All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.PosZDouble.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2001-2014 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.collection.immutable.NumericRange

/**
 * An AnyVal for non-negative Doubles.
 *
 * 

* Because PosZDouble is an AnyVal it will usually be * as efficient as an Double, being boxed only when a * Double would have been boxed. *

* *

* The PosZDouble.apply factory method is * implemented in terms of a macro that checks literals for * validity at compile time. Calling * PosZDouble.apply with a literal * Double value will either produce a valid * PosZDouble instance at run time or an error at * compile time. Here's an example: *

* *
 * scala> import anyvals._
 * import anyvals._
 *
 * scala> PosZDouble(1.1)
 * res0: org.scalactic.anyvals.PosZDouble = PosZDouble(1.1)
 *
 * scala> PosZDouble(0.0)
 * res1: org.scalactic.anyvals.PosZDouble = PosZDouble(0.0)
 *
 * scala> PosZDouble(-1.1)
 * <console>:14: error: PosZDouble.apply can only be invoked on a non-negative (i >= 0.0) floating point literal, like PosZDouble(42.0).
 *               PosZDouble(-1.1)
 *                         ^
 * 
* *

* PosZDouble.apply cannot be used if the value * being passed is a variable (i.e., not a literal), * because the macro cannot determine the validity of variables * at compile time (just literals). If you try to pass a * variable to PosZDouble.apply, you'll get a * compiler error that suggests you use a different factor * method, PosZDouble.from, instead: *

* *
 * scala> val x = 1.1
 * x: Double = 1.1
 *
 * scala> PosZDouble(x)
 * <console>:15: error: PosZDouble.apply can only be invoked on a floating point literal, like PosZDouble(42.0). Please use PosZDouble.from instead.
 *               PosZDouble(x)
 *                         ^
 * 
* *

* The PosZDouble.from factory method will inspect * the value at runtime and return an * Option[PosZDouble]. If the value is valid, * PosZDouble.from will return a * Some[PosZDouble], else it will return a * None. Here's an example: *

* *
 * scala> PosZDouble.from(x)
 * res4: Option[org.scalactic.anyvals.PosZDouble] = Some(PosZDouble(1.1))
 *
 * scala> val y = -1.1
 * y: Double = -1.1
 *
 * scala> PosZDouble.from(y)
 * res5: Option[org.scalactic.anyvals.PosZDouble] = None
 * 
* *

* The PosZDouble.apply factory method is marked implicit, so that * you can pass literal Doubles into methods that require * PosZDouble, and get the same compile-time checking you get when * calling PosZDouble.apply explicitly. Here's an example: *

* *
 * scala> def invert(pos: PosZDouble): Double = Double.MaxValue - pos
 * invert: (pos: org.scalactic.anyvals.PosZDouble)Double
 *
 * scala> invert(0.0)
 * res6: Double = 1.7976931348623157E308
 *
 * scala> invert(Double.MaxValue)
 * res7: Double = 0.0
 *
 * scala> invert(-1.1)
 * <console>:15: error: PosZDouble.apply can only be invoked on a non-negative (i >= 0.0) floating point literal, like PosZDouble(42.0).
 *               invert(-1.1)
 *                       ^
 * 
* *

* This example also demonstrates that the * PosZDouble companion object also defines * implicit widening conversions when a similar conversion is * provided in Scala. This makes it convenient to use a * PosZDouble where a Double or wider * type is needed. An example is the subtraction in the body of * the invert method defined above, * Double.MaxValue - pos. Although * Double.MaxValue is a Double, which * has no - method that takes a * PosZDouble (the type of pos), you * can still subtract pos, because the * PosZDouble will be implicitly widened to * Double. *

* * @param value The Double value underlying this * PosZDouble. */ final class PosZDouble private (val value: Double) extends AnyVal { /** * A string representation of this PosZDouble. */ override def toString: String = s"PosZDouble($value)" /** * Converts this PosZDouble to a Byte. */ def toByte: Byte = value.toByte /** * Converts this PosZDouble to a Short. */ def toShort: Short = value.toShort /** * Converts this PosZDouble to a Char. */ def toChar: Char = value.toChar /** * Converts this PosZDouble to an Int. */ def toInt: Int = value.toInt /** * Converts this PosZDouble to a Long. */ def toLong: Long = value.toLong /** * Converts this PosZDouble to a Float. */ def toFloat: Float = value.toFloat /** * Converts this PosZDouble to a Double. */ def toDouble: Double = value.toDouble /** Returns this value, unmodified. */ def unary_+ : PosZDouble = this /** Returns the negation of this value. */ def unary_- : Double = -value /** * Converts this PosZDouble's value to a string then concatenates the given string. */ def +(x: String): String = value + x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** Returns the sum of this value and `x`. */ def +(x: Byte): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Double = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Double = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Double = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Double = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Double = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from RichDouble def isPosInfinity: Boolean = Double.PositiveInfinity == value /** * Returns this if this > that or that otherwise. */ def max(that: PosZDouble): PosZDouble = if (math.max(value, that.value) == value) this else that /** * Returns this if this < that or that otherwise. */ def min(that: PosZDouble): PosZDouble = if (math.min(value, that.value) == value) this else that def isWhole = { val longValue = value.toLong longValue.toDouble == value || longValue == Long.MaxValue && value < Double.PositiveInfinity || longValue == Long.MinValue && value > Double.NegativeInfinity } def round: PosZLong = PosZLong.from(math.round(value)).get def ceil: PosZDouble = PosZDouble.from(math.ceil(value)).get def floor: PosZDouble = PosZDouble.from(math.floor(value)).get /** Converts an angle measured in degrees to an approximately equivalent * angle measured in radians. * * @return the measurement of the angle x in radians. */ def toRadians: Double = math.toRadians(value) /** Converts an angle measured in radians to an approximately equivalent * angle measured in degrees. * @return the measurement of the angle x in degrees. */ def toDegrees: Double = math.toDegrees(value) // adapted from RichInt: /** * Create a Range from this PosZDouble value * until the specified end (exclusive) with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Double, NumericRange[Double]]]] from `this` up to but * not including `end`. */ def until(end: Double): Range.Partial[Double, NumericRange[Double]] = value.until(end) /** * Create a Range from this PosZDouble value * until the specified end (exclusive) with the specified step value. * * @param end The final bound of the range to make. * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Exclusive[Double]]] from `this` up to but * not including `end`. */ def until(end: Double, step: Double): NumericRange.Exclusive[Double] = value.until(end, step) /** * Create an inclusive Range from this PosZDouble value * to the specified end with step value 1. * * @param end The final bound of the range to make. * @return A [[scala.collection.immutable.Range.Partial[Double, NumericRange[Double]]]] from `'''this'''` up to * and including `end`. */ def to(end: Double): Range.Partial[Double, NumericRange[Double]] = value.to(end) /** * Create an inclusive Range from this PosZDouble value * to the specified end with the specified step value. * * @param end The final bound of the range to make. * @param step The number to increase by for each step of the range. * @return A [[scala.collection.immutable.NumericRange.Inclusive[Double]]] from `'''this'''` up to * and including `end`. */ def to(end: Double, step: Double): NumericRange.Inclusive[Double] = value.to(end, step) } /** * The companion object for PosZDouble that offers * factory methods that produce PosZDoubles, implicit * widening conversions from PosZDouble to other * numeric types, and maximum and minimum constant values for * PosZDouble. */ object PosZDouble { /** * The largest value representable as a non-negative Double, * which is PosZDouble(1.7976931348623157E308). */ final val MaxValue: PosZDouble = PosZDouble.from(Double.MaxValue).get /** * The smallest value representable as a non-negative Double, * which is PosZDouble(0.0). */ final val MinValue: PosZDouble = PosZDouble.from(0.0).get // Can't use the macro here /** * A factory method that produces an Option[PosZDouble] given a * Double value. * *

* This method will inspect the passed Double value * and if it is a non-negative Double, * i.e., a value greater than or equal to 0, it will * return a PosZDouble representing that value, * wrapped in a Some. Otherwise, the passed * Double value is negative, so this method * will return None. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Double literals at * compile time, whereas from inspects * Double values at run time. *

* * @param value the Double to inspect, and if * non-negative, return wrapped in a * Some[PosZDouble]. * @return the specified Double value wrapped * in a Some[PosZDouble], if it is positive, else * None. */ def from(value: Double): Option[PosZDouble] = if (value >= 0.0) Some(new PosZDouble(value)) else None import language.experimental.macros import scala.language.implicitConversions /** * A factory method, implemented via a macro, that produces a * PosZDouble if passed a valid Double * literal, otherwise a compile time error. * *

* The macro that implements this method will inspect the * specified Double expression at compile time. If * the expression is a non-negative Double literal, * i.e., with a value greater than or equal to 0, it will return * a PosZDouble representing that value. Otherwise, * the passed Double expression is either a literal * that is negative, or is not a literal, so this method * will give a compiler error. *

* *

* This factory method differs from the from * factory method in that this method is implemented via a * macro that inspects Double literals at compile * time, whereas from inspects Double * values at run time. *

* * @param value the Double literal expression to inspect at * compile time, and if non-negative, to return wrapped in a * PosZDouble at run time. * @return the specified, valid Double literal * value wrapped in a PosZDouble. (If the * specified expression is not a valid Double * literal, the invocation of this method will not * compile.) */ implicit def apply(value: Double): PosZDouble = macro PosZDoubleMacro.apply /** * Implicit widening conversion from PosZDouble to * Double. * * @param pos the PosZDouble to widen * @return the Double value underlying the specified * PosZDouble. */ implicit def widenToDouble(poz: PosZDouble): Double = poz.value /** * Implicit Ordering instance. */ implicit val posZDoubleOrd: Ordering[PosZDouble] = new Ordering[PosZDouble] { def compare(x: PosZDouble, y: PosZDouble): Int = x.toDouble.compare(y) } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy