. */
def *(x: Byte): Int = value * x
/** Returns the product of this value and `x`. */
def *(x: Short): Int = value * x
/** Returns the product of this value and `x`. */
def *(x: Char): Int = value * x
/** Returns the product of this value and `x`. */
def *(x: Int): Int = value * x
/** Returns the product of this value and `x`. */
def *(x: Long): Long = value * x
/** Returns the product of this value and `x`. */
def *(x: Float): Float = value * x
/** Returns the product of this value and `x`. */
def *(x: Double): Double = value * x
/** Returns the quotient of this value and `x`. */
def /(x: Byte): Int = value / x
/** Returns the quotient of this value and `x`. */
def /(x: Short): Int = value / x
/** Returns the quotient of this value and `x`. */
def /(x: Char): Int = value / x
/** Returns the quotient of this value and `x`. */
def /(x: Int): Int = value / x
/** Returns the quotient of this value and `x`. */
def /(x: Long): Long = value / x
/** Returns the quotient of this value and `x`. */
def /(x: Float): Float = value / x
/** Returns the quotient of this value and `x`. */
def /(x: Double): Double = value / x
/** Returns the remainder of the division of this value by `x`. */
def %(x: Byte): Int = value % x
/** Returns the remainder of the division of this value by `x`. */
def %(x: Short): Int = value % x
/** Returns the remainder of the division of this value by `x`. */
def %(x: Char): Int = value % x
/** Returns the remainder of the division of this value by `x`. */
def %(x: Int): Int = value % x
/** Returns the remainder of the division of this value by `x`. */
def %(x: Long): Long = value % x
/** Returns the remainder of the division of this value by `x`. */
def %(x: Float): Float = value % x
/** Returns the remainder of the division of this value by `x`. */
def %(x: Double): Double = value % x
// Stuff from RichInt:
/**
* Returns a string representation of this PosInt
's underlying Int
as an
* unsigned integer in base 2.
*
*
* The unsigned integer value is the argument plus 232
* if this PosInt
's underlying Int
is negative; otherwise it is equal to the
* underlying Int
. This value is converted to a string of ASCII digits
* in binary (base 2) with no extra leading 0
s.
* If the unsigned magnitude is zero, it is represented by a
* single zero character '0'
* ('\u0030'
); otherwise, the first character of
* the representation of the unsigned magnitude will not be the
* zero character. The characters '0'
* ('\u0030'
) and '1'
* ('\u0031'
) are used as binary digits.
*
*
* @return the string representation of the unsigned integer value
* represented by this PosInt
's underlying Int
in binary (base 2).
*/
def toBinaryString: String = java.lang.Integer.toBinaryString(value)
/**
* Returns a string representation of this PosInt
's underlying Int
as an
* unsigned integer in base 16.
*
*
* The unsigned integer value is the argument plus 232
* if this PosInt
's underlying Int
is negative; otherwise, it is equal to the
* this PosInt
's underlying Int
This value is converted to a string of ASCII digits
* in hexadecimal (base 16) with no extra leading
* 0
s. If the unsigned magnitude is zero, it is
* represented by a single zero character '0'
* ('\u0030'
); otherwise, the first character of
* the representation of the unsigned magnitude will not be the
* zero character. The following characters are used as
* hexadecimal digits:
*
*
*
* 0123456789abcdef
*
*
* These are the characters '\u0030'
through
* '\u0039'
and '\u0061'
through
* '\u0066'
. If uppercase letters are
* desired, the toUpperCase
method may
* be called on the result.
*
* @return the string representation of the unsigned integer value
* represented by this PosInt
's underlying Int
in hexadecimal (base 16).
*/
def toHexString: String = java.lang.Integer.toHexString(value)
/**
* Returns a string representation of this PosInt
's underlying Int
as an
* unsigned integer in base 8.
*
* The unsigned integer value is this PosInt
's underlying Int
plus 232
* if the underlying Int
is negative; otherwise, it is equal to the
* underlying Int
. This value is converted to a string of ASCII digits
* in octal (base 8) with no extra leading 0
s.
*
*
If the unsigned magnitude is zero, it is represented by a
* single zero character '0'
* ('\u0030'
); otherwise, the first character of
* the representation of the unsigned magnitude will not be the
* zero character. The following characters are used as octal
* digits:
*
*
* 01234567
*
*
* These are the characters '\u0030'
through
* '\u0037'
.
*
* @return the string representation of the unsigned integer value
* represented by this PosInt
's underlying Int
in octal (base 8).
*/
def toOctalString: String = java.lang.Integer.toOctalString(value)
/**
* Create a Range
from this PosInt
value
* until the specified end
(exclusive) with step value 1.
*
* @param end The final bound of the range to make.
* @return A [[scala.collection.immutable.Range]] from `this` up to but
* not including `end`.
*/
def until(end: Int): Range = Range(value, end)
/**
* Create a Range
from this PosInt
value
* until the specified end
(exclusive) with the specified step
value.
*
* @param end The final bound of the range to make.
* @param step The number to increase by for each step of the range.
* @return A [[scala.collection.immutable.Range]] from `this` up to but
* not including `end`.
*/
def until(end: Int, step: Int): Range = Range(value, end, step)
/**
* Create an inclusive Range
from this PosInt
value
* to the specified end
with step value 1.
*
* @param end The final bound of the range to make.
* @return A [[scala.collection.immutable.Range]] from `'''this'''` up to
* and including `end`.
*/
def to(end: Int): Range.Inclusive = Range.inclusive(value, end)
/**
* Create an inclusive Range
from this PosInt
value
* to the specified end
with the specified step
value.
*
* @param end The final bound of the range to make.
* @param step The number to increase by for each step of the range.
* @return A [[scala.collection.immutable.Range]] from `'''this'''` up to
* and including `end`.
*/
def to(end: Int, step: Int): Range.Inclusive = Range.inclusive(value, end, step)
// No point to call abs on a PosInt.
/**
* Returns this
if this > that
or that
otherwise.
*/
def max(that: PosInt): PosInt = if (math.max(value, that.value) == value) this else that
/**
* Returns this
if this < that
or that
otherwise.
*/
def min(that: PosInt): PosInt = if (math.min(value, that.value) == value) this else that
}
/**
* The companion object for PosInt
that offers factory methods that
* produce PosInt
s, implicit widening conversions from PosInt
* to other numeric types, and maximum and minimum constant values for PosInt
.
*/
object PosInt {
/**
* The largest value representable as a positive Int
, which is PosInt(2147483647)
.
*/
final val MaxValue: PosInt = PosInt.from(Int.MaxValue).get
/**
* The smallest value representable as a positive Int
, which is PosInt(1)
.
*/
final val MinValue: PosInt = PosInt.from(1).get // Can't use the macro here
// TODO: Use one method for validation, as suggested in I think the UK.
/**
* A factory method that produces an Option[PosInt]
given an
* Int
value.
*
*
* This method will inspect the passed Int
value and if
* it is a positive Int
, i.e., a value greater
* than 0, it will return a PosInt
representing that value,
* wrapped in a Some
. Otherwise, the passed Int
* value is 0 or negative, so this method will return None
.
*
*
*
* This factory method differs from the apply
factory method
* in that apply
is implemented via a macro that inspects
* Int
literals at compile time, whereas from
inspects
* Int
values at run time.
*
*
* @param value the Int
to inspect, and if positive, return
* wrapped in a Some[PosInt]
.
* @return the specified Int
value wrapped
* in a Some[PosInt]
, if it is positive, else None
.
*/
def from(value: Int): Option[PosInt] =
if (PosIntMacro.isValid(value)) Some(new PosInt(value)) else None
import language.experimental.macros
/**
* A factory method, implemented via a macro, that produces a PosInt
* if passed a valid Int
literal, otherwise a compile time error.
*
*
* The macro that implements this method will inspect the specified Int
* expression at compile time. If
* the expression is a positive Int
literal, i.e., with a
* value greater than 0, it will return a PosInt
representing that value.
* Otherwise, the passed Int
* expression is either a literal that is 0 or negative, or is not a literal, so
* this method will give a compiler error.
*
*
*
* This factory method differs from the from
factory method
* in that this method is implemented via a macro that inspects
* Int
literals at compile time, whereas from
inspects
* Int
values at run time.
*
*
* @param value the Int
literal expression to inspect at compile time,
* and if positive, to return wrapped in a PosInt
at run time.
* @return the specified, valid Int
literal value wrapped
* in a PosInt
. (If the specified expression is not a valid
* Int
literal, the invocation of this method will not
* compile.)
*/
implicit def apply(value: Int): PosInt = macro PosIntMacro.apply
/**
* Implicit widening conversion from PosInt
to Int
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
.
*/
implicit def widenToInt(pos: PosInt): Int = pos.value
/**
* Implicit widening conversion from PosInt
to Long
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Long
.
*/
implicit def widenToLong(pos: PosInt): Long = pos.value
/**
* Implicit widening conversion from PosInt
to Float
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Float
.
*/
implicit def widenToFloat(pos: PosInt): Float = pos.value
/**
* Implicit widening conversion from PosInt
to Double
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Double
.
*/
implicit def widenToDouble(pos: PosInt): Double = pos.value
/**
* Implicit widening conversion from PosInt
to PosLong
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Long
and wrapped in a PosLong
.
*/
implicit def widenToPosLong(pos: PosInt): PosLong = PosLong.from(pos.value).get
/**
* Implicit widening conversion from PosInt
to PosFloat
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Float
and wrapped in a PosFloat
.
*/
implicit def widenToPosFloat(pos: PosInt): PosFloat = PosFloat.from(pos.value).get
/**
* Implicit widening conversion from PosInt
to PosDouble
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Double
and wrapped in a PosDouble
.
*/
implicit def widenToPosDouble(pos: PosInt): PosDouble = PosDouble.from(pos.value).get
/**
* Implicit widening conversion from PosInt
to PosZInt
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
wrapped in a PosZInt
.
*/
implicit def widenToPosZInt(pos: PosInt): PosZInt = PosZInt.from(pos.value).get
/**
* Implicit widening conversion from PosInt
to PosZLong
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Long
and wrapped in a PosZLong
.
*/
implicit def widenToPosZLong(pos: PosInt): PosZLong = PosZLong.from(pos.value).get
/**
* Implicit widening conversion from PosInt
to PosZFloat
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Float
and wrapped in a PosZFloat
.
*/
implicit def widenToPosZFloat(pos: PosInt): PosZFloat = PosZFloat.from(pos.value).get
/**
* Implicit widening conversion from PosInt
to PosZDouble
.
*
* @param pos the PosInt
to widen
* @return the Int
value underlying the specified PosInt
,
* widened to Double
and wrapped in a PosZDouble
.
*/
implicit def widenToPosZDouble(pos: PosInt): PosZDouble = PosZDouble.from(pos.value).get
/**
* Implicit Ordering instance.
*/
implicit val posIntOrd: Ordering[PosInt] =
new Ordering[PosInt] {
def compare(x: PosInt, y: PosInt): Int = x - y
}
}