All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalactic.anyvals.NonEmptySet.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2001-2013 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalactic.anyvals

import scala.annotation.unchecked.{ uncheckedVariance => uV }
import scala.collection.GenIterable
import scala.collection.GenSet
import scala.collection.GenTraversableOnce
import scala.collection.generic.CanBuildFrom
import scala.collection.mutable.Buffer
import scala.reflect.ClassTag
import scala.collection.immutable
import scala.collection.mutable.ArrayBuffer
import org.scalactic.Every


// Can't be a LinearSeq[T] because Builder would be able to create an empty one.
/**
  * A non-empty Set: an ordered, immutable, non-empty collection of elements with LinearSeq performance characteristics.
  *
  * 

* The purpose of NonEmptySet is to allow you to express in a type that a Set is non-empty, thereby eliminating the * need for (and potential exception from) a run-time check for non-emptiness. For a non-empty sequence with IndexedSeq * performance, see Every. *

* *

Constructing NonEmptySets

* *

* You can construct a NonEmptySet by passing one or more elements to the NonEmptySet.apply factory method: *

* *
  * scala> NonEmptySet(1, 2, 3)
  * res0: org.scalactic.anyvals.NonEmptySet[Int] = NonEmptySet(1, 2, 3)
  * 
* *

* Alternatively you can cons elements onto the End singleton object, similar to making a Set starting with Nil: *

* *
  * scala> 1 :: 2 :: 3 :: Nil
  * res0: Set[Int] = Set(1, 2, 3)
  *
  * scala> 1 :: 2 :: 3 :: End
  * res1: org.scalactic.NonEmptySet[Int] = NonEmptySet(1, 2, 3)
  * 
* *

* Note that although Nil is a Set[Nothing], End is * not a NonEmptySet[Nothing], because no empty NonEmptySet exists. (A non-empty Set is a series * of connected links; if you have no links, you have no non-empty Set.) *

* *
  * scala> val nil: Set[Nothing] = Nil
  * nil: Set[Nothing] = Set()
  *
  * scala> val nada: NonEmptySet[Nothing] = End
  * <console>:16: error: type mismatch;
  * found   : org.scalactic.anyvals.End.type
  * required: org.scalactic.anyvals.NonEmptySet[Nothing]
  *        val nada: NonEmptySet[Nothing] = End
  *                                          ^
  * 
* *

Working with NonEmptySets

* *

* NonEmptySet does not extend Scala's Seq or Traversable traits because these require that * implementations may be empty. For example, if you invoke tail on a Seq that contains just one element, * you'll get an empty Seq: *

* *
  * scala> Set(1).tail
  * res6: Set[Int] = Set()
  * 
* *

* On the other hand, many useful methods exist on Seq that when invoked on a non-empty Seq are guaranteed * to not result in an empty Seq. For convenience, NonEmptySet defines a method corresponding to every such Seq * method. Here are some examples: *

* *
  * NonEmptySet(1, 2, 3).map(_ + 1)                        // Result: NonEmptySet(2, 3, 4)
  * NonEmptySet(1).map(_ + 1)                              // Result: NonEmptySet(2)
  * NonEmptySet(1, 2, 3).containsSlice(NonEmptySet(2, 3)) // Result: true
  * NonEmptySet(1, 2, 3).containsSlice(NonEmptySet(3, 4)) // Result: false
  * NonEmptySet(-1, -2, 3, 4, 5).minBy(_.abs)              // Result: -1
  * 
* *

* NonEmptySet does not currently define any methods corresponding to Seq methods that could result in * an empty Seq. However, an implicit converison from NonEmptySet to Set * is defined in the NonEmptySet companion object that will be applied if you attempt to call one of the missing methods. As a * result, you can invoke filter on an NonEmptySet, even though filter could result * in an empty sequence—but the result type will be Set instead of NonEmptySet: *

* *
  * NonEmptySet(1, 2, 3).filter(_ < 10) // Result: Set(1, 2, 3)
  * NonEmptySet(1, 2, 3).filter(_ > 10) // Result: Set()
  * 
* * *

* You can use NonEmptySets in for expressions. The result will be an NonEmptySet unless * you use a filter (an if clause). Because filters are desugared to invocations of filter, the * result type will switch to a Set at that point. Here are some examples: *

* *
  * scala> import org.scalactic.anyvals._
  * import org.scalactic.anyvals._
  *
  * scala> for (i <- NonEmptySet(1, 2, 3)) yield i + 1
  * res0: org.scalactic.anyvals.NonEmptySet[Int] = NonEmptySet(2, 3, 4)
  *
  * scala> for (i <- NonEmptySet(1, 2, 3) if i < 10) yield i + 1
  * res1: Set[Int] = Set(2, 3, 4)
  *
  * scala> for {
  *      |   i <- NonEmptySet(1, 2, 3)
  *      |   j <- NonEmptySet('a', 'b', 'c')
  *      | } yield (i, j)
  * res3: org.scalactic.anyvals.NonEmptySet[(Int, Char)] =
  *         NonEmptySet((1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c))
  *
  * scala> for {
  *      |   i <- NonEmptySet(1, 2, 3) if i < 10
  *      |   j <- NonEmptySet('a', 'b', 'c')
  *      | } yield (i, j)
  * res6: Set[(Int, Char)] =
  *         Set((1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c))
  * 
* * @tparam T the type of elements contained in this NonEmptySet */ final class NonEmptySet[T] private (val toSet: Set[T]) extends AnyVal { /** * Returns a new NonEmptySet containing the elements of this NonEmptySet followed by the elements of the passed NonEmptySet. * The element type of the resulting NonEmptySet is the most specific superclass encompassing the element types of this and the passed NonEmptySet. * * @tparam U the element type of the returned NonEmptySet * @param other the NonEmptySet to append * @return a new NonEmptySet that contains all the elements of this NonEmptySet followed by all elements of other. */ def ++[U >: T](other: NonEmptySet[U]): NonEmptySet[U] = new NonEmptySet(toSet ++ other.toSet) /** * Returns a new NonEmptySet containing the elements of this NonEmptySet followed by the elements of the passed Every. * The element type of the resulting NonEmptySet is the most specific superclass encompassing the element types of this NonEmptySet and the passed Every. * * @tparam U the element type of the returned NonEmptySet * @param other the Every to append * @return a new NonEmptySet that contains all the elements of this NonEmptySet followed by all elements of other. */ def ++[U >: T](other: Every[U]): NonEmptySet[U] = new NonEmptySet(toSet ++ other.toVector) // TODO: Have I added these extra ++, etc. methods to Every that take a NonEmptySet? /** * Returns a new NonEmptySet containing the elements of this NonEmptySet followed by the elements of the passed GenTraversableOnce. * The element type of the resulting NonEmptySet is the most specific superclass encompassing the element types of this NonEmptySet * and the passed GenTraversableOnce. * * @param other the GenTraversableOnce to append * @return a new NonEmptySet that contains all the elements of this NonEmptySet followed by all elements of other. */ def ++(other: org.scalactic.ColCompatHelper.IterableOnce[T]): NonEmptySet[T] = if (other.isEmpty) this else new NonEmptySet(toSet ++ other.toSet) /** * Returns a new NonEmptySet with the given element added. * * * @param element the element to add to this NonEmptySet * @return a new NonEmptySet consisting of element and all elements of this NonEmptySet. */ final def +(element: T): NonEmptySet[T] = new NonEmptySet(toSet + element) /** * Returns a new NonEmptySet with the given element added. * * @param elem1 the first element to add. * @param elem2 the second element to add. * @param elems the remaining elements to add. * @return a new NonEmptySet with the given elements added, omitting duplicates. */ final def +(elem1: T, elem2: T, elems: T*): NonEmptySet[T] = new NonEmptySet(toSet + elem1 + elem2 ++ elems) /** * Appends all elements of this NonEmptySet to a string builder. The written text will consist of a concatenation of the result of invoking toString * on of every element of this NonEmptySet, without any separator string. * * @param sb the string builder to which elements will be appended * @return the string builder, sb, to which elements were appended. */ final def addString(sb: StringBuilder): StringBuilder = toSet.addString(sb) /** * Check if an element exists at its index in the NonEmptySet. * * @return true if a element exists in NonEmptySet at index idx, where false indicates the element at index idx does not exist. */ final def apply(elem: T): Boolean = toSet(elem) /** * Appends all elements of this NonEmptySet to a string builder using a separator string. The written text will consist of a concatenation of the * result of invoking toString * on of every element of this NonEmptySet, separated by the string sep. * * @param sb the string builder to which elements will be appended * @param sep the separator string * @return the string builder, sb, to which elements were appended. */ final def addString(sb: StringBuilder, sep: String): StringBuilder = toSet.addString(sb, sep) /** * Appends all elements of this NonEmptySet to a string builder using start, end, and separator strings. The written text will consist of a concatenation of * the string start; the result of invoking toString on all elements of this NonEmptySet, * separated by the string sep; and the string end * * @param sb the string builder to which elements will be appended * @param start the starting string * @param sep the separator string * @param start the ending string * @return the string builder, sb, to which elements were appended. */ final def addString(sb: StringBuilder, start: String, sep: String, end: String): StringBuilder = toSet.addString(sb, start, sep, end) /** * Finds the first element of this NonEmptySet for which the given partial function is defined, if any, and applies the partial function to it. * * @param pf the partial function * @return an Option containing pf applied to the first element for which it is defined, or None if * the partial function was not defined for any element. */ final def collectFirst[U](pf: PartialFunction[T, U]): Option[U] = toSet.collectFirst(pf) /** * Indicates whether this NonEmptySet contains a given value as an element. * * @param elem the element to look for * @return true if this NonEmptySet has an element that is equal (as determined by ==) to elem, false otherwise. */ final def contains(elem: T): Boolean = toSet.contains(elem) /** * Copies values of this NonEmptySet to an array. Fills the given array arr with values of this NonEmptySet. Copying * will stop once either the end of the current NonEmptySet is reached, or the end of the array is reached. * * @param arr the array to fill */ final def copyToArray[U >: T](arr: Array[U]): Unit = toSet.copyToArray(arr) /** * Copies values of this NonEmptySet to an array. Fills the given array arr with values of this NonEmptySet, beginning at * index start. Copying will stop once either the end of the current NonEmptySet is reached, or the end of the array is reached. * * @param arr the array to fill * @param start the starting index */ final def copyToArray[U >: T](arr: Array[U], start: Int): Unit = toSet.copyToArray(arr, start) /** * Copies values of this NonEmptySet to an array. Fills the given array arr with at most len elements of this NonEmptySet, beginning at * index start. Copying will stop once either the end of the current NonEmptySet is reached, the end of the array is reached, or * len elements have been copied. * * @param arr the array to fill * @param start the starting index * @param len the maximum number of elements to copy */ final def copyToArray[U >: T](arr: Array[U], start: Int, len: Int): Unit = toSet.copyToArray(arr, start, len) /** * Copies all elements of this NonEmptySet to a buffer. * * @param buf the buffer to which elements are copied */ final def copyToBuffer[U >: T](buf: Buffer[U]): Unit = toSet.copyToBuffer(buf) /** * Counts the number of elements in this NonEmptySet that satisfy a predicate. * * @param p the predicate used to test elements. * @return the number of elements satisfying the predicate p. */ final def count(p: T => Boolean): Int = toSet.count(p) /** * Indicates whether a predicate holds for at least one of the elements of this NonEmptySet. * * @param p the predicate used to test elements. * @return true if the given predicate p holds for some of the elements of this NonEmptySet, otherwise false. */ final def exists(p: T => Boolean): Boolean = toSet.exists(p) /** * Finds the first element of this NonEmptySet that satisfies the given predicate, if any. * * @param p the predicate used to test elements * @return an Some containing the first element in this NonEmptySet that satisfies p, or None if none exists. */ final def find(p: T => Boolean): Option[T] = toSet.find(p) /** * Builds a new NonEmptySet by applying a function to all elements of this NonEmptySet and using the elements of the resulting NonEmptySets. * * @tparam U the element type of the returned NonEmptySet * @param f the function to apply to each element. * @return a new NonEmptySet containing elements obtained by applying the given function f to each element of this NonEmptySet and concatenating * the elements of resulting NonEmptySets. */ final def flatMap[U](f: T => NonEmptySet[U]): NonEmptySet[U] = { val buf = new ArrayBuffer[U] for (ele <- toSet) buf ++= f(ele).toSet new NonEmptySet(buf.toSet) } /** * Converts this NonEmptySet of NonEmptySets into a NonEmptySet * formed by the elements of the nested NonEmptySets. * *

* Note: You cannot use this flatten method on a NonEmptySet that contains a GenTraversableOnces, because * if all the nested GenTraversableOnces were empty, you'd end up with an empty NonEmptySet. *

* * @tparm B the type of the elements of each nested NonEmptySet * @return a new NonEmptySet resulting from concatenating all nested NonEmptySets. */ final def flatten[B](implicit ev: T <:< NonEmptySet[B]): NonEmptySet[B] = flatMap(ev) /** * Folds the elements of this NonEmptySet using the specified associative binary operator. * *

* The order in which operations are performed on elements is unspecified and may be nondeterministic. *

* * @tparam U a type parameter for the binary operator, a supertype of T. * @param z a neutral element for the fold operation; may be added to the result an arbitrary number of * times, and must not change the result (e.g., Nil for Set concatenation, * 0 for addition, or 1 for multiplication.) * @param op a binary operator that must be associative * @return the result of applying fold operator op between all the elements and z */ final def fold[U >: T](z: U)(op: (U, U) => U): U = toSet.fold(z)(op) /** * Applies a binary operator to a start value and all elements of this NonEmptySet, going left to right. * * @tparam B the result type of the binary operator. * @param z the start value. * @param op the binary operator. * @return the result of inserting op between consecutive elements of this NonEmptySet, going left to right, with the start value, * z, on the left: * *
    * op(...op(op(z, x_1), x_2), ..., x_n)
    * 
* *

* where x1, ..., xn are the elements of this NonEmptySet. *

*/ final def foldLeft[B](z: B)(op: (B, T) => B): B = toSet.foldLeft(z)(op) /** * Applies a binary operator to all elements of this NonEmptySet and a start value, going right to left. * * @tparam B the result of the binary operator * @param z the start value * @param op the binary operator * @return the result of inserting op between consecutive elements of this NonEmptySet, going right to left, with the start value, * z, on the right: * *
    * op(x_1, op(x_2, ... op(x_n, z)...))
    * 
* *

* where x1, ..., xn are the elements of this NonEmptySet. *

*/ final def foldRight[B](z: B)(op: (T, B) => B): B = toSet.foldRight(z)(op) /** * Indicates whether a predicate holds for all elements of this NonEmptySet. * * @param p the predicate used to test elements. * @return true if the given predicate p holds for all elements of this NonEmptySet, otherwise false. */ final def forall(p: T => Boolean): Boolean = toSet.forall(p) /** * Applies a function f to all elements of this NonEmptySet. * * @param f the function that is applied for its side-effect to every element. The result of function f is discarded. */ final def foreach(f: T => Unit): Unit = toSet.foreach(f) /** * Partitions this NonEmptySet into a map of NonEmptySets according to some discriminator function. * * @tparam K the type of keys returned by the discriminator function. * @param f the discriminator function. * @return A map from keys to NonEmptySets such that the following invariant holds: * *
    * (NonEmptySet.toSet partition f)(k) = xs filter (x => f(x) == k)
    * 
* *

* That is, every key k is bound to a NonEmptySet of those elements x for which f(x) equals k. *

*/ final def groupBy[K](f: T => K): Map[K, NonEmptySet[T]] = { val mapKToSet = toSet.groupBy(f) mapKToSet.mapValues { Set => new NonEmptySet(Set) }.toMap } /** * Partitions elements into fixed size NonEmptySets. * * @param size the number of elements per group * @return An iterator producing NonEmptySets of size size, except the last will be truncated if the elements don't divide evenly. */ final def grouped(size: Int): Iterator[NonEmptySet[T]] = { val itOfSet = toSet.grouped(size) itOfSet.map { Set => new NonEmptySet(Set) } } /** * Returns true to indicate this NonEmptySet has a definite size, since all NonEmptySets are strict collections. */ final def hasDefiniteSize: Boolean = true // override def hashCode: Int = toSet.hashCode /** * Selects the first element of this NonEmptySet. * * @return the first element of this NonEmptySet. */ final def head: T = toSet.head // Methods like headOption I can't get rid of because of the implicit conversion to GenTraversable. // Users can call any of the methods I've left out on a NonEmptySet, and get whatever Set would return // for that method call. Eventually I'll probably implement them all to save the implicit conversion. /** * Selects the first element of this NonEmptySet and returns it wrapped in a Some. * * @return the first element of this NonEmptySet, wrapped in a Some. */ final def headOption: Option[T] = toSet.headOption /** * Returns false to indicate this NonEmptySet, like all NonEmptySets, is non-empty. * * @return false */ final def isEmpty: Boolean = false /** * Returns true to indicate this NonEmptySet, like all NonEmptySets, can be traversed repeatedly. * * @return true */ final def isTraversableAgain: Boolean = true /** * Creates and returns a new iterator over all elements contained in this NonEmptySet. * * @return the new iterator */ final def iterator: Iterator[T] = toSet.iterator /** * Selects the last element of this NonEmptySet. * * @return the last element of this NonEmptySet. */ final def last: T = toSet.last /** * Returns the last element of this NonEmptySet, wrapped in a Some. * * @return the last element, wrapped in a Some. */ final def lastOption: Option[T] = toSet.lastOption // Will always return a Some /** * Builds a new NonEmptySet by applying a function to all elements of this NonEmptySet. * * @tparam U the element type of the returned NonEmptySet. * @param f the function to apply to each element. * @return a new NonEmptySet resulting from applying the given function f to each element of this NonEmptySet and collecting the results. */ final def map[U](f: T => U): NonEmptySet[U] = new NonEmptySet(toSet.map(f)) /** * Finds the largest element. * * @return the largest element of this NonEmptySet. */ final def max[U >: T](implicit cmp: Ordering[U]): T = toSet.max(cmp) /** * Finds the largest result after applying the given function to every element. * * @return the largest result of applying the given function to every element of this NonEmptySet. */ final def maxBy[U](f: T => U)(implicit cmp: Ordering[U]): T = toSet.maxBy(f)(cmp) /** * Finds the smallest element. * * @return the smallest element of this NonEmptySet. */ final def min[U >: T](implicit cmp: Ordering[U]): T = toSet.min(cmp) /** * Finds the smallest result after applying the given function to every element. * * @return the smallest result of applying the given function to every element of this NonEmptySet. */ final def minBy[U](f: T => U)(implicit cmp: Ordering[U]): T = toSet.minBy(f)(cmp) /** * Displays all elements of this NonEmptySet in a string. * * @return a string representation of this NonEmptySet. In the resulting string, the result of invoking toString on all elements of this * NonEmptySet follow each other without any separator string. */ final def mkString: String = toSet.mkString /** * Displays all elements of this NonEmptySet in a string using a separator string. * * @param sep the separator string * @return a string representation of this NonEmptySet. In the resulting string, the result of invoking toString on all elements of this * NonEmptySet are separated by the string sep. */ final def mkString(sep: String): String = toSet.mkString(sep) /** * Displays all elements of this NonEmptySet in a string using start, end, and separator strings. * * @param start the starting string. * @param sep the separator string. * @param end the ending string. * @return a string representation of this NonEmptySet. The resulting string begins with the string start and ends with the string * end. Inside, In the resulting string, the result of invoking toString on all elements of this NonEmptySet are * separated by the string sep. */ final def mkString(start: String, sep: String, end: String): String = toSet.mkString(start, sep, end) /** * Returns true to indicate this NonEmptySet, like all NonEmptySets, is non-empty. * * @return true */ final def nonEmpty: Boolean = true /** * The result of multiplying all the elements of this NonEmptySet. * *

* This method can be invoked for any NonEmptySet[T] for which an implicit Numeric[T] exists. *

* * @return the product of all elements */ final def product[U >: T](implicit num: Numeric[U]): U = toSet.product(num) /** * Reduces the elements of this NonEmptySet using the specified associative binary operator. * *

* The order in which operations are performed on elements is unspecified and may be nondeterministic. *

* * @tparam U a type parameter for the binary operator, a supertype of T. * @param op a binary operator that must be associative. * @return the result of applying reduce operator op between all the elements of this NonEmptySet. */ final def reduce[U >: T](op: (U, U) => U): U = toSet.reduce(op) /** * Applies a binary operator to all elements of this NonEmptySet, going left to right. * * @tparam U the result type of the binary operator. * @param op the binary operator. * @return the result of inserting op between consecutive elements of this NonEmptySet, going left to right: * *
    * op(...op(op(x_1, x_2), x_3), ..., x_n)
    * 
* *

* where x1, ..., xn are the elements of this NonEmptySet. *

*/ final def reduceLeft[U >: T](op: (U, T) => U): U = toSet.reduceLeft(op) /** * Applies a binary operator to all elements of this NonEmptySet, going left to right, returning the result in a Some. * * @tparam U the result type of the binary operator. * @param op the binary operator. * @return a Some containing the result of reduceLeft(op) *

*/ final def reduceLeftOption[U >: T](op: (U, T) => U): Option[U] = toSet.reduceLeftOption(op) final def reduceOption[U >: T](op: (U, U) => U): Option[U] = toSet.reduceOption(op) /** * Applies a binary operator to all elements of this NonEmptySet, going right to left. * * @tparam U the result of the binary operator * @param op the binary operator * @return the result of inserting op between consecutive elements of this NonEmptySet, going right to left: * *
    * op(x_1, op(x_2, ... op(x_{n-1}, x_n)...))
    * 
* *

* where x1, ..., xn are the elements of this NonEmptySet. *

*/ final def reduceRight[U >: T](op: (T, U) => U): U = toSet.reduceRight(op) /** * Applies a binary operator to all elements of this NonEmptySet, going right to left, returning the result in a Some. * * @tparam U the result of the binary operator * @param op the binary operator * @return a Some containing the result of reduceRight(op) */ final def reduceRightOption[U >: T](op: (T, U) => U): Option[U] = toSet.reduceRightOption(op) /** * Checks if the given GenIterable contains the same elements in the same order as this NonEmptySet. * * @param that the GenIterable with which to compare * @return true, if both this NonEmptySet and the given GenIterable contain the same elements * in the same order, false otherwise. */ final def sameElements[U >: T](that: GenIterable[U]): Boolean = toSet.sameElements(that) /** * Checks if the given Every contains the same elements in the same order as this NonEmptySet. * * @param that the Every with which to compare * @return true, if both this and the given Every contain the same elements * in the same order, false otherwise. */ final def sameElements[U >: T](that: Every[U]): Boolean = toSet.sameElements(that.toVector) /** * Checks if the given NonEmptySet contains the same elements in the same order as this NonEmptySet. * * @param that the NonEmptySet with which to compare * @return true, if both this and the given NonEmptySet contain the same elements * in the same order, false otherwise. */ final def sameElements[U >: T](that: NonEmptySet[U]): Boolean = toSet.sameElements(that.toSet) /** * Computes a prefix scan of the elements of this NonEmptySet. * *

* Note: The neutral element z may be applied more than once. *

* *

* Here are some examples: *

* *
    * NonEmptySet(1, 2, 3).scan(0)(_ + _) == NonEmptySet(0, 1, 3, 6)
    * NonEmptySet(1, 2, 3).scan("z")(_ + _.toString) == NonEmptySet("z", "z1", "z12", "z123")
    * 
* * @tparam U a type parameter for the binary operator, a supertype of T, and the type of the resulting NonEmptySet. * @param z a neutral element for the scan operation; may be added to the result an arbitrary number of * times, and must not change the result (e.g., Nil for Set concatenation, * 0 for addition, or 1 for multiplication.) * @param op a binary operator that must be associative * @return a new NonEmptySet containing the prefix scan of the elements in this NonEmptySet */ final def scan[U >: T](z: U)(op: (U, U) => U): NonEmptySet[U] = new NonEmptySet(toSet.scan(z)(op)) /** * Produces a NonEmptySet containing cumulative results of applying the operator going left to right. * *

* Here are some examples: *

* *
    * NonEmptySet(1, 2, 3).scanLeft(0)(_ + _) == NonEmptySet(0, 1, 3, 6)
    * NonEmptySet(1, 2, 3).scanLeft("z")(_ + _) == NonEmptySet("z", "z1", "z12", "z123")
    * 
* * @tparam B the result type of the binary operator and type of the resulting NonEmptySet * @param z the start value. * @param op the binary operator. * @return a new NonEmptySet containing the intermediate results of inserting op between consecutive elements of this NonEmptySet, * going left to right, with the start value, z, on the left. */ final def scanLeft[B](z: B)(op: (B, T) => B): NonEmptySet[B] = new NonEmptySet(toSet.scanLeft(z)(op)) /** * Produces a NonEmptySet containing cumulative results of applying the operator going right to left. * *

* Here are some examples: *

* *
    * NonEmptySet(1, 2, 3).scanRight(0)(_ + _) == NonEmptySet(6, 5, 3, 0)
    * NonEmptySet(1, 2, 3).scanRight("z")(_ + _) == NonEmptySet("123z", "23z", "3z", "z")
    * 
* * @tparam B the result of the binary operator and type of the resulting NonEmptySet * @param z the start value * @param op the binary operator * @return a new NonEmptySet containing the intermediate results of inserting op between consecutive elements of this NonEmptySet, * going right to left, with the start value, z, on the right. */ final def scanRight[B](z: B)(op: (T, B) => B): NonEmptySet[B] = new NonEmptySet(toSet.scanRight(z)(op)) /** * Groups elements in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.) * * @param size the number of elements per group * @return an iterator producing NonEmptySets of size size, except the last and the only element will be truncated * if there are fewer elements than size. */ final def sliding(size: Int): Iterator[NonEmptySet[T]] = toSet.sliding(size).map(new NonEmptySet(_)) /** * Groups elements in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.), * moving the sliding window by a given step each time. * * @param size the number of elements per group * @param step the distance between the first elements of successive groups * @return an iterator producing NonEmptySets of size size, except the last and the only element will be truncated * if there are fewer elements than size. */ final def sliding(size: Int, step: Int): Iterator[NonEmptySet[T]] = toSet.sliding(size, step).map(new NonEmptySet(_)) /** * The size of this NonEmptySet. * *

* Note: length and size yield the same result, which will be >= 1. *

* * @return the number of elements in this NonEmptySet. */ final def size: Int = toSet.size /** * Returns "NonEmptySet", the prefix of this object's toString representation. * * @return the string "NonEmptySet" */ def stringPrefix: String = "NonEmptySet" /** * The result of summing all the elements of this NonEmptySet. * *

* This method can be invoked for any NonEmptySet[T] for which an implicit Numeric[T] exists. *

* * @return the sum of all elements */ final def sum[U >: T](implicit num: Numeric[U]): U = toSet.sum(num) import scala.language.higherKinds /** * Converts this NonEmptySet into a collection of type Col by copying all elements. * * @tparam Col the collection type to build. * @return a new collection containing all elements of this NonEmptySet. */ final def to[Col[_]](factory: org.scalactic.ColCompatHelper.Factory[T, Col[T @ uV]]): Col[T @ uV] = toSet.to(factory) /** * Converts this NonEmptySet to an array. * * @return an array containing all elements of this NonEmptySet. A ClassTag must be available for the element type of this NonEmptySet. */ final def toArray[U >: T](implicit classTag: ClassTag[U]): Array[U] = toSet.toArray /** * Converts this NonEmptySet to a Vector. * * @return a Vector containing all elements of this NonEmptySet. */ final def toVector: Vector[T] = toSet.toVector /** * Converts this NonEmptySet to a mutable buffer. * * @return a buffer containing all elements of this NonEmptySet. */ final def toBuffer[U >: T]: Buffer[U] = toSet.toBuffer /** * Converts this NonEmptySet to an immutable IndexedSeq. * * @return an immutable IndexedSeq containing all elements of this NonEmptySet. */ final def toIndexedSeq: collection.immutable.IndexedSeq[T] = toSet.toVector /** * Converts this NonEmptySet to an iterable collection. * * @return an Iterable containing all elements of this NonEmptySet. */ final def toIterable: Iterable[T] = toSet.toIterable /** * Returns an Iterator over the elements in this NonEmptySet. * * @return an Iterator containing all elements of this NonEmptySet. */ final def toIterator: Iterator[T] = toSet.toIterator /** * Converts this NonEmptySet to a Set. * * @return a Set containing all elements of this NonEmptySet. */ // final def toSet: Set[T] = toSet /** * Converts this NonEmptySet to a map. * *

* This method is unavailable unless the elements are members of Tuple2, each ((K, V)) becoming a key-value pair * in the map. Duplicate keys will be overwritten by later keys. *

* * @return a map of type immutable.Map[K, V] containing all key/value pairs of type (K, V) of this NonEmptySet. */ final def toMap[K, V](implicit ev: T <:< (K, V)): Map[K, V] = toSet.toMap /** * Converts this NonEmptySet to an immutable IndexedSeq. * * @return an immutable IndexedSeq containing all elements of this NonEmptySet. */ final def toSeq: Seq[T] = toSet.toSeq /** * Converts this NonEmptySet to a set. * * @return a set containing all elements of this NonEmptySet. */ final def toList: collection.immutable.List[T] = toSet.toList /** * Converts this NonEmptySet to a stream. * * @return a stream containing all elements of this NonEmptySet. */ final def toStream: Stream[T] = toSet.toStream /** * Returns a string representation of this NonEmptySet. * * @return the string "NonEmptySet" followed by the result of invoking toString on * this NonEmptySet's elements, surrounded by parentheses. */ override def toString: String = "NonEmptySet(" + toSet.mkString(", ") + ")" final def transpose[U](implicit ev: T <:< NonEmptySet[U]): NonEmptySet[NonEmptySet[U]] = { val asSets = toSet.map(ev) val Set = asSets.transpose new NonEmptySet(Set.map(new NonEmptySet(_))) } /** * Produces a new NonEmptySet that contains all elements of this NonEmptySet and also all elements of a given Every. * *

* NonEmptySetX union everyY is equivalent to NonEmptySetX ++ everyY. *

* *

* Another way to express this is that NonEmptySetX union everyY computes the order-presevring multi-set union * of NonEmptySetX and everyY. This union method is hence a counter-part of diff and intersect that * also work on multi-sets. *

* * @param that the Every to add. * @return a new NonEmptySet that contains all elements of this NonEmptySet followed by all elements of that Every. */ final def union(that: Every[T]): NonEmptySet[T] = new NonEmptySet(toSet union that.toSet) /** * Produces a new NonEmptySet that contains all elements of this NonEmptySet and also all elements of a given NonEmptySet. * *

* NonEmptySetX union NonEmptySetY is equivalent to NonEmptySetX ++ NonEmptySetY. *

* *

* Another way to express this is that NonEmptySetX union NonEmptySetY computes the order-presevring multi-set union * of NonEmptySetX and NonEmptySetY. This union method is hence a counter-part of diff and intersect that * also work on multi-sets. *

* * @param that the NonEmptySet to add. * @return a new NonEmptySet that contains all elements of this NonEmptySet followed by all elements of that. */ final def union(that: NonEmptySet[T]): NonEmptySet[T] = new NonEmptySet(toSet union that.toSet) /** * Produces a new NonEmptySet that contains all elements of this NonEmptySet and also all elements of a given GenSeq. * *

* NonEmptySetX union ys is equivalent to NonEmptySetX ++ ys. *

* *

* Another way to express this is that NonEmptySetX union ys computes the order-presevring multi-set union * of NonEmptySetX and ys. This union method is hence a counter-part of diff and intersect that * also work on multi-sets. *

* * @param that the GenSet to add. * @return a new NonEmptySet that contains all elements of this NonEmptySet followed by all elements of that GenSeq. */ final def union(that: GenSet[T]): NonEmptySet[T] = new NonEmptySet(toSet.union(that)) /** * Converts this NonEmptySet of pairs into two NonEmptySets of the first and second half of each pair. * * @tparam L the type of the first half of the element pairs * @tparam R the type of the second half of the element pairs * @param asPair an implicit conversion that asserts that the element type of this NonEmptySet is a pair. * @return a pair of NonEmptySets, containing the first and second half, respectively, of each element pair of this NonEmptySet. */ final def unzip[L, R](implicit asPair: T => (L, R)): (NonEmptySet[L], NonEmptySet[R]) = { val unzipped = toSet.unzip (new NonEmptySet(unzipped._1), new NonEmptySet(unzipped._2)) } /** * Converts this NonEmptySet of triples into three NonEmptySets of the first, second, and and third element of each triple. * * @tparam L the type of the first member of the element triples * @tparam M the type of the second member of the element triples * @tparam R the type of the third member of the element triples * @param asTriple an implicit conversion that asserts that the element type of this NonEmptySet is a triple. * @return a triple of NonEmptySets, containing the first, second, and third member, respectively, of each element triple of this NonEmptySet. */ final def unzip3[L, M, R](implicit asTriple: T => (L, M, R)): (NonEmptySet[L], NonEmptySet[M], NonEmptySet[R]) = { val unzipped = toSet.unzip3 (new NonEmptySet(unzipped._1), new NonEmptySet(unzipped._2), new NonEmptySet(unzipped._3)) } /** * Returns a NonEmptySet formed from this NonEmptySet and an iterable collection by combining corresponding * elements in pairs. If one of the two collections is shorter than the other, placeholder elements will be used to extend the * shorter collection to the length of the longer. * * @tparm O the type of the second half of the returned pairs * @tparm U the type of the first half of the returned pairs * @param other the Iterable providing the second half of each result pair * @param thisElem the element to be used to fill up the result if this NonEmptySet is shorter than that Iterable. * @param otherElem the element to be used to fill up the result if that Iterable is shorter than this NonEmptySet. * @return a new NonEmptySet containing pairs consisting of corresponding elements of this NonEmptySet and that. The * length of the returned collection is the maximum of the lengths of this NonEmptySet and that. If this NonEmptySet * is shorter than that, thisElem values are used to pad the result. If that is shorter than this * NonEmptySet, thatElem values are used to pad the result. */ final def zipAll[O, U >: T](other: collection.Iterable[O], thisElem: U, otherElem: O): NonEmptySet[(U, O)] = new NonEmptySet(toSet.zipAll(other, thisElem, otherElem)) /** * Zips this NonEmptySet with its indices. * * @return A new NonEmptySet containing pairs consisting of all elements of this NonEmptySet paired with their index. Indices start at 0. */ final def zipWithIndex: NonEmptySet[(T, Int)] = new NonEmptySet(toSet.zipWithIndex) } /** * Companion object for class NonEmptySet. */ object NonEmptySet { /** * Constructs a new NonEmptySet given at least one element. * * @tparam T the type of the element contained in the new NonEmptySet * @param firstElement the first element (with index 0) contained in this NonEmptySet * @param otherElements a varargs of zero or more other elements (with index 1, 2, 3, ...) contained in this NonEmptySet */ def apply[T](firstElement: T, otherElements: T*): NonEmptySet[T] = new NonEmptySet(otherElements.toSet + firstElement) /** * Variable argument extractor for NonEmptySets. * * @param nonEmptySet: the NonEmptySet containing the elements to extract * @return an Seq containing this NonEmptySets elements, wrapped in a Some */ def unapplySeq[T](nonEmptySet: NonEmptySet[T]): Option[Seq[T]] = Some(nonEmptySet.toSeq) /* // TODO: Figure out how to get case NonEmptySet() to not compile def unapplySeq[T](NonEmptySet: NonEmptySet[T]): Option[(T, Seq[T])] = Some(NonEmptySet.head, NonEmptySet.tail) */ /** * Optionally construct a NonEmptySet containing the elements, if any, of a given GenSet. * * @param set the GenSet with which to construct a NonEmptySet * @return a NonEmptySet containing the elements of the given GenSeq, if non-empty, wrapped in * a Some; else None if the GenSeq is empty */ def from[T](set: GenSet[T]): Option[NonEmptySet[T]] = set.headOption match { case None => None case Some(first) => Some(new NonEmptySet(scala.collection.immutable.Set.empty[T] ++ set)) } import scala.language.implicitConversions /** * Implicit conversion from NonEmptySet to Set. * *

* One use case for this implicit conversion is to enable GenSeq[NonEmptySet]s to be flattened. * Here's an example: *

* *
    * scala> Vector(NonEmptySet(1, 2, 3), NonEmptySet(3, 4), NonEmptySet(5, 6, 7, 8)).flatten
    * res0: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 3, 4, 5, 6, 7, 8)
    * 
* * @param NonEmptySet the NonEmptySet to convert to a Set * @return a Set containing the elements, in order, of this NonEmptySet */ implicit def NonEmptySetToSet[E](NonEmptySet: NonEmptySet[E]): scala.collection.immutable.Set[E] = NonEmptySet.toSet }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy