All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalatest.funsuite.AnyFunSuite.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2001-2013 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalatest.funsuite

import org.scalatest.{Suite, Finders}

/**
  * A suite of tests in which each test is represented as a function value. The “Fun” in AnyFunSuite stands
  * for “function.”
  *
  * 
* Recommended Usage: * For teams coming from xUnit, AnyFunSuite feels comfortable and familiar while still giving some benefits of BDD: AnyFunSuite makes it easy to * write descriptive test names, natural to write focused tests, and generates specification-like output that can facilitate communication among * stakeholders. *
* * Here's an example AnyFunSuite: * *
  * package org.scalatest.examples.funsuite
  *
  * import org.scalatest.funsuite.AnyFunSuite
  *
  * class SetSuite extends AnyFunSuite {
  *
  *   test("An empty Set should have size 0") {
  *     assert(Set.empty.size === 0)
  *   }
  *
  *   test("Invoking head on an empty Set should produce NoSuchElementException") {
  *     assertThrows[NoSuchElementException] {
  *       Set.empty.head
  *     }
  *   }
  * }
  * 
* *

* “test” is a method, defined in AnyFunSuite, which will be invoked * by the primary constructor of SetSuite. You specify the name of the test as * a string between the parentheses, and the test code itself between curly braces. * The test code is a function passed as a by-name parameter to test, which registers * it for later execution. *

* *

* An AnyFunSuite's lifecycle has two phases: the registration phase and the * ready phase. It starts in registration phase and enters ready phase the first time * run is called on it. It then remains in ready phase for the remainder of its lifetime. *

* *

* Tests can only be registered with the test method while the AnyFunSuite is * in its registration phase. Any attempt to register a test after the AnyFunSuite has * entered its ready phase, i.e., after run has been invoked on the AnyFunSuite, * will be met with a thrown TestRegistrationClosedException. The recommended style * of using AnyFunSuite is to register tests during object construction as is done in all * the examples shown here. If you keep to the recommended style, you should never see a * TestRegistrationClosedException. *

* *

* Note: AnyFunSuite was in part inspired by Rehersal, * an early test framework for Scala. *

* *

Ignored tests

* *

* To support the common use case of temporarily disabling a test, with the * good intention of resurrecting the test at a later time, AnyFunSuite provides registration * methods that start with ignore instead of test. Here's an example: *

* *
  * package org.scalatest.examples.funsuite.ignore
  *
  * import org.scalatest.funsuite.AnyFunSuite
  *
  * class SetSuite extends AnyFunSuite {
  *
  *   ignore("An empty Set should have size 0") {
  *     assert(Set.empty.size === 0)
  *   }
  *
  *   test("Invoking head on an empty Set should produce NoSuchElementException") {
  *     assertThrows[NoSuchElementException] {
  *       Set.empty.head
  *     }
  *   }
  * }
  * 
* *

* If you run this version of SetSuite with: *

* *
  * scala> org.scalatest.run(new SetSuite)
  * 
* *

* It will run only the second test and report that the first test was ignored: *

* *
  * SetSuite:
  * - An empty Set should have size 0 !!! IGNORED !!!
  * - Invoking head on an empty Set should produce NoSuchElementException
  * 
* *

* If you wish to temporarily ignore an entire suite of tests, you can (on the JVM, not Scala.js) annotate the test class with @Ignore, like this: *

* *
  * package org.scalatest.examples.funsuite.ignoreall
  *
  * import org.scalatest.funsuite.AnyFunSuite
  * import org.scalatest.Ignore
  *
  * @Ignore
  * class SetSuite extends AnyFunSuite {
  *
  *   test("An empty Set should have size 0") {
  *     assert(Set.empty.size === 0)
  *   }
  *
  *   test("Invoking head on an empty Set should produce NoSuchElementException") {
  *     assertThrows[NoSuchElementException] {
  *       Set.empty.head
  *     }
  *   }
  * }
  * 
* *

* When you mark a test class with a tag annotation, ScalaTest will mark each test defined in that class with that tag. * Thus, marking the SetSuite in the above example with the @Ignore tag annotation means that both tests * in the class will be ignored. If you run the above SetSuite in the Scala interpreter, you'll see: *

* *
  * scala> org.scalatest.run(new SetSuite)
  * SetSuite:
  * - An empty Set should have size 0 !!! IGNORED !!!
  * - Invoking head on an empty Set should produce NoSuchElementException !!! IGNORED !!!
  * 
* *

* Note that marking a test class as ignored won't prevent it from being discovered by ScalaTest. Ignored classes * will be discovered and run, and all their tests will be reported as ignored. This is intended to keep the ignored * class visible, to encourage the developers to eventually fix and “un-ignore” it. If you want to * prevent a class from being discovered at all (on the JVM, not Scala.js), use the DoNotDiscover annotation instead. *

* *

Informers

* *

* One of the parameters to AnyFunSuite's run method is a Reporter, which * will collect and report information about the running suite of tests. * Information about suites and tests that were run, whether tests succeeded or failed, * and tests that were ignored will be passed to the Reporter as the suite runs. * Most often the reporting done by default by AnyFunSuite's methods will be sufficient, but * occasionally you may wish to provide custom information to the Reporter from a test. * For this purpose, an Informer that will forward information * to the current Reporter is provided via the info parameterless method. * You can pass the extra information to the Informer via its apply method. * The Informer will then pass the information to the Reporter via an InfoProvided event. * Here's an example that shows both a direct use as well as an indirect use through the methods * of GivenWhenThen: *

* *
  * package org.scalatest.examples.funsuite.info
  *
  * import collection.mutable
  * import org.scalatest._
  *
  * class SetSuite extends funsuite.AnyFunSuite with GivenWhenThen {
  *
  *   test("An element can be added to an empty mutable Set") {
  *
  *     Given("an empty mutable Set")
  *     val set = mutable.Set.empty[String]
  *
  *     When("an element is added")
  *     set += "clarity"
  *
  *     Then("the Set should have size 1")
  *     assert(set.size === 1)
  *
  *     And("the Set should contain the added element")
  *     assert(set.contains("clarity"))
  *
  *     info("That's all folks!")
  *   }
  * }
  * 
* * * If you run this AnyFunSuite from the interpreter, you will see the following output: * *
  * scala> org.scalatest.run(new SetSuite)
  * SetSuite:
  * - an element can be added to an empty mutable Set
  *   + Given an empty mutable Set
  *   + When an element is added
  *   + Then the Set should have size 1
  *   + And the Set should contain the added element
  *   + That's all folks!
  * 
* *

Documenters

* *

* AnyFunSuite also provides a markup method that returns a Documenter, which allows you to send * to the Reporter text formatted in Markdown syntax. * You can pass the extra information to the Documenter via its apply method. * The Documenter will then pass the information to the Reporter via an MarkupProvided event. *

* *

* Here's an example AnyFunSuite that uses markup: *

* *
  * package org.scalatest.examples.funsuite.markup
  *
  * import collection.mutable
  * import org.scalatest._
  *
  * class SetSuite extends funsuite.AnyFunSuite with GivenWhenThen {
  *
  *   markup { """
  *
  * Mutable Set
  * -----------
  *
  * A set is a collection that contains no duplicate elements.
  *
  * To implement a concrete mutable set, you need to provide implementations
  * of the following methods:
  *
  *     def contains(elem: A): Boolean
  *     def iterator: Iterator[A]
  *     def += (elem: A): this.type
  *     def -= (elem: A): this.type
  *
  * If you wish that methods like `take`,
  * `drop`, `filter` return the same kind of set,
  * you should also override:
  *
  *     def empty: This
  *
  * It is also good idea to override methods `foreach` and
  * `size` for efficiency.
  *
  *   """ }
  *
  *   test("An element can be added to an empty mutable Set") {
  *
  *     Given("an empty mutable Set")
  *     val set = mutable.Set.empty[String]
  *
  *     When("an element is added")
  *     set += "clarity"
  *
  *     Then("the Set should have size 1")
  *     assert(set.size === 1)
  *
  *     And("the Set should contain the added element")
  *     assert(set.contains("clarity"))
  *
  *     markup("This test finished with a **bold** statement!")
  *   }
  * }
  * 
* *

* Although all of ScalaTest's built-in reporters will display the markup text in some form, * the HTML reporter will format the markup information into HTML. Thus, the main purpose of markup is to * add nicely formatted text to HTML reports. Here's what the above SetSpec would look like in the HTML reporter: *

* * * *

Notifiers and alerters

* *

* ScalaTest records text passed to info and markup during tests, and sends the recorded text in the recordedEvents field of * test completion events like TestSucceeded and TestFailed. This allows string reporters (like the standard out reporter) to show * info and markup text after the test name in a color determined by the outcome of the test. For example, if the test fails, string * reporters will show the info and markup text in red. If a test succeeds, string reporters will show the info * and markup text in green. While this approach helps the readability of reports, it means that you can't use info to get status * updates from long running tests. *

* *

* To get immediate (i.e., non-recorded) notifications from tests, you can use note (a Notifier) and alert * (an Alerter). Here's an example showing the differences: *

* *
  * package org.scalatest.examples.funsuite.note
  *
  * import collection.mutable
  * import org.scalatest._
  *
  * class SetSuite extends funsuite.AnyFunSuite {
  *
  *   test("An element can be added to an empty mutable Set") {
  *
  *     info("info is recorded")
  *     markup("markup is *also* recorded")
  *     note("notes are sent immediately")
  *     alert("alerts are also sent immediately")
  *
  *     val set = mutable.Set.empty[String]
  *     set += "clarity"
  *     assert(set.size === 1)
  *     assert(set.contains("clarity"))
  *   }
  * }
  * 
* *

* Because note and alert information is sent immediately, it will appear before the test name in string reporters, and its color will * be unrelated to the ultimate outcome of the test: note text will always appear in green, alert text will always appear in yellow. * Here's an example: *

* *
  * scala> org.scalatest.run(new SetSpec)
  * SetSuite:
  *   + notes are sent immediately
  *   + alerts are also sent immediately
  * - An element can be added to an empty mutable Set
  *   + info is recorded
  *   + markup is *also* recorded
  * 
* *

* Another example is slowpoke notifications. * If you find a test is taking a long time to complete, but you're not sure which test, you can enable * slowpoke notifications. ScalaTest will use an Alerter to fire an event whenever a test has been running * longer than a specified amount of time. *

* *

* In summary, use info and markup for text that should form part of the specification output. Use * note and alert to send status notifications. (Because the HTML reporter is intended to produce a * readable, printable specification, info and markup text will appear in the HTML report, but * note and alert text will not.) *

* *

Pending tests

* *

* A pending test is one that has been given a name but is not yet implemented. The purpose of * pending tests is to facilitate a style of testing in which documentation of behavior is sketched * out before tests are written to verify that behavior (and often, before the behavior of * the system being tested is itself implemented). Such sketches form a kind of specification of * what tests and functionality to implement later. *

* *

* To support this style of testing, a test can be given a name that specifies one * bit of behavior required by the system being tested. The test can also include some code that * sends more information about the behavior to the reporter when the tests run. At the end of the test, * it can call method pending, which will cause it to complete abruptly with TestPendingException. *

* *

* Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information * sent to the reporter when running the test can appear in the report of a test run. (In other words, * the code of a pending test is executed just like any other test.) However, because the test completes abruptly * with TestPendingException, the test will be reported as pending, to indicate * the actual test, and possibly the functionality, has not yet been implemented. *

* *

* Although pending tests may be used more often in specification-style suites, such as * org.scalatest.funspec.AnyFunSpec, you can also use it in AnyFunSuite, like this: *

* *
  * package org.scalatest.examples.funsuite.pending
  *
  * import org.scalatest._
  *
  * class SetSuite extends funsuite.AnyFunSuite {
  *
  *   test("An empty Set should have size 0") (pending)
  *
  *   test("Invoking head on an empty Set should produce NoSuchElementException") {
  *     assertThrows[NoSuchElementException] {
  *       Set.empty.head
  *     }
  *   }
  * }
  * 
* *

* (Note: "(pending)" is the body of the test. Thus the test contains just one statement, an invocation * of the pending method, which throws TestPendingException.) * If you run this version of SetSuite with: *

* *
  * scala> org.scalatest.run(new SetSuite)
  * 
* *

* It will run both tests, but report that first test is pending. You'll see: *

* *
  * SetSuite:
  * - An empty Set should have size 0 (pending)
  * - Invoking head on an empty Set should produce NoSuchElementException
  * 
* *

* One difference between an ignored test and a pending one is that an ignored test is intended to be used during a * significant refactorings of the code under test, when tests break and you don't want to spend the time to fix * all of them immediately. You can mark some of those broken tests as ignored temporarily, so that you can focus the red * bar on just failing tests you actually want to fix immediately. Later you can go back and fix the ignored tests. * In other words, by ignoring some failing tests temporarily, you can more easily notice failed tests that you actually * want to fix. By contrast, a pending test is intended to be used before a test and/or the code under test is written. * Pending indicates you've decided to write a test for a bit of behavior, but either you haven't written the test yet, or * have only written part of it, or perhaps you've written the test but don't want to implement the behavior it tests * until after you've implemented a different bit of behavior you realized you need first. Thus ignored tests are designed * to facilitate refactoring of existing code whereas pending tests are designed to facilitate the creation of new code. *

* *

* One other difference between ignored and pending tests is that ignored tests are implemented as a test tag that is * excluded by default. Thus an ignored test is never executed. By contrast, a pending test is implemented as a * test that throws TestPendingException (which is what calling the pending method does). Thus * the body of pending tests are executed up until they throw TestPendingException. The reason for this difference * is that it enables your unfinished test to send InfoProvided messages to the reporter before it completes * abruptly with TestPendingException, as shown in the previous example on Informers * that used the GivenWhenThen trait. *

* *

Tagging tests

* *

* A AnyFunSuite's tests may be classified into groups by tagging them with string names. * As with any suite, when executing a AnyFunSuite, groups of tests can * optionally be included and/or excluded. To tag a AnyFunSuite's tests, * you pass objects that extend class org.scalatest.Tag to methods * that register tests. Class Tag takes one parameter, a string name. If you have * created tag annotation interfaces as described in the Tag documentation, then you * will probably want to use tag names on your test functions that match. To do so, simply * pass the fully qualified names of the tag interfaces to the Tag constructor. For example, if you've * defined a tag annotation interface with fully qualified name, * com.mycompany.tags.DbTest, then you could * create a matching tag for AnyFunSuites like this: *

* *
  * package org.scalatest.examples.funsuite.tagging
  *
  * import org.scalatest.Tag
  *
  * object DbTest extends Tag("com.mycompany.tags.DbTest")
  * 
* *

* Given these definitions, you could place AnyFunSuite tests into groups with tags like this: *

* *
  * import org.scalatest.funsuite.AnyFunSuite
  * import org.scalatest.tagobjects.Slow
  *
  * class SetSuite extends AnyFunSuite {
  *
  *   test("An empty Set should have size 0", Slow) {
  *     assert(Set.empty.size === 0)
  *   }
  *
  *   test("Invoking head on an empty Set should produce NoSuchElementException",
  *        Slow, DbTest) {
  *     assertThrows[NoSuchElementException] {
  *       Set.empty.head
  *     }
  *   }
  * }
  * 
* *

* This code marks both tests with the org.scalatest.tags.Slow tag, * and the second test with the com.mycompany.tags.DbTest tag. *

* *

* The run method takes a Filter, whose constructor takes an optional * Set[String] called tagsToInclude and a Set[String] called * tagsToExclude. If tagsToInclude is None, all tests will be run * except those those belonging to tags listed in the * tagsToExclude Set. If tagsToInclude is defined, only tests * belonging to tags mentioned in the tagsToInclude set, and not mentioned in tagsToExclude, * will be run. *

* *

* It is recommended, though not required, that you create a corresponding tag annotation when you * create a Tag object. A tag annotation (on the JVM, not Scala.js) allows you to tag all the tests of a AnyFunSuite in * one stroke by annotating the class. For more information and examples, see the * documentation for class Tag. On Scala.js, to tag all tests of a suite, you'll need to * tag each test individually at the test site. *

* * *

Shared fixtures

* *

* A test fixture is composed of the objects and other artifacts (files, sockets, database * connections, etc.) tests use to do their work. * When multiple tests need to work with the same fixtures, it is important to try and avoid * duplicating the fixture code across those tests. The more code duplication you have in your * tests, the greater drag the tests will have on refactoring the actual production code. *

* *

* ScalaTest recommends three techniques to eliminate such code duplication: *

* *
    *
  • Refactor using Scala
  • *
  • Override withFixture
  • *
  • Mix in a before-and-after trait
  • *
* *

Each technique is geared towards helping you reduce code duplication without introducing * instance vars, shared mutable objects, or other dependencies between tests. Eliminating shared * mutable state across tests will make your test code easier to reason about and more amenable for parallel * test execution.

The following sections * describe these techniques, including explaining the recommended usage * for each. But first, here's a table summarizing the options:

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Refactor using Scala when different tests need different fixtures. *
* get-fixture methods * * The extract method refactor helps you create a fresh instances of mutable fixture objects in each test * that needs them, but doesn't help you clean them up when you're done. *
* fixture-context objects * * By placing fixture methods and fields into traits, you can easily give each test just the newly created * fixtures it needs by mixing together traits. Use this technique when you need different combinations * of mutable fixture objects in different tests, and don't need to clean up after. *
* loan-fixture methods * * Factor out dupicate code with the loan pattern when different tests need different fixtures that must be cleaned up afterwards. *
* Override withFixture when most or all tests need the same fixture. *
* * withFixture(NoArgTest) * *

* The recommended default approach when most or all tests need the same fixture treatment. This general technique * allows you, for example, to perform side effects at the beginning and end of all or most tests, * transform the outcome of tests, retry tests, make decisions based on test names, tags, or other test data. * Use this technique unless: *

*
*
Different tests need different fixtures (refactor using Scala instead)
*
An exception in fixture code should abort the suite, not fail the test (use a before-and-after trait instead)
*
You have objects to pass into tests (override withFixture(OneArgTest) instead)
*
*
* * withFixture(OneArgTest) * * * Use when you want to pass the same fixture object or objects as a parameter into all or most tests. *
* Mix in a before-and-after trait when you want an aborted suite, not a failed test, if the fixture code fails. *
* BeforeAndAfter * * Use this boilerplate-buster when you need to perform the same side-effects before and/or after tests, rather than at the beginning or end of tests. *
* BeforeAndAfterEach * * Use when you want to stack traits that perform the same side-effects before and/or after tests, rather than at the beginning or end of tests. *
* * *

Calling get-fixture methods

* *

* If you need to create the same mutable fixture objects in multiple tests, and don't need to clean them up after using them, the simplest approach is to write one or * more get-fixture methods. A get-fixture method returns a new instance of a needed fixture object (or an holder object containing * multiple fixture objects) each time it is called. You can call a get-fixture method at the beginning of each * test that needs the fixture, storing the returned object or objects in local variables. Here's an example: *

* *
  * package org.scalatest.examples.funsuite.getfixture
  *
  * import org.scalatest.funsuite.AnyFunSuite
  * import collection.mutable.ListBuffer
  *
  * class ExampleSuite extends AnyFunSuite {
  *
  *   class Fixture {
  *     val builder = new StringBuilder("ScalaTest is ")
  *     val buffer = new ListBuffer[String]
  *   }
  *
  *   def fixture = new Fixture
  *
  *   test("Testing should be easy") {
  *     val f = fixture
  *     f.builder.append("easy!")
  *     assert(f.builder.toString === "ScalaTest is easy!")
  *     assert(f.buffer.isEmpty)
  *     f.buffer += "sweet"
  *   }
  *
  *   test("Testing should be fun") {
  *     val f = fixture
  *     f.builder.append("fun!")
  *     assert(f.builder.toString === "ScalaTest is fun!")
  *     assert(f.buffer.isEmpty)
  *   }
  * }
  * 
* *

* The “f.” in front of each use of a fixture object provides a visual indication of which objects * are part of the fixture, but if you prefer, you can import the the members with “import f._” and use the names directly. *

* *

* If you need to configure fixture objects differently in different tests, you can pass configuration into the get-fixture method. For example, if you could pass * in an initial value for a mutable fixture object as a parameter to the get-fixture method. *

* * *

Instantiating fixture-context objects

* *

* An alternate technique that is especially useful when different tests need different combinations of fixture objects is to define the fixture objects as instance variables * of fixture-context objects whose instantiation forms the body of tests. Like get-fixture methods, fixture-context objects are only * appropriate if you don't need to clean up the fixtures after using them. *

* * To use this technique, you define instance variables intialized with fixture objects in traits and/or classes, then in each test instantiate an object that * contains just the fixture objects needed by the test. Traits allow you to mix together just the fixture objects needed by each test, whereas classes * allow you to pass data in via a constructor to configure the fixture objects. Here's an example in which fixture objects are partitioned into two traits * and each test just mixes together the traits it needs: *

* *
  * package org.scalatest.examples.funsuite.fixturecontext
  *
  * import collection.mutable.ListBuffer
  * import org.scalatest.funsuite.AnyFunSuite
  *
  * class ExampleSuite extends AnyFunSuite {
  *
  *   trait Builder {
  *     val builder = new StringBuilder("ScalaTest is ")
  *   }
  *
  *   trait Buffer {
  *     val buffer = ListBuffer("ScalaTest", "is")
  *   }
  *
  *   // This test needs the StringBuilder fixture
  *   test("Testing should be productive") {
  *     new Builder {
  *       builder.append("productive!")
  *       assert(builder.toString === "ScalaTest is productive!")
  *     }
  *   }
  *
  *   // This test needs the ListBuffer[String] fixture
  *   test("Test code should be readable") {
  *     new Buffer {
  *       buffer += ("readable!")
  *       assert(buffer === List("ScalaTest", "is", "readable!"))
  *     }
  *   }
  *
  *   // This test needs both the StringBuilder and ListBuffer
  *   test("Test code should be clear and concise") {
  *     new Builder with Buffer {
  *       builder.append("clear!")
  *       buffer += ("concise!")
  *       assert(builder.toString === "ScalaTest is clear!")
  *       assert(buffer === List("ScalaTest", "is", "concise!"))
  *     }
  *   }
  * }
  * 
* * *

Overriding withFixture(NoArgTest)

* *

* Although the get-fixture method and fixture-context object approaches take care of setting up a fixture at the beginning of each * test, they don't address the problem of cleaning up a fixture at the end of the test. If you just need to perform a side-effect at the beginning or end of * a test, and don't need to actually pass any fixture objects into the test, you can override withFixture(NoArgTest), one of ScalaTest's * lifecycle methods defined in trait Suite. *

* *

* Trait Suite's implementation of runTest passes a no-arg test function to withFixture(NoArgTest). It is withFixture's * responsibility to invoke that test function. Suite's implementation of withFixture simply * invokes the function, like this: *

* *
  * // Default implementation in trait Suite
  * protected def withFixture(test: NoArgTest) = {
  *   test()
  * }
  * 
* *

* You can, therefore, override withFixture to perform setup before and/or cleanup after invoking the test function. If * you have cleanup to perform, you should invoke the test function inside a try block and perform the cleanup in * a finally clause, in case an exception propagates back through withFixture. (If a test fails because of an exception, * the test function invoked by withFixture will result in a [[org.scalatest.Failed Failed]] wrapping the exception. Nevertheless, * best practice is to perform cleanup in a finally clause just in case an exception occurs.) *

* *

* The withFixture method is designed to be stacked, and to enable this, you should always call the super implementation * of withFixture, and let it invoke the test function rather than invoking the test function directly. In other words, instead of writing * “test()”, you should write “super.withFixture(test)”, like this: *

* *
  * // Your implementation
  * override def withFixture(test: NoArgTest) = {
  *   // Perform setup
  *   try super.withFixture(test) // Invoke the test function
  *   finally {
  *     // Perform cleanup
  *   }
  * }
  * 
* *

* Here's an example in which withFixture(NoArgTest) is used to take a snapshot of the working directory if a test fails, and * send that information to the reporter: *

* *
  * package org.scalatest.examples.funsuite.noargtest
  *
  * import java.io.File
  * import org.scalatest._
  *
  * class ExampleSuite extends funsuite.AnyFunSuite {
  *
  *   override def withFixture(test: NoArgTest) = {
  *
  *     super.withFixture(test) match {
  *       case failed: Failed =>
  *         val currDir = new File(".")
  *         val fileNames = currDir.list()
  *         info("Dir snapshot: " + fileNames.mkString(", "))
  *         failed
  *       case other => other
  *     }
  *   }
  *
  *   test("This test should succeed") {
  *     assert(1 + 1 === 2)
  *   }
  *
  *   test("This test should fail") {
  *     assert(1 + 1 === 3)
  *   }
  * }
  * 
* *

* Running this version of ExampleSuite in the interpreter in a directory with two files, hello.txt and world.txt * would give the following output: *

* *
  * scala> org.scalatest.run(new ExampleSuite)
  * ExampleSuite:
  * - this test should succeed
  * - this test should fail *** FAILED ***
  *   2 did not equal 3 (:33)
  *   + Dir snapshot: hello.txt, world.txt 
  * 
* *

* Note that the NoArgTest passed to withFixture, in addition to * an apply method that executes the test, also includes the test name and the config * map passed to runTest. Thus you can also use the test name and configuration objects in your withFixture * implementation. *

* * *

Calling loan-fixture methods

* *

* If you need to both pass a fixture object into a test and perform cleanup at the end of the test, you'll need to use the loan pattern. * If different tests need different fixtures that require cleanup, you can implement the loan pattern directly by writing loan-fixture methods. * A loan-fixture method takes a function whose body forms part or all of a test's code. It creates a fixture, passes it to the test code by invoking the * function, then cleans up the fixture after the function returns. *

* *

* The following example shows three tests that use two fixtures, a database and a file. Both require cleanup after, so each is provided via a * loan-fixture method. (In this example, the database is simulated with a StringBuffer.) *

* *
  * package org.scalatest.examples.funsuite.loanfixture
  *
  * import java.util.concurrent.ConcurrentHashMap
  *
  * object DbServer { // Simulating a database server
  *   type Db = StringBuffer
  *   private val databases = new ConcurrentHashMap[String, Db]
  *   def createDb(name: String): Db = {
  *     val db = new StringBuffer
  *     databases.put(name, db)
  *     db
  *   }
  *   def removeDb(name: String) {
  *     databases.remove(name)
  *   }
  * }
  *
  * import org.scalatest.funsuite.AnyFunSuite
  * import DbServer._
  * import java.util.UUID.randomUUID
  * import java.io._
  *
  * class ExampleSuite extends AnyFunSuite {
  *
  *   def withDatabase(testCode: Db => Any) {
  *     val dbName = randomUUID.toString
  *     val db = createDb(dbName) // create the fixture
  *     try {
  *       db.append("ScalaTest is ") // perform setup
  *       testCode(db) // "loan" the fixture to the test
  *     }
  *     finally removeDb(dbName) // clean up the fixture
  *   }
  *
  *   def withFile(testCode: (File, FileWriter) => Any) {
  *     val file = File.createTempFile("hello", "world") // create the fixture
  *     val writer = new FileWriter(file)
  *     try {
  *       writer.write("ScalaTest is ") // set up the fixture
  *       testCode(file, writer) // "loan" the fixture to the test
  *     }
  *     finally writer.close() // clean up the fixture
  *   }
  *
  *   // This test needs the file fixture
  *   test("Testing should be productive") {
  *     withFile { (file, writer) =>
  *       writer.write("productive!")
  *       writer.flush()
  *       assert(file.length === 24)
  *     }
  *   }
  *
  *   // This test needs the database fixture
  *   test("Test code should be readable") {
  *     withDatabase { db =>
  *       db.append("readable!")
  *       assert(db.toString === "ScalaTest is readable!")
  *     }
  *   }
  *
  *   // This test needs both the file and the database
  *   test("Test code should be clear and concise") {
  *     withDatabase { db =>
  *       withFile { (file, writer) => // loan-fixture methods compose
  *         db.append("clear!")
  *         writer.write("concise!")
  *         writer.flush()
  *         assert(db.toString === "ScalaTest is clear!")
  *         assert(file.length === 21)
  *       }
  *     }
  *   }
  * }
  * 
* *

* As demonstrated by the last test, loan-fixture methods compose. Not only do loan-fixture methods allow you to * give each test the fixture it needs, they allow you to give a test multiple fixtures and clean everything up afterwards. *

* *

* Also demonstrated in this example is the technique of giving each test its own "fixture sandbox" to play in. When your fixtures * involve external side-effects, like creating files or databases, it is a good idea to give each file or database a unique name as is * done in this example. This keeps tests completely isolated, allowing you to run them in parallel if desired. *

* * *

Overriding withFixture(OneArgTest)

* *

* If all or most tests need the same fixture, you can avoid some of the boilerplate of the loan-fixture method approach by using a FixtureSuite * and overriding withFixture(OneArgTest). * Each test in a FixtureSuite takes a fixture as a parameter, allowing you to pass the fixture into * the test. You must indicate the type of the fixture parameter by specifying FixtureParam, and implement a * withFixture method that takes a OneArgTest. This withFixture method is responsible for * invoking the one-arg test function, so you can perform fixture set up before, and clean up after, invoking and passing * the fixture into the test function. *

* *

* To enable the stacking of traits that define withFixture(NoArgTest), it is a good idea to let * withFixture(NoArgTest) invoke the test function instead of invoking the test * function directly. To do so, you'll need to convert the OneArgTest to a NoArgTest. You can do that by passing * the fixture object to the toNoArgTest method of OneArgTest. In other words, instead of * writing “test(theFixture)”, you'd delegate responsibility for * invoking the test function to the withFixture(NoArgTest) method of the same instance by writing: *

* *
  * withFixture(test.toNoArgTest(theFixture))
  * 
* *

* Here's a complete example: *

* *
  * package org.scalatest.examples.funsuite.oneargtest
  *
  * import org.scalatest.funsuite
  * import java.io._
  *
  * class ExampleSuite extends funsuite.FixtureAnyFunSuite {
  *
  *   case class FixtureParam(file: File, writer: FileWriter)
  *
  *   def withFixture(test: OneArgTest) = {
  *
  *     // create the fixture
  *     val file = File.createTempFile("hello", "world")
  *     val writer = new FileWriter(file)
  *     val theFixture = FixtureParam(file, writer)
  *
  *     try {
  *       writer.write("ScalaTest is ") // set up the fixture
  *       withFixture(test.toNoArgTest(theFixture)) // "loan" the fixture to the test
  *     }
  *     finally writer.close() // clean up the fixture
  *   }
  *
  *   test("Testing should be easy") { f =>
  *     f.writer.write("easy!")
  *     f.writer.flush()
  *     assert(f.file.length === 18)
  *   }
  *
  *   test("Testing should be fun") { f =>
  *     f.writer.write("fun!")
  *     f.writer.flush()
  *     assert(f.file.length === 17)
  *   }
  * }
  * 
* *

* In this example, the tests actually required two fixture objects, a File and a FileWriter. In such situations you can * simply define the FixtureParam type to be a tuple containing the objects, or as is done in this example, a case class containing * the objects. For more information on the withFixture(OneArgTest) technique, see the documentation for funsuite.FixtureAnyFunSuite. *

* * *

Mixing in BeforeAndAfter

* *

* In all the shared fixture examples shown so far, the activities of creating, setting up, and cleaning up the fixture objects have been * performed during the test. This means that if an exception occurs during any of these activities, it will be reported as a test failure. * Sometimes, however, you may want setup to happen before the test starts, and cleanup after the test has completed, so that if an * exception occurs during setup or cleanup, the entire suite aborts and no more tests are attempted. The simplest way to accomplish this in ScalaTest is * to mix in trait BeforeAndAfter. With this trait you can denote a bit of code to run before each test * with before and/or after each test each test with after, like this: *

* *
  * package org.scalatest.examples.funsuite.beforeandafter
  *
  * import org.scalatest.funsuite.AnyFunSuite
  * import org.scalatest.BeforeAndAfter
  * import collection.mutable.ListBuffer
  *
  * class ExampleSuite extends AnyFunSuite with BeforeAndAfter {
  *
  *   val builder = new StringBuilder
  *   val buffer = new ListBuffer[String]
  *
  *   before {
  *     builder.append("ScalaTest is ")
  *   }
  *
  *   after {
  *     builder.clear()
  *     buffer.clear()
  *   }
  *
  *   test("testing should be easy") {
  *     builder.append("easy!")
  *     assert(builder.toString === "ScalaTest is easy!")
  *     assert(buffer.isEmpty)
  *     buffer += "sweet"
  *   }
  *
  *   test("testing should be fun") {
  *     builder.append("fun!")
  *     assert(builder.toString === "ScalaTest is fun!")
  *     assert(buffer.isEmpty)
  *   }
  * }
  * 
* *

* Note that the only way before and after code can communicate with test code is via some side-effecting mechanism, commonly by * reassigning instance vars or by changing the state of mutable objects held from instance vals (as in this example). If using * instance vars or mutable objects held from instance vals you wouldn't be able to run tests in parallel in the same instance * of the test class (on the JVM, not Scala.js) unless you synchronized access to the shared, mutable state. This is why ScalaTest's ParallelTestExecution trait extends * OneInstancePerTest. By running each test in its own instance of the class, each test has its own copy of the instance variables, so you * don't need to synchronize. If you mixed ParallelTestExecution into the ExampleSuite above, the tests would run in parallel just fine * without any synchronization needed on the mutable StringBuilder and ListBuffer[String] objects. *

* *

* Although BeforeAndAfter provides a minimal-boilerplate way to execute code before and after tests, it isn't designed to enable stackable * traits, because the order of execution would be non-obvious. If you want to factor out before and after code that is common to multiple test suites, you * should use trait BeforeAndAfterEach instead, as shown later in the next section, * composing fixtures by stacking traits. *

* *

Composing fixtures by stacking traits

* *

* In larger projects, teams often end up with several different fixtures that test classes need in different combinations, * and possibly initialized (and cleaned up) in different orders. A good way to accomplish this in ScalaTest is to factor the individual * fixtures into traits that can be composed using the stackable trait pattern. This can be done, for example, by placing * withFixture methods in several traits, each of which call super.withFixture. Here's an example in * which the StringBuilder and ListBuffer[String] fixtures used in the previous examples have been * factored out into two stackable fixture traits named Builder and Buffer: *

* *
  * package org.scalatest.examples.funsuite.composingwithfixture
  *
  * import org.scalatest._
  * import collection.mutable.ListBuffer
  *
  * trait Builder extends TestSuiteMixin { this: TestSuite =>
  *
  *   val builder = new StringBuilder
  *
  *   abstract override def withFixture(test: NoArgTest) = {
  *     builder.append("ScalaTest is ")
  *     try super.withFixture(test) // To be stackable, must call super.withFixture
  *     finally builder.clear()
  *   }
  * }
  *
  * trait Buffer extends TestSuiteMixin { this: TestSuite =>
  *
  *   val buffer = new ListBuffer[String]
  *
  *   abstract override def withFixture(test: NoArgTest) = {
  *     try super.withFixture(test) // To be stackable, must call super.withFixture
  *     finally buffer.clear()
  *   }
  * }
  *
  * class ExampleSuite extends funsuite.AnyFunSuite with Builder with Buffer {
  *
  *   test("Testing should be easy") {
  *     builder.append("easy!")
  *     assert(builder.toString === "ScalaTest is easy!")
  *     assert(buffer.isEmpty)
  *     buffer += "sweet"
  *   }
  *
  *   test("Testing should be fun") {
  *     builder.append("fun!")
  *     assert(builder.toString === "ScalaTest is fun!")
  *     assert(buffer.isEmpty)
  *     buffer += "clear"
  *   }
  * }
  * 
* *

* By mixing in both the Builder and Buffer traits, ExampleSuite gets both fixtures, which will be * initialized before each test and cleaned up after. The order the traits are mixed together determines the order of execution. * In this case, Builder is “super” to Buffer. If you wanted Buffer to be “super” * to Builder, you need only switch the order you mix them together, like this: *

* *
  * class Example2Suite extends AnyFunSuite with Buffer with Builder
  * 
* *

* And if you only need one fixture you mix in only that trait: *

* *
  * class Example3Suite extends AnyFunSuite with Builder
  * 
* *

* Another way to create stackable fixture traits is by extending the BeforeAndAfterEach * and/or BeforeAndAfterAll traits. * BeforeAndAfterEach has a beforeEach method that will be run before each test (like JUnit's setUp), * and an afterEach method that will be run after (like JUnit's tearDown). * Similarly, BeforeAndAfterAll has a beforeAll method that will be run before all tests, * and an afterAll method that will be run after all tests. Here's what the previously shown example would look like if it * were rewritten to use the BeforeAndAfterEach methods instead of withFixture: *

* *
  * package org.scalatest.examples.funsuite.composingbeforeandaftereach
  *
  * import org.scalatest._
  * import org.scalatest.BeforeAndAfterEach
  * import collection.mutable.ListBuffer
  *
  * trait Builder extends BeforeAndAfterEach { this: Suite =>
  *
  *   val builder = new StringBuilder
  *
  *   override def beforeEach() {
  *     builder.append("ScalaTest is ")
  *     super.beforeEach() // To be stackable, must call super.beforeEach
  *   }
  *
  *   override def afterEach() {
  *     try {
  *       super.afterEach() // To be stackable, must call super.afterEach
  *     }
  *     finally builder.clear()
  *   }
  * }
  *
  * trait Buffer extends BeforeAndAfterEach { this: Suite =>
  *
  *   val buffer = new ListBuffer[String]
  *
  *   override def afterEach() {
  *     try {
  *       super.afterEach() // To be stackable, must call super.afterEach
  *     }
  *     finally buffer.clear()
  *   }
  * }
  *
  * class ExampleSuite extends funsuite.AnyFunSuite with Builder with Buffer {
  *
  *   test("Testing should be easy") {
  *     builder.append("easy!")
  *     assert(builder.toString === "ScalaTest is easy!")
  *     assert(buffer.isEmpty)
  *     buffer += "sweet"
  *   }
  *
  *   test("Testing should be fun") {
  *     builder.append("fun!")
  *     assert(builder.toString === "ScalaTest is fun!")
  *     assert(buffer.isEmpty)
  *     buffer += "clear"
  *   }
  * }
  * 
* *

* To get the same ordering as withFixture, place your super.beforeEach call at the end of each * beforeEach method, and the super.afterEach call at the beginning of each afterEach * method, as shown in the previous example. It is a good idea to invoke super.afterEach in a try * block and perform cleanup in a finally clause, as shown in the previous example, because this ensures the * cleanup code is performed even if super.afterEach throws an exception. *

* *

* The difference between stacking traits that extend BeforeAndAfterEach versus traits that implement withFixture is * that setup and cleanup code happens before and after the test in BeforeAndAfterEach, but at the beginning and * end of the test in withFixture. Thus if a withFixture method completes abruptly with an exception, it is * considered a failed test. By contrast, if any of the beforeEach or afterEach methods of BeforeAndAfterEach * complete abruptly, it is considered an aborted suite, which will result in a SuiteAborted event. *

* *

Shared tests

* *

* Sometimes you may want to run the same test code on different fixture objects. In other words, you may want to write tests that are "shared" * by different fixture objects. * To accomplish this in a AnyFunSuite, you first place shared tests in * behavior functions. These behavior functions will be * invoked during the construction phase of any AnyFunSuite that uses them, so that the tests they contain will * be registered as tests in that AnyFunSuite. * For example, given this stack class: *

* *
  * import scala.collection.mutable.ListBuffer
  *
  * class Stack[T] {
  *
  *   val MAX = 10
  *   private val buf = new ListBuffer[T]
  *
  *   def push(o: T) {
  *     if (!full)
  *       buf.prepend(o)
  *     else
  *       throw new IllegalStateException("can't push onto a full stack")
  *   }
  *
  *   def pop(): T = {
  *     if (!empty)
  *       buf.remove(0)
  *     else
  *       throw new IllegalStateException("can't pop an empty stack")
  *   }
  *
  *   def peek: T = {
  *     if (!empty)
  *       buf(0)
  *     else
  *       throw new IllegalStateException("can't pop an empty stack")
  *   }
  *
  *   def full: Boolean = buf.size == MAX
  *   def empty: Boolean = buf.size == 0
  *   def size = buf.size
  *
  *   override def toString = buf.mkString("Stack(", ", ", ")")
  * }
  * 
* *

* You may want to test the Stack class in different states: empty, full, with one item, with one item less than capacity, * etc. You may find you have several tests that make sense any time the stack is non-empty. Thus you'd ideally want to run * those same tests for three stack fixture objects: a full stack, a stack with a one item, and a stack with one item less than * capacity. With shared tests, you can factor these tests out into a behavior function, into which you pass the * stack fixture to use when running the tests. So in your AnyFunSuite for stack, you'd invoke the * behavior function three times, passing in each of the three stack fixtures so that the shared tests are run for all three fixtures. *

* *

* You can define a behavior function that encapsulates these shared tests inside the AnyFunSuite that uses them. If they are shared * between different AnyFunSuites, however, you could also define them in a separate trait that is mixed into * each AnyFunSuite that uses them. * For example, here the nonEmptyStack behavior function (in this case, a * behavior method) is defined in a trait along with another * method containing shared tests for non-full stacks: *

* *
  * import org.scalatest.funsuite.AnyFunSuite
  *
  * trait FunSuiteStackBehaviors { this: AnyFunSuite =>
  *
  *   def nonEmptyStack(createNonEmptyStack: => Stack[Int], lastItemAdded: Int) {
  *
  *     test("empty is invoked on this non-empty stack: " + createNonEmptyStack.toString) {
  *       val stack = createNonEmptyStack
  *       assert(!stack.empty)
  *     }
  *
  *     test("peek is invoked on this non-empty stack: " + createNonEmptyStack.toString) {
  *       val stack = createNonEmptyStack
  *       val size = stack.size
  *       assert(stack.peek === lastItemAdded)
  *       assert(stack.size === size)
  *     }
  *
  *     test("pop is invoked on this non-empty stack: " + createNonEmptyStack.toString) {
  *       val stack = createNonEmptyStack
  *       val size = stack.size
  *       assert(stack.pop === lastItemAdded)
  *       assert(stack.size === size - 1)
  *     }
  *   }
  *
  *   def nonFullStack(createNonFullStack: => Stack[Int]) {
  *
  *     test("full is invoked on this non-full stack: " + createNonFullStack.toString) {
  *       val stack = createNonFullStack
  *       assert(!stack.full)
  *     }
  *
  *     test("push is invoked on this non-full stack: " + createNonFullStack.toString) {
  *       val stack = createNonFullStack
  *       val size = stack.size
  *       stack.push(7)
  *       assert(stack.size === size + 1)
  *       assert(stack.peek === 7)
  *     }
  *   }
  * }
  * 
* *

* Given these behavior functions, you could invoke them directly, but AnyFunSuite offers a DSL for the purpose, * which looks like this: *

* *
  * testsFor(nonEmptyStack(stackWithOneItem, lastValuePushed))
  * testsFor(nonFullStack(stackWithOneItem))
  * 
* *

* If you prefer to use an imperative style to change fixtures, for example by mixing in BeforeAndAfterEach and * reassigning a stack var in beforeEach, you could write your behavior functions * in the context of that var, which means you wouldn't need to pass in the stack fixture because it would be * in scope already inside the behavior function. In that case, your code would look like this: *

* *
  * testsFor(nonEmptyStack) // assuming lastValuePushed is also in scope inside nonEmptyStack
  * testsFor(nonFullStack)
  * 
* *

* The recommended style, however, is the functional, pass-all-the-needed-values-in style. Here's an example: *

* *
  * import org.scalatest.funsuite.AnyFunSuite
  *
  * class StackFunSuite extends AnyFunSuite with FunSuiteStackBehaviors {
  *
  *   // Stack fixture creation methods
  *   def emptyStack = new Stack[Int]
  *
  *   def fullStack = {
  *     val stack = new Stack[Int]
  *     for (i <- 0 until stack.MAX)
  *       stack.push(i)
  *     stack
  *   }
  *
  *   def stackWithOneItem = {
  *     val stack = new Stack[Int]
  *     stack.push(9)
  *     stack
  *   }
  *
  *   def stackWithOneItemLessThanCapacity = {
  *     val stack = new Stack[Int]
  *     for (i <- 1 to 9)
  *       stack.push(i)
  *     stack
  *   }
  *
  *   val lastValuePushed = 9
  *
  *   test("empty is invoked on an empty stack") {
  *     val stack = emptyStack
  *     assert(stack.empty)
  *   }
  *
  *   test("peek is invoked on an empty stack") {
  *     val stack = emptyStack
  *     assertThrows[IllegalStateException] {
  *       stack.peek
  *     }
  *   }
  *
  *   test("pop is invoked on an empty stack") {
  *     val stack = emptyStack
  *     assertThrows[IllegalStateException] {
  *       stack.pop
  *     }
  *   }
  *
  *   testsFor(nonEmptyStack(stackWithOneItem, lastValuePushed))
  *   testsFor(nonFullStack(stackWithOneItem))
  *
  *   testsFor(nonEmptyStack(stackWithOneItemLessThanCapacity, lastValuePushed))
  *   testsFor(nonFullStack(stackWithOneItemLessThanCapacity))
  *
  *   test("full is invoked on a full stack") {
  *     val stack = fullStack
  *     assert(stack.full)
  *   }
  *
  *   testsFor(nonEmptyStack(fullStack, lastValuePushed))
  *
  *   test("push is invoked on a full stack") {
  *     val stack = fullStack
  *     assertThrows[IllegalStateException] {
  *       stack.push(10)
  *     }
  *   }
  * }
  * 
* *

* If you load these classes into the Scala interpreter (with scalatest's JAR file on the class path), and execute it, * you'll see: *

* *
  * scala> org.scalatest.run(new StackFunSuite)
  * StackFunSuite:
  * - empty is invoked on an empty stack
  * - peek is invoked on an empty stack
  * - pop is invoked on an empty stack
  * - empty is invoked on this non-empty stack: Stack(9)
  * - peek is invoked on this non-empty stack: Stack(9)
  * - pop is invoked on this non-empty stack: Stack(9)
  * - full is invoked on this non-full stack: Stack(9)
  * - push is invoked on this non-full stack: Stack(9)
  * - empty is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  * - peek is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  * - pop is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  * - full is invoked on this non-full stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  * - push is invoked on this non-full stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  * - full is invoked on a full stack
  * - empty is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
  * - peek is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
  * - pop is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
  * - push is invoked on a full stack
  * 
* *

* One thing to keep in mind when using shared tests is that in ScalaTest, each test in a suite must have a unique name. * If you register the same tests repeatedly in the same suite, one problem you may encounter is an exception at runtime * complaining that multiple tests are being registered with the same test name. * In a AnyFunSuite there is no nesting construct analogous to AnyFunSpec's describe clause. * Therefore, you need to do a bit of * extra work to ensure that the test names are unique. If a duplicate test name problem shows up in a * AnyFunSuite, you'll need to pass in a prefix or suffix string to add to each test name. You can pass this string * the same way you pass any other data needed by the shared tests, or just call toString on the shared fixture object. * This is the approach taken by the previous FunSuiteStackBehaviors example. *

* *

* Given this FunSuiteStackBehaviors trait, calling it with the stackWithOneItem fixture, like this: *

* *
  * testsFor(nonEmptyStack(stackWithOneItem, lastValuePushed))
  * 
* *

* yields test names: *

* *
    *
  • empty is invoked on this non-empty stack: Stack(9)
  • *
  • peek is invoked on this non-empty stack: Stack(9)
  • *
  • pop is invoked on this non-empty stack: Stack(9)
  • *
* *

* Whereas calling it with the stackWithOneItemLessThanCapacity fixture, like this: *

* *
  * testsFor(nonEmptyStack(stackWithOneItemLessThanCapacity, lastValuePushed))
  * 
* *

* yields different test names: *

* *
    *
  • empty is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  • *
  • peek is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  • *
  • pop is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
  • *
* * @author Bill Venners */ @Finders(Array("org.scalatest.finders.FunSuiteFinder")) //SCALATESTJS-ONLY @scala.scalajs.reflect.annotation.EnableReflectiveInstantiation //SCALATESTNATIVE-ONLY @scala.scalanative.reflect.annotation.EnableReflectiveInstantiation open class AnyFunSuite extends AnyFunSuiteLike { /** * Returns a user friendly string for this suite, composed of the * simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite * contains nested suites, the result of invoking toString on each * of the nested suites, separated by commas and surrounded by parentheses. * * @return a user-friendly string for this suite */ override def toString: String = Suite.suiteToString(None, this) }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy