All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.NegFloat.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2001-2016 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.collection.immutable.NumericRange
import scala.language.implicitConversions
import scala.util.{Try, Success, Failure}
import org.scalactic.{Validation, Pass, Fail}
import org.scalactic.{Or, Good, Bad}

/**
 * An AnyVal for megative Floats.
 *
 * 

* Note: a NegFloat may not equal 0.0. If you want negative number or 0, use [[NegZFloat]]. *

* *

* Because NegFloat is an AnyVal it * will usually be as efficient as an Float, being * boxed only when an Float would have been boxed. *

* *

* The NegFloat.apply factory method is implemented * in terms of a macro that checks literals for validity at * compile time. Calling NegFloat.apply with a * literal Float value will either produce a valid * NegFloat instance at run time or an error at * compile time. Here's an example: *

* *
 * scala> import anyvals._
 * import anyvals._
 *
 * scala> NegFloat(-42.1fF)
 * res0: org.scalactic.anyvals.NegFloat = NegFloat(-42.1f)
 *
 * scala> NegFloat(0.0fF)
 * <console>:14: error: NegFloat.apply can only be invoked on a megative (i < 0.0f) floating point literal, like NegFloat(-42.1fF).
 *               NegFloat(-42.1fF)
 *                       ^
 * 
* *

* NegFloat.apply cannot be used if the value being * passed is a variable (i.e., not a literal), because * the macro cannot determine the validity of variables at * compile time (just literals). If you try to pass a variable * to NegFloat.apply, you'll get a compiler error * that suggests you use a different factor method, * NegFloat.from, instead: *

* *
 * scala> val x = -42.1fF
 * x: Float = -42.1f
 *
 * scala> NegFloat(x)
 * <console>:15: error: NegFloat.apply can only be invoked on a floating point literal, like NegFloat(-42.1fF). Please use NegFloat.from instead.
 *               NegFloat(x)
 *                       ^
 * 
* *

* The NegFloat.from factory method will inspect * the value at runtime and return an * Option[NegFloat]. If the value is valid, * NegFloat.from will return a * Some[NegFloat], else it will return a * None. Here's an example: *

* *
 * scala> NegFloat.from(x)
 * res3: Option[org.scalactic.anyvals.NegFloat] = Some(NegFloat(-42.1f))
 *
 * scala> val y = 0.0fF
 * y: Float = 0.0f
 *
 * scala> NegFloat.from(y)
 * res4: Option[org.scalactic.anyvals.NegFloat] = None
 * 
* *

* The NegFloat.apply factory method is marked * implicit, so that you can pass literal Floats * into methods that require NegFloat, and get the * same compile-time checking you get when calling * NegFloat.apply explicitly. Here's an example: *

* *
 * scala> def invert(pos: NegFloat): Float = Float.MaxValue - pos
 * invert: (pos: org.scalactic.anyvals.NegFloat)Float
 *
 * scala> invert(-42.1fF)
 * res5: Float = 3.4028235E38
 *
 * scala> invert(Float.MaxValue)
 * res6: Float = 0.0
 *
 * scala> invert(0.0fF)
 * <console>:15: error: NegFloat.apply can only be invoked on a megative (i < 0.0f) floating point literal, like NegFloat(-42.1fF).
 *               invert(0.0F)
 *                      ^
 *
 * scala> invert(0.0fF)
 * <console>:15: error: NegFloat.apply can only be invoked on a megative (i < 0.0f) floating point literal, like NegFloat(-42.1fF).
 *               invert(0.0fF)
 *                       ^
 *
 * 
* *

* This example also demonstrates that the NegFloat * companion object also defines implicit widening conversions * when no loss of precision will occur. This makes it convenient to use a * NegFloat where a Float or wider * type is needed. An example is the subtraction in the body of * the invert method defined above, * Float.MaxValue - pos. Although * Float.MaxValue is a Float, which * has no - method that takes a * NegFloat (the type of pos), you can * still subtract pos, because the * NegFloat will be implicitly widened to * Float. *

* * @param value The Float value underlying this NegFloat. */ final class NegFloat private (val value: Float) extends AnyVal { /** * A string representation of this NegFloat. */ override def toString: String = s"NegFloat(${value.toString()}f)" /** * Converts this NegFloat to a Byte. */ def toByte: Byte = value.toByte /** * Converts this NegFloat to a Short. */ def toShort: Short = value.toShort /** * Converts this NegFloat to a Char. */ def toChar: Char = value.toChar /** * Converts this NegFloat to an Int. */ def toInt: Int = value.toInt /** * Converts this NegFloat to a Long. */ def toLong: Long = value.toLong /** * Converts this NegFloat to a Float. */ def toFloat: Float = value.toFloat /** * Converts this NegFloat to a Double. */ def toDouble: Double = value.toDouble /** Returns this value, unmodified. */ def unary_+ : NegFloat = this /** Returns the negation of this value. */ def unary_- : PosFloat = PosFloat.ensuringValid(-value) /** * Converts this NegFloat's value to a string then concatenates the given string. */ def +(x: String): String = s"${value.toString()}${x.toString()}" /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Byte): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Short): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Char): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Int): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Long): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Float): Boolean = value < x /** Returns `true` if this value is less than x, `false` otherwise. */ def <(x: Double): Boolean = value < x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Byte): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Short): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Char): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Int): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Long): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Float): Boolean = value <= x /** Returns `true` if this value is less than or equal to x, `false` otherwise. */ def <=(x: Double): Boolean = value <= x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Byte): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Short): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Char): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Int): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Long): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Float): Boolean = value > x /** Returns `true` if this value is greater than x, `false` otherwise. */ def >(x: Double): Boolean = value > x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Byte): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Short): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Char): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Int): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Long): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Float): Boolean = value >= x /** Returns `true` if this value is greater than or equal to x, `false` otherwise. */ def >=(x: Double): Boolean = value >= x /** Returns the sum of this value and `x`. */ def +(x: Byte): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Short): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Char): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Int): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Long): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Float): Float = value + x /** Returns the sum of this value and `x`. */ def +(x: Double): Double = value + x /** Returns the difference of this value and `x`. */ def -(x: Byte): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Short): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Char): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Int): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Long): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Float): Float = value - x /** Returns the difference of this value and `x`. */ def -(x: Double): Double = value - x /** Returns the product of this value and `x`. */ def *(x: Byte): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Short): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Char): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Int): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Long): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Float): Float = value * x /** Returns the product of this value and `x`. */ def *(x: Double): Double = value * x /** Returns the quotient of this value and `x`. */ def /(x: Byte): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Short): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Char): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Int): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Long): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Float): Float = value / x /** Returns the quotient of this value and `x`. */ def /(x: Double): Double = value / x /** Returns the remainder of the division of this value by `x`. */ def %(x: Byte): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Short): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Char): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Int): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Long): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Float): Float = value % x /** Returns the remainder of the division of this value by `x`. */ def %(x: Double): Double = value % x // Stuff from RichFloat /** * Returns this if this > that or that otherwise. */ def max(that: NegFloat): NegFloat = if (math.max(value, that.value) == value) this else that /** * Returns this if this < that or that otherwise. */ def min(that: NegFloat): NegFloat = if (math.min(value, that.value) == value) this else that /** * Indicates whether this `NegFloat` has a value that is a whole number: it is finite and it has no fraction part. */ def isWhole = { val longValue = value.toLong longValue.toFloat == value || longValue == Long.MaxValue && value < Float.PositiveInfinity || longValue == Long.MinValue && value > Float.NegativeInfinity } /** Converts an angle measured in degrees to an approximately equivalent * angle measured in radians. * * @return the measurement of the angle x in radians. */ def toRadians: Float = math.toRadians(value.toDouble).toFloat /** Converts an angle measured in radians to an approximately equivalent * angle measured in degrees. * @return the measurement of the angle x in degrees. */ def toDegrees: Float = math.toDegrees(value.toDouble).toFloat /** * Applies the passed Float => Float function to the underlying Float * value, and if the result is positive, returns the result wrapped in a NegFloat, * else throws AssertionError. * *

* This method will inspect the result of applying the given function to this * NegFloat's underlying Float value and if the result * is megative, it will return a NegFloat representing that value. * Otherwise, the Float value returned by the given function is * not megative, so this method will throw AssertionError. *

* *

* This method differs from a vanilla assert or ensuring * call in that you get something you didn't already have if the assertion * succeeds: a type that promises an Float is megative. * With this method, you are asserting that you are convinced the result of * the computation represented by applying the given function to this NegFloat's * value will not produce invalid value. * Instead of producing such invalid values, this method will throw AssertionError. *

* * @param f the Float => Float function to apply to this NegFloat's * underlying Float value. * @return the result of applying this NegFloat's underlying Float value to * to the passed function, wrapped in a NegFloat if it is megative (else throws AssertionError). * @throws AssertionError if the result of applying this NegFloat's underlying Float value to * to the passed function is not megative. */ def ensuringValid(f: Float => Float): NegFloat = { val candidateResult: Float = f(value) if (NegFloatMacro.isValid(candidateResult)) new NegFloat(candidateResult) else throw new AssertionError(s"${candidateResult.toString()}, the result of applying the passed function to ${value.toString()}, was not a valid NegFloat") } /** * Rounds this `NegFloat` value to the nearest whole number value that can be expressed as an `NegZInt`, returning the result as a `NegZInt`. */ def round: NegZInt = NegZInt.ensuringValid(math.round(value)) /** * Returns the smallest (closest to 0) `NegZFloat` that is greater than or equal to this `NegZFloat` * and represents a mathematical integer. */ def ceil: NegZFloat = NegZFloat.ensuringValid(math.ceil(value).toFloat) /** * Returns the greatest (closest to infinity) `NegFloat` that is less than or equal to * this `NegFloat` and represents a mathematical integer. */ def floor: NegFloat = NegFloat.ensuringValid(math.floor(value).toFloat) /** * Returns the NegFloat sum of this NegFloat's value and the given NegZFloat value. * *

* This method will always succeed (not throw an exception) because * adding a negative Float and non-positive Float and another * negative Float will always result in another negative Float * value (though the result may be infinity). *

*/ def plus(x: NegZFloat): NegFloat = NegFloat.ensuringValid(value + x.value) /** * True if this NegFloat value represents negative infinity, else false. */ def isNegInfinity: Boolean = Float.NegativeInfinity == value /** * True if this NegFloat value is any finite value (i.e., it is neither positive nor negative infinity), else false. */ def isFinite: Boolean = !value.isInfinite } /** * The companion object for NegFloat that offers * factory methods that produce NegFloats, * implicit widening conversions from NegFloat to * other numeric types, and maximum and minimum constant values * for NegFloat. */ object NegFloat { /** * The largest value representable as a megative Float, * which is NegFloat(-1.4E-45). */ final val MaxValue: NegFloat = NegFloat.ensuringValid(-Float.MinPositiveValue) /** * The smallest value representable as a megative * Float, which is NegFloat(-3.4028235E38). */ final val MinValue: NegFloat = NegFloat.ensuringValid(Float.MinValue) // Can't use the macro here /** * A factory method that produces an Option[NegFloat] given a * Float value. * *

* This method will inspect the passed Float value and if * it is a megative Float, it will return a NegFloat * representing that value wrapped in a Some. Otherwise, the passed Float * value is not megative, so this method will return None. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Float literals at * compile time, whereas from inspects * Float values at run time. *

* * @param value the Float to inspect, and if megative, return * wrapped in a Some[NegFloat]. * @return the specified Float value wrapped in a * Some[NegFloat], if it is megative, else * None. */ def from(value: Float): Option[NegFloat] = if (NegFloatMacro.isValid(value)) Some(new NegFloat(value)) else None /** * A factory/assertion method that produces a NegFloat given a * valid Float value, or throws AssertionError, * if given an invalid Float value. * * Note: you should use this method only when you are convinced that it will * always succeed, i.e., never throw an exception. It is good practice to * add a comment near the invocation of this method indicating ''why'' you think * it will always succeed to document your reasoning. If you are not sure an * `ensuringValid` call will always succeed, you should use one of the other * factory or validation methods provided on this object instead: `isValid`, * `tryingValid`, `passOrElse`, `goodOrElse`, or `rightOrElse`. * *

* This method will inspect the passed Float value and if * it is a megative Float, it will return a NegFloat representing that value. * Otherwise, the passed Float value is not megative, so * this method will throw AssertionError. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Float literals at * compile time, whereas from inspects * Float values at run time. * It differs from a vanilla assert or ensuring * call in that you get something you didn't already have if the assertion * succeeds: a type that promises a Float is positive. *

* * @param value the Float to inspect, and if megative, return * wrapped in a NegFloat. * @return the specified Float value wrapped in a * NegFloat, if it is megative, else * throws AssertionError. * @throws AssertionError if the passed value is not megative */ def ensuringValid(value: Float): NegFloat = if (NegFloatMacro.isValid(value)) new NegFloat(value) else { throw new AssertionError(s"${value.toString()} was not a valid NegFloat") } /** * A factory/validation method that produces a NegFloat, wrapped * in a Success, given a valid Float value, or if the * given Float is invalid, an AssertionError, wrapped * in a Failure. * *

* This method will inspect the passed Float value and if * it is a megative Float, it will return a NegFloat * representing that value, wrapped in a Success. * Otherwise, the passed Float value is not megative, so this * method will return an AssertionError, wrapped in a Failure. *

* *

* This factory method differs from the apply factory method * in that apply is implemented via a macro that inspects * Float literals at compile time, whereas this method inspects * Float values at run time. *

* * @param value the Float to inspect, and if megative, return * wrapped in a Success(NegFloat). * @return the specified Float value wrapped * in a Success(NegFloat), if it is megative, else a Failure(AssertionError). */ def tryingValid(value: Float): Try[NegFloat] = if (NegFloatMacro.isValid(value)) Success(new NegFloat(value)) else Failure(new AssertionError(s"${value.toString()} was not a valid NegFloat")) /** * A validation method that produces a Pass * given a valid Float value, or * an error value of type E produced by passing the * given invalid Int value * to the given function f, wrapped in a Fail. * *

* This method will inspect the passed Float value and if * it is a megative Float, it will return a Pass. * Otherwise, the passed Float value is megative, so this * method will return a result of type E obtained by passing * the invalid Float value to the given function f, * wrapped in a `Fail`. *

* *

* This factory method differs from the apply factory method * in that apply is implemented via a macro that inspects * Float literals at compile time, whereas this method inspects * Float values at run time. *

* * @param value the `Float` to validate that it is megative. * @return a `Pass` if the specified `Float` value is megative, * else a `Fail` containing an error value produced by passing the * specified `Float` to the given function `f`. */ def passOrElse[E](value: Float)(f: Float => E): Validation[E] = if (NegFloatMacro.isValid(value)) Pass else Fail(f(value)) /** * A factory/validation method that produces a NegFloat, wrapped * in a Good, given a valid Float value, or if the * given Float is invalid, an error value of type B * produced by passing the given invalid Float value * to the given function f, wrapped in a Bad. * *

* This method will inspect the passed Float value and if * it is a megative Float, it will return a NegFloat * representing that value, wrapped in a Good. * Otherwise, the passed Float value is not megative, so this * method will return a result of type B obtained by passing * the invalid Float value to the given function f, * wrapped in a `Bad`. *

* *

* This factory method differs from the apply factory method * in that apply is implemented via a macro that inspects * Float literals at compile time, whereas this method inspects * Float values at run time. *

* * @param value the Float to inspect, and if megative, return * wrapped in a Good(NegFloat). * @return the specified Float value wrapped * in a Good(NegFloat), if it is megative, else a Bad(f(value)). */ def goodOrElse[B](value: Float)(f: Float => B): NegFloat Or B = if (NegFloatMacro.isValid(value)) Good(NegFloat.ensuringValid(value)) else Bad(f(value)) /** * A factory/validation method that produces a NegFloat, wrapped * in a Right, given a valid Int value, or if the * given Int is invalid, an error value of type L * produced by passing the given invalid Int value * to the given function f, wrapped in a Left. * *

* This method will inspect the passed Int value and if * it is a megative Int, it will return a NegFloat * representing that value, wrapped in a Right. * Otherwise, the passed Int value is not megative, so this * method will return a result of type L obtained by passing * the invalid Int value to the given function f, * wrapped in a `Left`. *

* *

* This factory method differs from the apply factory method * in that apply is implemented via a macro that inspects * Int literals at compile time, whereas this method inspects * Int values at run time. *

* * @param value the Int to inspect, and if megative, return * wrapped in a Right(NegFloat). * @return the specified Int value wrapped * in a Right(NegFloat), if it is megative, else a Left(f(value)). */ def rightOrElse[L](value: Float)(f: Float => L): Either[L, NegFloat] = if (NegFloatMacro.isValid(value)) Right(NegFloat.ensuringValid(value)) else Left(f(value)) /** * A predicate method that returns true if a given * Float value is megative. * * @param value the Float to inspect, and if megative, return true. * @return true if the specified Float is megative, else false. */ def isValid(value: Float): Boolean = NegFloatMacro.isValid(value) /** * A factory method that produces a NegFloat given a * Float value and a default NegFloat. * *

* This method will inspect the passed Float value and if * it is a megative Float, it will return a NegFloat representing that value. * Otherwise, the passed Float value is not megative, so this * method will return the passed default value. *

* *

* This factory method differs from the apply * factory method in that apply is implemented * via a macro that inspects Float literals at * compile time, whereas from inspects * Float values at run time. *

* * @param value the Float to inspect, and if megative, return. * @param default the NegFloat to return if the passed * Float value is not megative. * @return the specified Float value wrapped in a * NegFloat, if it is megative, else the * default NegFloat value. */ def fromOrElse(value: Float, default: => NegFloat): NegFloat = if (NegFloatMacro.isValid(value)) new NegFloat(value) else default import language.experimental.macros import scala.language.implicitConversions /** * A factory method, implemented via a macro, that produces a * NegFloat if passed a valid Float * literal, otherwise a compile time error. * *

* The macro that implements this method will inspect the * specified Float expression at compile time. If * the expression is a megative Float literal, * it will return a NegFloat representing that value. * Otherwise, the passed Float expression is either a literal * that is not megative, or is not a literal, so this method * will give a compiler error. *

* *

* This factory method differs from the from * factory method in that this method is implemented via a * macro that inspects Float literals at compile * time, whereas from inspects Float * values at run time. *

* * @param value the Float literal expression to * inspect at compile time, and if megative, to return * wrapped in a NegFloat at run time. * @return the specified, valid Float literal * value wrapped in a NegFloat. (If the * specified expression is not a valid Float * literal, the invocation of this method will not * compile.) */ inline implicit def apply(value: => Float): NegFloat = ${ NegFloatMacro('{value}) } /** * Implicit widening conversion from NegFloat to * Float. * * @param pos the NegFloat to widen * @return the Float value underlying the * specified NegFloat */ implicit def widenToFloat(pos: NegFloat): Float = pos.value /** * Implicit widening conversion from NegFloat to * Double. * * @param pos the NegFloat to widen * @return the Float value underlying the * specified NegFloat, widened to * Double. */ implicit def widenToDouble(pos: NegFloat): Double = pos.value /** * Implicit widening conversion from NegFloat to NegDouble. * * @param pos the NegFloat to widen * @return the Float value underlying the specified NegFloat, * widened to Double and wrapped in a NegDouble. */ implicit def widenToNegDouble(pos: NegFloat): NegDouble = NegDouble.ensuringValid(pos.value) /** * Implicit widening conversion from NegFloat to NegZFloat. * * @param pos the NegFloat to widen * @return the Float value underlying the specified NegFloat, * widened to Float and wrapped in a NegZFloat. */ implicit def widenToNegZFloat(pos: NegFloat): NegZFloat = NegZFloat.ensuringValid(pos.value) /** * Implicit widening conversion from NegFloat to NegZDouble. * * @param pos the NegFloat to widen * @return the Float value underlying the specified NegFloat, * widened to Double and wrapped in a NegZDouble. */ implicit def widenToNegZDouble(pos: NegFloat): NegZDouble = NegZDouble.ensuringValid(pos.value) /** * Implicit widening conversion from NegFloat to NonZeroFloat. * * @param pos the NegFloat to widen * @return the Float value underlying the specified NegFloat, * widened to Float and wrapped in a NonZeroFloat. */ implicit def widenToNonZeroFloat(pos: NegFloat): NonZeroFloat = NonZeroFloat.ensuringValid(pos.value) /** * Implicit widening conversion from NegFloat to NonZeroDouble. * * @param pos the NegFloat to widen * @return the Float value underlying the specified NegFloat, * widened to Double and wrapped in a NonZeroDouble. */ implicit def widenToNonZeroDouble(pos: NegFloat): NonZeroDouble = NonZeroDouble.ensuringValid(pos.value) /** * Implicit Ordering instance. */ implicit val ordering: Ordering[NegFloat] = new Ordering[NegFloat] { def compare(x: NegFloat, y: NegFloat): Int = x.toFloat.compare(y) } /** * The negative infinity value, which is NegFloat.ensuringValid(Float.NegativeInfinity). */ final val NegativeInfinity: NegFloat = NegFloat.ensuringValid(Float.NegativeInfinity) // Can't use the macro here }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy