All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalatest.Matchers.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2001-2013 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalatest

import org.scalatest.matchers._
import org.scalatest.enablers._
import java.lang.reflect.Method
import java.lang.reflect.Modifier
import scala.util.matching.Regex
import java.lang.reflect.Field
import scala.reflect.Manifest
import MatchersHelper.transformOperatorChars
import scala.collection.Traversable
import Assertions.areEqualComparingArraysStructurally
import scala.collection.GenTraversable
import scala.collection.GenSeq
import scala.collection.GenMap
import org.scalautils.Tolerance
import org.scalautils.Explicitly
import org.scalautils.TripleEqualsSupport.Spread
import org.scalautils.TripleEqualsSupport.TripleEqualsInvocation
import org.scalautils.Equality
import org.scalautils.TripleEqualsSupport.TripleEqualsInvocationOnSpread
import org.scalautils.Constraint
import org.scalautils.Prettifier
import org.scalautils.Every
import MatchersHelper.andMatchersAndApply
import MatchersHelper.orMatchersAndApply
import org.scalatest.words._
import MatchersHelper.matchSymbolToPredicateMethod
import MatchersHelper.accessProperty
import MatchersHelper.newTestFailedException
import MatchersHelper.fullyMatchRegexWithGroups
import MatchersHelper.startWithRegexWithGroups
import MatchersHelper.endWithRegexWithGroups
import MatchersHelper.includeRegexWithGroups
import org.scalautils.NormalizingEquality
import Assertions.checkExpectedException
import Assertions.checkNoException
import exceptions.StackDepthExceptionHelper.getStackDepthFun
import scala.language.experimental.macros
import scala.language.higherKinds

// TODO: drop generic support for be as an equality comparison, in favor of specific ones.
// TODO: Put links from ShouldMatchers to wherever I reveal the matrix and algo of how properties are checked dynamically.
// TODO: double check that I wrote tests for (length (7)) and (size (8)) in parens
// TODO: document how to turn off the === implicit conversion
// TODO: Document you can use JMock, EasyMock, etc.

/**
 * Trait that provides a domain specific language (DSL) for expressing assertions in tests
 * using the word should.
 *
 * 

* For example, if you mix Matchers into * a suite class, you can write an equality assertion in that suite like this: *

* *
 * result should equal (3)
 * 
* *

* Here result is a variable, and can be of any type. If the object is an * Int with the value 3, execution will continue (i.e., the expression will result * in the unit value, ()). Otherwise, a TestFailedException * will be thrown with a detail message that explains the problem, such as "7 did not equal 3". * This TestFailedException will cause the test to fail. *

* *

* Here is a table of contents for this documentation: *

* * * * *

Matchers migration in ScalaTest 2.0 and 2.1.0

* *

Deprecations

* *

* Prior to 2.0, ScalaTest's matchers DSL was provided by traits * org.scalatest.matchers.ShouldMatchers and * org.scalatest.matchers.MustMatchers. These are now deprecated in favor of * traits in package org.scalatest. The fully qualified name of the original * ShouldMatchers is now org.scalatest.Matchers, and the fully qualified * name of the original MustMatchers is now org.scalatest.MustMatchers. * The old fully qualified names will continue to work during a lengthy deprecation cycle, but * will generate a deprecation warning and eventually be removed in a future version * of ScalaTest. You can migrate existing uses of ShouldMatchers by simply importing * or mixing in org.scalatest.Matchers instead of * org.scalatest.matchers.ShouldMatchers, and can migrate existing * uses of org.scalatest.matchers.MustMatchers by importing or * mixing in org.scalatest.MustMatchers instead of org.scalatest.matchers.MustMatchers. *

* *

* Two other deprecations in ScalaTest 2.0 matchers are be === <value> and evaluating ... * should produce syntax. This will both continue to work as before, but will generate a deprecation * warning and eventually be removed in a future version of ScalaTest. the be === syntax is being deprecated so that all uses * of === in ScalaTest consistently provide the new * features of tunable type checking, tolerance support, and customized equality. Please replace uses of this syntax with one of the other * ways to check equality described in the next section. The eventually syntax is being deprecated because it is replaced by thrownBy * clauses, as described below. *

* *

Potential breakages

* *

* Although ScalaTest's matchers have undergone a major refactor in 2.0, all previously documented syntax for matchers should continue to work exactly * the same with one potential exception, which should in practice be extremely rare. The potential breakage is that if you included length or size * along with custom have-property matchers that you wrote, you'll get a compiler error. To fix such an error, add after * your length or size invocation an (of [<type>]) clause, as * described below. *

* *

* The only other source of potential breakage is the fragile base class problem. We have added fields and methods to Matchers in 2.0 that may * conflict with fields and methods in your existing classes and cause a compiler error. Such issues can usually be easily fixed locally with simple renames or refactors, * but if you prefer to subtract a token from Matchers, you can do so by mixing together your own Matchers trait * from component traits, as described below. Note that you should not see any new implicit conflicts, because we managed to reduce the number * of implicits brought into scope by 2.0 matchers compared to 1.x by about 75%. *

* * *

Checking equality with matchers

* *

* ScalaTest matchers provides five different ways to check equality, each designed to address a different need. They are: *

* *
 * result should equal (3) // can customize equality
 * result should === (3)   // can customize equality and enforce type constraints
 * result should be (3)    // cannot customize equality, so fastest to compile
 * result shouldEqual 3    // can customize equality, no parentheses required
 * result shouldBe 3       // cannot customize equality, so fastest to compile, no parentheses required
 * 
* *

* The “left should equal (right)” syntax requires an * org.scalautils.Equality[L] to be provided (either implicitly or explicitly), where * L is the left-hand type on which should is invoked. In the "left should equal (right)" case, * for example, L is the type of left. Thus if left is type Int, the "left should * equal (right)" * statement would require an Equality[Int]. *

* *

* By default, an implicit Equality[T] instance is available for any type T, in which equality is implemented * by simply invoking == on the left * value, passing in the right value, with special treatment for arrays. If either left or right is an array, deep * will be invoked on it before comparing with ==. Thus, the following expression * will yield false, because Array's equals method compares object identity: *

* *
 * Array(1, 2) == Array(1, 2) // yields false
 * 
* *

* The next expression will by default not result in a TestFailedException, because default Equality[Array[Int]] compares * the two arrays structurally, taking into consideration the equality of the array's contents: *

* *
 * Array(1, 2) should equal (Array(1, 2)) // succeeds (i.e., does not throw TestFailedException)
 * 
* *

* If you ever do want to verify that two arrays are actually the same object (have the same identity), you can use the * be theSameInstanceAs syntax, described below. *

* *

* You can customize the meaning of equality for a type when using "should equal," "should ===," * or shouldEqual syntax by defining implicit Equality instances that will be used instead of default Equality. * You might do this to normalize types before comparing them with ==, for instance, or to avoid calling the == method entirely, * such as if you want to compare Doubles with a tolerance. * For an example, see the main documentation of trait Equality. *

* *

* You can always supply implicit parameters explicitly, but in the case of implicit parameters of type Equality[T], ScalaUtils provides a * simple "explictly" DSL. For example, here's how you could explicitly supply an Equality[String] instance that normalizes both left and right * sides (which must be strings), by transforming them to lowercase: *

* *
 * scala> import org.scalatest.Matchers._
 * import org.scalatest.Matchers._
 *
 * scala> import org.scalautils.Explicitly._
 * import org.scalautils.Explicitly._
 *
 * scala> import org.scalautils.StringNormalizations._
 * import org.scalautils.StringNormalizations._
 *
 * scala> "Hi" should equal ("hi") (after being lowerCased)
 * 
* *

* The after being lowerCased expression results in an Equality[String], which is then passed * explicitly as the second curried parameter to equal. For more information on the explictly DSL, see the main documentation * for trait Explicitly. *

* *

* The "should be" and shouldBe syntax do not take an Equality[T] and can therefore not be customized. * They always use the default approach to equality described above. As a result, "should be" and shouldBe will * likely be the fastest-compiling matcher syntax for equality comparisons, since the compiler need not search for * an implicit Equality[T] each time. *

* *

* The should === syntax (and its complement, should !==) can be used to enforce type * constraints at compile-time between the left and right sides of the equality comparison. Here's an example: *

* *
 * scala> import org.scalatest.Matchers._
 * import org.scalatest.Matchers._
 *
 * scala> import org.scalautils.TypeCheckedTripleEquals._
 * import org.scalautils.TypeCheckedTripleEquals._
 *
 * scala> Some(2) should === (2)
 * <console>:17: error: types Some[Int] and Int do not adhere to the equality constraint
 * selected for the === and !== operators; the missing implicit parameter is of
 * type org.scalautils.Constraint[Some[Int],Int]
 *               Some(2) should === (2)
 *                       ^
 * 
* *

* By default, the "Some(2) should === (2)" statement would fail at runtime. By mixing in * the equality constraints provided by TypeCheckedTripleEquals, however, the statement fails to compile. For more information * and examples, see the main documentation for trait TypeCheckedTripleEquals. *

* * *

Checking size and length

* *

* You can check the size or length of any type of object for which it * makes sense. Here's how checking for length looks: *

*
 * result should have length 3
 * 
* *

* Size is similar: *

* *
 * result should have size 10
 * 
* *

* The length syntax can be used with String, Array, any scala.collection.GenSeq, * any java.util.List, and any type T for which an implicit Length[T] type class is * available in scope. * Similarly, the size syntax can be used with Array, any scala.collection.GenTraversable, * any java.util.Collection, any java.util.Map, and any type T for which an implicit Size[T] type class is * available in scope. You can enable the length or size syntax for your own arbitrary types, therefore, * by defining Length or Size type * classes for those types. *

* *

* In addition, the length syntax can be used with any object that has a field or method named length * or a method named getLength. Similarly, the size syntax can be used with any * object that has a field or method named size or a method named getSize. * The type of a length or size field, or return type of a method, must be either Int * or Long. Any such method must take no parameters. (The Scala compiler will ensure at compile time that * the object on which should is being invoked has the appropriate structure.) *

* * *

Checking strings

* *

* You can check for whether a string starts with, ends with, or includes a substring like this: *

* *
 * string should startWith ("Hello")
 * string should endWith ("world")
 * string should include ("seven")
 * 
* *

* You can check for whether a string starts with, ends with, or includes a regular expression, like this: *

* *
 * string should startWith regex "Hel*o"
 * string should endWith regex "wo.ld"
 * string should include regex "wo.ld"
 * 
* *

* And you can check whether a string fully matches a regular expression, like this: *

* *
 * string should fullyMatch regex """(-)?(\d+)(\.\d*)?"""
 * 
* *

* The regular expression passed following the regex token can be either a String * or a scala.util.matching.Regex. *

* *

* With the startWith, endWith, include, and fullyMatch * tokens can also be used with an optional specification of required groups, like this: *

* *
 * "abbccxxx" should startWith regex ("a(b*)(c*)" withGroups ("bb", "cc"))
 * "xxxabbcc" should endWith regex ("a(b*)(c*)" withGroups ("bb", "cc"))
 * "xxxabbccxxx" should include regex ("a(b*)(c*)" withGroups ("bb", "cc"))
 * "abbcc" should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
 * 
* *

* You can check whether a string is empty with empty: *

* *
 * s shouldBe empty
 * 
* *

* You can also use most of ScalaTest's matcher syntax for collections on String by * treating the Strings as collections of characters. For examples, see the * Strings and Arrays as collections section below. *

* * *

Greater and less than

* *

* You can check whether any type for which an implicit Ordering[T] is available * is greater than, less than, greater than or equal, or less * than or equal to a value of type T. The syntax is: *

*
 * one should be < 7
 * one should be > 0
 * one should be <= 7
 * one should be >= 0
 * 
* * *

Checking Boolean properties with be

* *

* If an object has a method that takes no parameters and returns boolean, you can check * it by placing a Symbol (after be) that specifies the name * of the method (excluding an optional prefix of "is"). A symbol literal * in Scala begins with a tick mark and ends at the first non-identifier character. Thus, * 'traversableAgain results in a Symbol object at runtime, as does * 'completed and 'file. Here's an example: *

* *
 * iter shouldBe 'traversableAgain
 * 
* * Given this code, ScalaTest will use reflection to look on the object referenced from * emptySet for a method that takes no parameters and results in Boolean, * with either the name empty or isEmpty. If found, it will invoke * that method. If the method returns true, execution will continue. But if it returns * false, a TestFailedException will be thrown that will contain a detail message, such as: * *
 * non-empty iterator was not traversableAgain
 * 
* *

* This be syntax can be used with any reference (AnyRef) type. If the object does * not have an appropriately named predicate method, you'll get a TestFailedException * at runtime with a detailed message that explains the problem. * (For the details on how a field or method is selected during this * process, see the documentation for BeWord.) *

* *

* If you think it reads better, you can optionally put a or an after * be. For example, java.io.File has two predicate methods, * isFile and isDirectory. Thus with a File object * named temp, you could write: *

* *
 * temp should be a 'file
 * 
* *

* Or, given java.awt.event.KeyEvent has a method isActionKey that takes * no arguments and returns Boolean, you could assert that a KeyEvent is * an action key with: *

* *
 * keyEvent should be an 'actionKey
 * 
* *

* If you prefer to check Boolean properties in a type-safe manner, you can use a BePropertyMatcher. * This would allow you to write expressions such as: *

* *
 * xs shouldBe traversableAgain
 * temp should be a file
 * keyEvent should be an actionKey
 * 
* *

* These expressions would fail to compile if should is used on an inappropriate type, as determined * by the type parameter of the BePropertyMatcher being used. (For example, file in this example * would likely be of type BePropertyMatcher[java.io.File]. If used with an appropriate type, such an expression will compile * and at run time the Boolean property method or field will be accessed directly; i.e., no reflection will be used. * See the documentation for BePropertyMatcher for more information. *

* * *

Using custom BeMatchers

* * If you want to create a new way of using be, which doesn't map to an actual property on the * type you care about, you can create a BeMatcher. You could use this, for example, to create BeMatcher[Int] * called odd, which would match any odd Int, and even, which would match * any even Int. * Given this pair of BeMatchers, you could check whether an Int was odd or even with expressions like: *

* *
 * num shouldBe odd
 * num should not be even
 * 
* * For more information, see the documentation for BeMatcher. * * *

Checking object identity

* *

* If you need to check that two references refer to the exact same object, you can write: *

* *
 * ref1 should be theSameInstanceAs ref2
 * 
* * *

Checking an object's class

* *

* If you need to check that an object is an instance of a particular class or trait, you can supply the type to * “be a” or “be an”: *

* *
 * result1 shouldBe a [Tiger]
 * result1 should not be an [Orangutan]
 * 
* *

* Because type parameters are erased on the JVM, we recommend you insert an underscore for any type parameters * when using this syntax. Both of the following test only that the result is an instance of List[_], because at * runtime the type parameter has been erased: *

* *
 * result shouldBe a [List[_]] // recommended
 * result shouldBe a [List[Fruit]] // discouraged
 * 
* * *

Checking numbers against a range

* *

* Often you may want to check whether a number is within a * range. You can do that using the +- operator, like this: *

* *
 * sevenDotOh should equal (6.9 +- 0.2)
 * sevenDotOh should === (6.9 +- 0.2)
 * sevenDotOh should be (6.9 +- 0.2)
 * sevenDotOh shouldEqual 6.9 +- 0.2
 * sevenDotOh shouldBe 6.9 +- 0.2
 * 
* *

* Any of these expressions will cause a TestFailedException to be thrown if the floating point * value, sevenDotOh is outside the range 6.7 to 7.1. * You can use +- with any type T for which an implicit Numeric[T] exists, such as integral types: *

* *
 * seven should equal (6 +- 2)
 * seven should === (6 +- 2)
 * seven should be (6 +- 2)
 * seven shouldEqual 6 +- 2
 * seven shouldBe 6 +- 2
 * 
* * *

Checking for emptiness

* *

* You can check whether an object is "empty", like this: *

* *
 * traversable shouldBe empty
 * javaMap should not be empty
 * 
* *

* The empty token can be used with any type L for which an implicit Emptiness[L] exists. * The Emptiness companion object provides implicits for GenTraversable[E], java.util.Collection[E], * java.util.Map[K, V], String, Array[E], and Option[E]. In addition, the * Emptiness companion object provides structural implicits for types that declare an isEmpty method that * returns a Boolean. Here are some examples: *

* *
 * scala> import org.scalatest.Matchers._
 * import org.scalatest.Matchers._
 *
 * scala> List.empty shouldBe empty
 *
 * scala> None shouldBe empty
 *
 * scala> Some(1) should not be empty
 *
 * scala> "" shouldBe empty
 *
 * scala> new java.util.HashMap[Int, Int] shouldBe empty
 *
 * scala> new { def isEmpty = true} shouldBe empty
 *
 * scala> Array(1, 2, 3) should not be empty
 * 
* * *

Working with "containers"

* *

* You can check whether a collection contains a particular element like this: *

* *
 * traversable should contain ("five")
 * 
* *

* The contain syntax shown above can be used with any type C that has a "containing" nature, evidenced by * an implicit org.scalatest.enablers.Containing[L], where L is left-hand type on * which should is invoked. In the Containing * companion object, implicits are provided for types GenTraversable[E], java.util.Collection[E], * java.util.Map[K, V], String, Array[E], and Option[E]. * Here are some examples: *

* *
 * scala> import org.scalatest.Matchers._
 * import org.scalatest.Matchers._
 *
 * scala> List(1, 2, 3) should contain (2)
 *
 * scala> Map('a' -> 1, 'b' -> 2, 'c' -> 3) should contain ('b' -> 2)
 *
 * scala> Set(1, 2, 3) should contain (2)
 *
 * scala> Array(1, 2, 3) should contain (2)
 *
 * scala> "123" should contain ('2')
 *
 * scala> Some(2) should contain (2)
 * 
* *

* ScalaTest's implicit methods that provide the Containing[L] type classes require an Equality[E], where * E is an element type. For example, to obtain a Containing[Array[Int]] you must supply an Equality[Int], * either implicitly or explicitly. The contain syntax uses this Equality[E] to determine containership. * Thus if you want to change how containership is determined for an element type E, place an implicit Equality[E] * in scope or use the explicitly DSL. Although the implicit parameter required for the contain syntax is of type Containing[L], * implicit conversions are provided in the Containing companion object from Equality[E] to the various * types of containers of E. Here's an example: *

* *
 * scala> import org.scalatest.Matchers._
 * import org.scalatest.Matchers._
 *
 * scala> List("Hi", "Di", "Ho") should contain ("ho")
 * org.scalatest.exceptions.TestFailedException: List(Hi, Di, Ho) did not contain element "ho"
 *         at ...
 *
 * scala> import org.scalautils.Explicitly._
 * import org.scalautils.Explicitly._
 *
 * scala> import org.scalautils.StringNormalizations._
 * import org.scalautils.StringNormalizations._
 *
 * scala> (List("Hi", "Di", "Ho") should contain ("ho")) (after being lowerCased)
 * 
* *

* Note that when you use the explicitly DSL with contain you need to wrap the entire * contain expression in parentheses, as shown here. *

* *
 * (List("Hi", "Di", "Ho") should contain ("ho")) (after being lowerCased)
 * ^                                            ^
 * 
* *

* In addition to determining whether an object contains another object, you can use contain to * make other determinations. * For example, the contain oneOf syntax ensures that one and only one of the specified elements are * contained in the containing object: *

* *
 * List(1, 2, 3, 4, 5) should contain oneOf (5, 7, 9)
 * Some(7) should contain oneOf (5, 7, 9)
 * "howdy" should contain oneOf ('a', 'b', 'c', 'd')
 * 
* *

* Note that if multiple specified elements appear in the containing object, oneOf will fail: *

* *
 * scala> List(1, 2, 3) should contain oneOf (2, 3, 4)
 * org.scalatest.exceptions.TestFailedException: List(1, 2, 3) did not contain one of (2, 3, 4)
 *         at ...
 * 
* *

* If you really want to ensure one or more of the specified elements are contained in the containing object, * use atLeastOneOf, described below, instead of oneOf. Keep in mind, oneOf * means "exactly one of." *

* *

* Note also that with any contain syntax, you can place custom implicit Equality[E] instances in scope * to customize how containership is determined, or use the explicitly DSL. Here's an example: *

* *
 * (Array("Doe", "Ray", "Me") should contain oneOf ("X", "RAY", "BEAM")) (after being lowerCased)
 * 
* *

* The contain noneOf syntax does the opposite of oneOf: it ensures none of the specified elements * are contained in the containing object: *

* *
 * List(1, 2, 3, 4, 5) should contain noneOf (7, 8, 9)
 * Some(0) should contain noneOf (7, 8, 9)
 * "12345" should contain noneOf ('7', '8', '9')
 * 
* * *

Working with "aggregations"

* *

* As mentioned, the "contain," "contain oneOf," and "contain noneOf" syntax requires a * Containing[L] be provided, where L is the left-hand type. Other contain syntax, which * will be described in this section, requires an Aggregating[L] be provided, where again L is the left-hand type. * (An Aggregating[L] instance defines the "aggregating nature" of a type L.) * The reason, essentially, is that contain syntax that makes sense for Option is enabled by * Containing[L], whereas syntax that does not make sense for Option is enabled * by Aggregating[L]. For example, it doesn't make sense to assert that an Option[Int] contains all of a set of integers, as it * could only ever contain one of them. But this does make sense for a type such as List[Int] that can aggregate zero to many integers. *

* *

* The Aggregating companion object provides implicit instances of Aggregating[L] * for types GenTraversable[E], java.util.Collection[E], * java.util.Map[K, V], String, Array[E]. Note that these are the same types as are supported with * Containing, but with Option[E] missing. * Here are some examples: *

* *

* The contain atLeastOneOf syntax, for example, works for any type L for which an Aggregating[L] exists. It ensures * that at least one of (i.e., one or more of) the specified objects are contained in the containing object: *

* *
 * List(1, 2, 3) should contain atLeastOneOf (2, 3, 4)
 * Array(1, 2, 3) should contain atLeastOneOf (3, 4, 5)
 * "abc" should contain atLeastOneOf ('c', 'a', 't')
 * 
* *

* Similar to Containing[L], the implicit methods that provide the Aggregating[L] instances require an Equality[E], where * E is an element type. For example, to obtain a Aggregating[Vector[String]] you must supply an Equality[String], * either implicitly or explicitly. The contain syntax uses this Equality[E] to determine containership. * Thus if you want to change how containership is determined for an element type E, place an implicit Equality[E] * in scope or use the explicitly DSL. Although the implicit parameter required for the contain syntax is of type Aggregating[L], * implicit conversions are provided in the Aggregating companion object from Equality[E] to the various * types of aggregations of E. Here's an example: *

* *
 * (Vector(" A", "B ") should contain atLeastOneOf ("a ", "b", "c")) (after being lowerCased and trimmed)
 * 
* *

* The "contain atMostOneOf" syntax lets you specify a set of objects at most one of which should be contained in the containing object: *

* *
 * List(1, 2, 3, 4, 5) should contain atMostOneOf (5, 6, 7)
 * 
* *

* The "contain allOf" syntax lets you specify a set of objects that should all be contained in the containing object: *

* *
 * List(1, 2, 3, 4, 5) should contain allOf (2, 3, 5)
 * 
* *

* The "contain only" syntax lets you assert that the containing object contains only the specified objects, though it may * contain more than one of each: *

* *
 * List(1, 2, 3, 2, 1) should contain only (1, 2, 3)
 * 
* *

* The "contain theSameElementsAs" and "contain theSameElementsInOrderAs syntax differ from the others * in that the right hand side is a GenTraversable[_] rather than a varargs of Any. (Note: in a future 2.0 milestone release, possibly * 2.0.M6, these will likely be widened to accept any type R for which an Aggregating[R] exists.) *

* *

* The "contain theSameElementsAs" syntax lets you assert that two aggregations contain the same objects: *

* *
 * List(1, 2, 2, 3, 3, 3) should contain theSameElementsAs Vector(3, 2, 3, 1, 2, 3)
 * 
* *

* The number of times any family of equal objects appears must also be the same in both the left and right aggregations. * The specified objects may appear multiple times, but must appear in the order they appear in the right-hand list. For example, if * the last 3 element is left out of the right-hand list in the previous example, the expression would fail because the left side * has three 3's and the right hand side has only two: *

* *
 * List(1, 2, 2, 3, 3, 3) should contain theSameElementsAs Vector(3, 2, 3, 1, 2)
 * org.scalatest.exceptions.TestFailedException: List(1, 2, 2, 3, 3, 3) did not contain the same elements as Vector(3, 2, 3, 1, 2)
 *         at ...
 * 
* * *

Working with "sequences"

* *

* The rest of the contain syntax, which * will be described in this section, requires a Sequencing[L] be provided, where again L is the left-hand type. * (A Sequencing[L] instance defines the "sequencing nature" of a type L.) * The reason, essentially, is that contain syntax that implies an "order" of elements makes sense only for types that place elements in a sequence. * For example, it doesn't make sense to assert that a Map[String, Int] or Set[Int] contains all of a set of integers in a particular * order, as these types don't necessarily define an order for their elements. But this does make sense for a type such as Seq[Int] that does define * an order for its elements. *

* *

* The Sequencing companion object provides implicit instances of Sequencing[L] * for types GenSeq[E], java.util.List[E], * String, and Array[E]. * Here are some examples: *

* *

* Similar to Containing[L], the implicit methods that provide the Aggregating[L] instances require an Equality[E], where * E is an element type. For example, to obtain a Aggregating[Vector[String]] you must supply an Equality[String], * either implicitly or explicitly. The contain syntax uses this Equality[E] to determine containership. * Thus if you want to change how containership is determined for an element type E, place an implicit Equality[E] * in scope or use the explicitly DSL. Although the implicit parameter required for the contain syntax is of type Aggregating[L], * implicit conversions are provided in the Aggregating companion object from Equality[E] to the various * types of aggregations of E. Here's an example: *

* *

* The "contain inOrderOnly" syntax lets you assert that the containing object contains only the specified objects, in order. * The specified objects may appear multiple times, but must appear in the order they appear in the right-hand list. Here's an example: *

* *
 * List(1, 2, 2, 3, 3, 3) should contain inOrderOnly (1, 2, 3)
 * 
* *

* The "contain inOrder" syntax lets you assert that the containing object contains only the specified objects in order, like * inOrderOnly, but allows other objects to appear in the left-hand aggregation as well: * contain more than one of each: *

* *
 * List(0, 1, 2, 2, 99, 3, 3, 3, 5) should contain inOrder (1, 2, 3)
 * 
* *

* Note that "order" in inOrder, inOrderOnly, and theSameElementsInOrderAs (described below) * in the Aggregation[L] instances built-in to ScalaTest is defined as "iteration order". *

* *

* Lastly, the "contain theSameElementsInOrderAs" syntax lets you assert that two aggregations contain * the same exact elements in the same (iteration) order: *

* *
 * List(1, 2, 3) should contain theSameElementsInOrderAs collection.mutable.TreeSet(3, 2, 1)
 * 
* *

* The previous assertion succeeds because the iteration order of aTreeSet is the natural * ordering of its elements, which in this case is 1, 2, 3. An iterator obtained from the left-hand List will produce the same elements * in the same order. *

* * *

Working with "sortables"

* *

* You can also ask whether the elements of "sortable" objects (such as Arrays, Java Lists, and GenSeqs) * are in sorted order, like this: *

* *
 * List(1, 2, 3) shouldBe sorted
 * 
* * *

Working with iterators

* *

* Althought it seems desireable to provide similar matcher syntax for Scala and Java iterators to that provided for sequences like * Seqs, Array, and java.util.List, the * ephemeral nature of iterators makes this problematic. Some syntax (such as should contain) is relatively straightforward to * support on iterators, but other syntax (such * as, for example, Inspector expressions on nested iterators) is not. Rather * than allowing inconsistencies between sequences and iterators in the API, we chose to not support any such syntax directly on iterators: * *

 * scala> val it = List(1, 2, 3).iterator
 * it: Iterator[Int] = non-empty iterator
 *
 * scala> it should contain (2)
 * <console>:15: error: could not find implicit value for parameter typeClass1: org.scalatest.enablers.Containing[Iterator[Int]]
 *            it should contain (2)
 *               ^
 * 
* *

* Instead, you will need to convert your iterators to a sequence explicitly before using them in matcher expressions: *

* *
 * scala> it.toStream should contain (2)
 * 
* *

* We recommend you convert (Scala or Java) iterators to Streams, as shown in the previous example, so that you can * continue to reap any potential benefits provided by the laziness of the underlying iterator. *

* * *

Inspector shorthands

* *

* You can use the Inspectors syntax with matchers as well as assertions. If you have a multi-dimensional collection, such as a * list of lists, using Inspectors is your best option: *

* *
 * val yss =
 *   List(
 *     List(1, 2, 3),
 *     List(1, 2, 3),
 *     List(1, 2, 3)
 *   )
 *
 * forAll (yss) { ys =>
 *   forAll (ys) { y => y should be > 0 }
 * }
 * 
* *

* For assertions on one-dimensional collections, however, matchers provides "inspector shorthands." Instead of writing: *

* *
 * val xs = List(1, 2, 3)
 * forAll (xs) { x => x should be < 10 }
 * 
* *

* You can write: *

* *
 * all (xs) should be < 10
 * 
* *

* The previous statement asserts that all elements of the xs list should be less than 10. * All of the inspectors have shorthands in matchers. Here is the full list: *

* *
    *
  • all - succeeds if the assertion holds true for every element
  • *
  • atLeast - succeeds if the assertion holds true for at least the specified number of elements
  • *
  • atMost - succeeds if the assertion holds true for at most the specified number of elements
  • *
  • between - succeeds if the assertion holds true for between the specified minimum and maximum number of elements, inclusive
  • *
  • every - same as all, but lists all failing elements if it fails (whereas all just reports the first failing element)
  • *
  • exactly - succeeds if the assertion holds true for exactly the specified number of elements
  • *
* *

* Here are some examples: *

* *
 * scala> import org.scalatest.Matchers._
 * import org.scalatest.Matchers._
 *
 * scala> val xs = List(1, 2, 3, 4, 5)
 * xs: List[Int] = List(1, 2, 3, 4, 5)
 *
 * scala> all (xs) should be > 0
 *
 * scala> atMost (2, xs) should be >= 4
 *
 * scala> atLeast (3, xs) should be < 5
 *
 * scala> between (2, 3, xs) should (be > 1 and be < 5)
 *
 * scala> exactly (2, xs) should be <= 2
 *
 * scala> every (xs) should be < 10
 *
 * scala> // And one that fails...
 *
 * scala> exactly (2, xs) shouldEqual 2
 * org.scalatest.exceptions.TestFailedException: 'exactly(2)' inspection failed, because only 1 element
 *     satisfied the assertion block at index 1: 
 *   at index 0, 1 did not equal 2, 
 *   at index 2, 3 did not equal 2, 
 *   at index 3, 4 did not equal 2, 
 *   at index 4, 5 did not equal 2 
 * in List(1, 2, 3, 4, 5)
 *         at ...
 * 
* *

* Like Inspectors, objects used with inspector shorthands can be any type T for which a Collecting[T, E] * is availabe, which by default includes GenTraversable, * Java Collection, Java Map, Arrays, and Strings. * Here are some examples: *

* *
 * scala> import org.scalatest._
 * import org.scalatest._
 * 
 * scala> import Matchers._
 * import Matchers._
 * 
 * scala> all (Array(1, 2, 3)) should be < 5
 * 
 * scala> import collection.JavaConverters._
 * import collection.JavaConverters._
 * 
 * scala> val js = List(1, 2, 3).asJava
 * js: java.util.List[Int] = [1, 2, 3]
 * 
 * scala> all (js) should be < 5
 * 
 * scala> val jmap = Map("a" -> 1, "b" -> 2).asJava 
 * jmap: java.util.Map[String,Int] = {a=1, b=2}
 * 
 * scala> atLeast(1, jmap) shouldBe Entry("b", 2)
 * 
 * scala> atLeast(2, "hello, world!") shouldBe 'o'
 * 
* * *

Single-element collections

* *

* To assert both that a collection contains just one "lone" element as well as something else about that element, you can use * the loneElement syntax provided by trait LoneElement. For example, if a * Set[Int] should contain just one element, an Int * less than or equal to 10, you could write: *

* *
 * import LoneElement._
 * set.loneElement should be <= 10
 * 
* *

* You can invoke loneElement on any type T for which an implicit Collecting[E, T] * is available, where E is the element type returned by the loneElement invocation. By default, you can use loneElement * on GenTraversable, Java Collection, Java Map, Array, and String. *

* * *

Java collections and maps

* *

* You can use similar syntax on Java collections (java.util.Collection) and maps (java.util.Map). * For example, you can check whether a Java Collection or Map is empty, * like this: *

* *
 * javaCollection should be ('empty)
 * javaMap should be ('empty)
 * 
* *

* Even though Java's List type doesn't actually have a length or getLength method, * you can nevertheless check the length of a Java List (java.util.List) like this: *

* *
 * javaList should have length 9
 * 
* *

* You can check the size of any Java Collection or Map, like this: *

* *
 * javaMap should have size 20
 * javaSet should have size 90
 * 
* *

* In addition, you can check whether a Java Collection contains a particular * element, like this: *

* *
 * javaCollection should contain ("five")
 * 
* *

* One difference to note between the syntax supported on Java and Scala collections is that * in Java, Map is not a subtype of Collection, and does not * actually define an element type. You can ask a Java Map for an "entry set" * via the entrySet method, which will return the Map's key/value pairs * wrapped in a set of java.util.Map.Entry, but a Map is not actually * a collection of Entry. To make Java Maps easier to work with, however, * ScalaTest matchers allows you to treat a Java Map as a collection of Entry, * and defines a convenience implementation of java.util.Map.Entry in * org.scalatest.Entry. Here's how you use it: *

* *
 * javaMap should contain (Entry(2, 3))
 * javaMap should contain oneOf (Entry(2, 3), Entry(3, 4))
 * 
* * You can you alse just check whether a Java Map contains a particular key, or value, like this: * *
 * javaMap should contain key 1
 * javaMap should contain value "Howdy"
 * 
* * *

Strings and Arrays as collections

* *

* You can also use all the syntax described above for Scala and Java collections on Arrays and * Strings. Here are some examples: *

* *
 * scala> import org.scalatest._
 * import org.scalatest._
 *
 * scala> import Matchers._
 * import Matchers._
 *
 * scala> atLeast (2, Array(1, 2, 3)) should be > 1
 *
 * scala> atMost (2, "halloo") shouldBe 'o'
 *
 * scala> Array(1, 2, 3) shouldBe sorted
 *
 * scala> "abcdefg" shouldBe sorted
 *
 * scala> Array(1, 2, 3) should contain atMostOneOf (3, 4, 5)
 *
 * scala> "abc" should contain atMostOneOf ('c', 'd', 'e')
 * 
* * *

be as an equality comparison

* *

* All uses of be other than those shown previously perform an equality comparison. They work * the same as equal when it is used with default equality. This redundancy between be and equals exists in part * because it enables syntax that sometimes sounds more natural. For example, instead of writing: *

* *
 * result should equal (null)
 * 
* *

* You can write: *

* *
 * result should be (null)
 * 
* *

* (Hopefully you won't write that too much given null is error prone, and Option * is usually a better, well, option.) * As mentioned previously, the other difference between equal * and be is that equal delegates the equality check to an Equality typeclass, whereas * be always uses default equality. * Here are some other examples of be used for equality comparison: *

* *
 * sum should be (7.0)
 * boring should be (false)
 * fun should be (true)
 * list should be (Nil)
 * option should be (None)
 * option should be (Some(1))
 * 
* *

* As with equal used with default equality, using be on arrays results in deep being called on both arrays prior to * calling equal. As a result, * the following expression would not throw a TestFailedException: *

* *
 * Array(1, 2) should be (Array(1, 2)) // succeeds (i.e., does not throw TestFailedException)
 * 
* *

* Because be is used in several ways in ScalaTest matcher syntax, just as it is used in many ways in English, one * potential point of confusion in the event of a failure is determining whether be was being used as an equality comparison or * in some other way, such as a property assertion. To make it more obvious when be is being used for equality, the failure * messages generated for those equality checks will include the word equal in them. For example, if this expression fails with a * TestFailedException: *

* *
 * option should be (Some(1))
 * 
* *

* The detail message in that TestFailedException will include the words "equal to" to signify be * was in this case being used for equality comparison: *

* *
 * Some(2) was not equal to Some(1)
 * 
* * *

Being negative

* *

* If you wish to check the opposite of some condition, you can simply insert not in the expression. * Here are a few examples: *

* *
 * result should not be (null)
 * sum should not be <= (10)
 * mylist should not equal (yourList)
 * string should not startWith ("Hello")
 * 
* * *

Checking that a snippet of code does not compile

* *

* Often when creating libraries you may wish to ensure that certain arrangements of code that * represent potential “user errors” do not compile, so that your library is more error resistant. * ScalaTest Matchers trait includes the following syntax for that purpose: *

* *
 * "val a: String = 1" shouldNot compile
 * 
* *

* Although this syntax is implemented with a macro that determines at compile time whether * the snippet of code represented by the string type checks, errors (i.e., * snippets of code that do type check) are reported as test failures at runtime. *

* * *

Logical expressions with and and or

* *

* You can also combine matcher expressions with and and/or or, however, * you must place parentheses or curly braces around the and or or expression. For example, * this and-expression would not compile, because the parentheses are missing: *

* *
 * map should contain key ("two") and not contain value (7) // ERROR, parentheses missing!
 * 
* *

* Instead, you need to write: *

* *
 * map should (contain key ("two") and not contain value (7))
 * 
* *

* Here are some more examples: *

* *
 * number should (be > (0) and be <= (10))
 * option should (equal (Some(List(1, 2, 3))) or be (None))
 * string should (
 *   equal ("fee") or
 *   equal ("fie") or
 *   equal ("foe") or
 *   equal ("fum")
 * )
 * 
* *

* Two differences exist between expressions composed of these and and or operators and the expressions you can write * on regular Booleans using its && and || operators. First, expressions with and * and or do not short-circuit. The following contrived expression, for example, would print "hello, world!": *

* *
 * "yellow" should (equal ("blue") and equal { println("hello, world!"); "green" })
 * 
* *

* In other words, the entire and or or expression is always evaluated, so you'll see any side effects * of the right-hand side even if evaluating * only the left-hand side is enough to determine the ultimate result of the larger expression. Failure messages produced by these * expressions will "short-circuit," however, * mentioning only the left-hand side if that's enough to determine the result of the entire expression. This "short-circuiting" behavior * of failure messages is intended * to make it easier and quicker for you to ascertain which part of the expression caused the failure. The failure message for the previous * expression, for example, would be: *

* *
 * "yellow" did not equal "blue"
 * 
* *

* Most likely this lack of short-circuiting would rarely be noticeable, because evaluating the right hand side will usually not * involve a side effect. One situation where it might show up, however, is if you attempt to and a null check on a variable with an expression * that uses the variable, like this: *

* *
 * map should (not be (null) and contain key ("ouch"))
 * 
* *

* If map is null, the test will indeed fail, but with a NullPointerException, not a * TestFailedException. Here, the NullPointerException is the visible right-hand side effect. To get a * TestFailedException, you would need to check each assertion separately: *

* *
 * map should not be (null)
 * map should contain key ("ouch")
 * 
* *

* If map is null in this case, the null check in the first expression will fail with * a TestFailedException, and the second expression will never be executed. *

* *

* The other difference with Boolean operators is that although && has a higher precedence than ||, * and and or * have the same precedence. Thus although the Boolean expression (a || b && c) will evaluate the && expression * before the || expression, like (a || (b && c)), the following expression: *

* *
 * traversable should (contain (7) or contain (8) and have size (9))
 * 
* *

* Will evaluate left to right, as: *

* *
 * traversable should ((contain (7) or contain (8)) and have size (9))
 * 
* *

* If you really want the and part to be evaluated first, you'll need to put in parentheses, like this: *

* *
 * traversable should (contain (7) or (contain (8) and have size (9)))
 * 
* * *

Working with Options

* *

* ScalaTest matchers has no special support for Options, but you can * work with them quite easily using syntax shown previously. For example, if you wish to check * whether an option is None, you can write any of: *

* *
 * option shouldEqual None
 * option shouldBe None
 * option should not be defined
 * option shouldBe empty
 * 
* *

* If you wish to check an option is defined, and holds a specific value, you can write either of: *

* *
 * option shouldEqual Some("hi")
 * option shouldBe Some("hi")
 * 
* *

* If you only wish to check that an option is defined, but don't care what it's value is, you can write: *

* *
 * option shouldBe defined
 * 
* *

* If you mix in (or import the members of) OptionValues, * you can write one statement that indicates you believe an option should be defined and then say something else about its value. Here's an example: *

* *
 * import org.scalatest.OptionValues._
 * option.value should be < 7
 * 
* * *

Checking arbitrary properties with have

* *

* Using have, you can check properties of any type, where a property is an attribute of any * object that can be retrieved either by a public field, method, or JavaBean-style get * or is method, like this: *

* *
 * book should have (
 *   'title ("Programming in Scala"),
 *   'author (List("Odersky", "Spoon", "Venners")),
 *   'pubYear (2008)
 * )
 * 
* *

* This expression will use reflection to ensure the title, author, and pubYear properties of object book * are equal to the specified values. For example, it will ensure that book has either a public Java field or method * named title, or a public method named getTitle, that when invoked (or accessed in the field case) results * in a the string "Programming in Scala". If all specified properties exist and have their expected values, respectively, * execution will continue. If one or more of the properties either does not exist, or exists but results in an unexpected value, * a TestFailedException will be thrown that explains the problem. (For the details on how a field or method is selected during this * process, see the documentation for HavePropertyMatcherGenerator.) *

* *

* When you use this syntax, you must place one or more property values in parentheses after have, seperated by commas, where a property * value is a symbol indicating the name of the property followed by the expected value in parentheses. The only exceptions to this rule is the syntax * for checking size and length shown previously, which does not require parentheses. If you forget and put parentheses in, however, everything will * still work as you'd expect. Thus instead of writing: *

* *
 * array should have length (3)
 * set should have size (90)
 * 
* *

* You can alternatively, write: *

* *
 * array should have (length (3))
 * set should have (size (90))
 * 
* *

* If a property has a value different from the specified expected value, a TestFailedError will be thrown * with a detailed message that explains the problem. For example, if you assert the following on * a book whose title is Moby Dick: *

* *
 * book should have ('title ("A Tale of Two Cities"))
 * 
* *

* You'll get a TestFailedException with this detail message: *

* *
 * The title property had value "Moby Dick", instead of its expected value "A Tale of Two Cities",
 * on object Book("Moby Dick", "Melville", 1851)
 * 
* *

* If you prefer to check properties in a type-safe manner, you can use a HavePropertyMatcher. * This would allow you to write expressions such as: *

* *
 * book should have (
 *   title ("Programming in Scala"),
 *   author (List("Odersky", "Spoon", "Venners")),
 *   pubYear (2008)
 * )
 * 
* *

* These expressions would fail to compile if should is used on an inappropriate type, as determined * by the type parameter of the HavePropertyMatcher being used. (For example, title in this example * might be of type HavePropertyMatcher[org.publiclibrary.Book]. If used with an appropriate type, such an expression will compile * and at run time the property method or field will be accessed directly; i.e., no reflection will be used. * See the documentation for HavePropertyMatcher for more information. *

* * *

Using length and size with HavePropertyMatchers

* *

* If you want to use length or size syntax with your own custom HavePropertyMatchers, you * can do so, but you must write (of [“the type”]) afterwords. For example, you could write: *

* *
 * book should have (
 *   title ("A Tale of Two Cities"),
 *   length (220) (of [Book]),
 *   author ("Dickens")
 * )
 * 
* *

* Prior to ScalaTest 2.0, “length (22)” yielded a HavePropertyMatcher[Any, Int] that used reflection to dynamically look * for a length field or getLength method. In ScalaTest 2.0, “length (22)” yields a * MatcherFactory1[Any, Length], so it is no longer a HavePropertyMatcher. The (of [<type>]) syntax converts the * the MatcherFactory1[Any, Length] to a HavePropertyMatcher[<type>, Int]. *

* * *

Using custom matchers

* *

* If none of the built-in matcher syntax (or options shown so far for extending the syntax) satisfy a particular need you have, you can create * custom Matchers that allow * you to place your own syntax directly after should. For example, class java.io.File has a method isHidden, which * indicates whether a file of a certain path and name is hidden. Because the isHidden method takes no parameters and returns Boolean, * you can call it using be with a symbol or BePropertyMatcher, yielding assertions like: *

* *
 * file should be ('hidden)  // using a symbol
 * file should be (hidden)   // using a BePropertyMatcher
 * 
* *

* If it doesn't make sense to have your custom syntax follow be, you might want to create a custom Matcher * instead, so your syntax can follow should directly. For example, you might want to be able to check whether * a java.io.File's name ends with a particular extension, like this: *

* *
 * // using a plain-old Matcher
 * file should endWithExtension ("txt")
 * 
* *

* ScalaTest provides several mechanism to make it easy to create custom matchers, including ways to compose new matchers * out of existing ones complete with new error messages. For more information about how to create custom * Matchers, please see the documentation for the Matcher trait. *

* * *

Checking for expected exceptions

* *

* Sometimes you need to test whether a method throws an expected exception under certain circumstances, such * as when invalid arguments are passed to the method. With Matchers mixed in, you can * check for an expected exception like this: *

* *
 * an [IndexOutOfBoundsException] should be thrownBy s.charAt(-1) 
 * 
* *

* If charAt throws an instance of StringIndexOutOfBoundsException, * this expression will result in that exception. But if charAt completes normally, or throws a different * exception, this expression will complete abruptly with a TestFailedException. * *

* If you need to further isnpect an expected exception, you can capture it using this syntax: *

* *
 * val thrown = the [IndexOutOfBoundsException] thrownBy s.charAt(-1) 
 * 
* *

* This expression returns the caught exception so that you can inspect it further if you wish, for * example, to ensure that data contained inside the exception has the expected values. Here's an * example: *

* *
 * thrown.getMessage should equal ("String index out of range: -1")
 * 
* *

* If you prefer you can also capture and inspect an expected exception in one statement, like this: *

* *
 * the [ArithmeticException] thrownBy 1 / 0 should have message "/ by zero"
 * the [IndexOutOfBoundsException] thrownBy {
 *   s.charAt(-1) 
 * } should have message "String index out of range: -1"
 * 
* *

* You can also state that no exception should be thrown by some code, like this: *

* *
 * noException should be thrownBy 0 / 1
 * 
* *

* Note: the following syntax from ScalaTest 1.x has been deprecated: *

* *
 * evaluating { s.charAt(-1) } should produce [IndexOutOfBoundsException]
 * 
* *

* Such uses will continue to work during the deprecation cycle, but support for this syntax will * eventually be removed in a future version of ScalaTest. Please change all uses to * a corresponding use of the syntax described previously in this section. *

* * *

Those pesky parens

* *

* Perhaps the most tricky part of writing assertions using ScalaTest matchers is remembering * when you need or don't need parentheses, but bearing in mind a few simple rules should help. * It is also reassuring to know that if you ever leave off a set of parentheses when they are * required, your code will not compile. Thus the compiler will help you remember when you need the parens. * That said, the rules are: *

* *

* 1. Although you don't always need them, you may choose to always put parentheses * around right-hand values, such as the 7 in num should equal (7): *

* *
 * result should equal (4)
 * array should have length (3)
 * book should have (
 *   'title ("Programming in Scala"),
 *   'author (List("Odersky", "Spoon", "Venners")),
 *   'pubYear (2008)
 * )
 * option should be ('defined)
 * catMap should (contain key (9) and contain value ("lives"))
 * keyEvent should be an ('actionKey)
 * javaSet should have size (90)
 * 
* *

* 2. Except for length, size and message, you must always put parentheses around * the list of one or more property values following a have: *

* *
 * file should (exist and have ('name ("temp.txt")))
 * book should have (
 *   title ("Programming in Scala"),
 *   author (List("Odersky", "Spoon", "Venners")),
 *   pubYear (2008)
 * )
 * javaList should have length (9) // parens optional for length and size
 * 
* *

* 3. You must always put parentheses around and and or expressions, as in: *

* *
 * catMap should (contain key (9) and contain value ("lives"))
 * number should (equal (2) or equal (4) or equal (8))
 * 
* *

* 4. Although you don't always need them, you may choose to always put parentheses * around custom Matchers when they appear directly after not: *

* *
 * file should exist
 * file should not (exist)
 * file should (exist and have ('name ("temp.txt")))
 * file should (not (exist) and have ('name ("temp.txt"))
 * file should (have ('name ("temp.txt") or exist)
 * file should (have ('name ("temp.txt") or not (exist))
 * 
* *

* That's it. With a bit of practice it should become natural to you, and the compiler will always be there to tell you if you * forget a set of needed parentheses. *

* *

* Note: ScalaTest's matchers are in part inspired by the matchers of RSpec, * Hamcrest, and * specs2, and its “shouldNot compile” syntax * by the illTyped macro of shapeless. *

* * @author Bill Venners * @author Chua Chee Seng */ trait Matchers extends Assertions with Tolerance with ShouldVerb with MatcherWords with Explicitly { matchers => import scala.language.implicitConversions // This guy is generally done through an implicit conversion from a symbol. It takes that symbol, and // then represents an object with an apply method. So it gives an apply method to symbols. // book should have ('author ("Gibson")) // ^ // Basically this 'author symbol gets converted into this class, and its apply method takes "Gibson" // TODO, put the documentation of the details of the algo for selecting a method or field to use here. /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * *

* This class is used as the result of an implicit conversion from class Symbol, to enable symbols to be * used in have ('author ("Dickens")) syntax. The name of the implicit conversion method is * convertSymbolToHavePropertyMatcherGenerator. *

* *

* Class HavePropertyMatcherGenerator's primary constructor takes a Symbol. The * apply method uses reflection to find and access a property that has the name specified by the * Symbol passed to the constructor, so it can determine if the property has the expected value * passed to apply. * If the symbol passed is 'title, for example, the apply method * will use reflection to look for a public Java field named * "title", a public method named "title", or a public method named "getTitle". * If a method, it must take no parameters. If multiple candidates are found, * the apply method will select based on the following algorithm: *

* * * * * * * * * * * *
FieldMethod"get" MethodResult
   Throws TestFailedException, because no candidates found
  getTitle()Invokes getTitle()
 title() Invokes title()
 title()getTitle()Invokes title() (this can occur when BeanProperty annotation is used)
title  Accesses field title
title getTitle()Invokes getTitle()
titletitle() Invokes title()
titletitle()getTitle()Invokes title() (this can occur when BeanProperty annotation is used)
* * @author Bill Venners */ final class HavePropertyMatcherGenerator(symbol: Symbol) { /** * This method enables the following syntax: * *
     * book should have ('title ("A Tale of Two Cities"))
     *                          ^
     * 
* *

* This class has an apply method that will produce a HavePropertyMatcher[AnyRef, Any]. * The implicit conversion method, convertSymbolToHavePropertyMatcherGenerator, will cause the * above line of code to be eventually transformed into: *

* *
     * book should have (convertSymbolToHavePropertyMatcherGenerator('title).apply("A Tale of Two Cities"))
     * 
*/ def apply(expectedValue: Any): HavePropertyMatcher[AnyRef, Any] = new HavePropertyMatcher[AnyRef, Any] { /** * This method enables the following syntax: * *
         * book should have ('title ("A Tale of Two Cities"))
         * 
* *

* This method uses reflection to discover a field or method with a name that indicates it represents * the value of the property with the name contained in the Symbol passed to the * HavePropertyMatcherGenerator's constructor. The field or method must be public. To be a * candidate, a field must have the name symbol.name, so if symbol is 'title, * the field name sought will be "title". To be a candidate, a method must either have the name * symbol.name, or have a JavaBean-style get or is. If the type of the * passed expectedValue is Boolean, "is" is prepended, else "get" * is prepended. Thus if 'title is passed as symbol, and the type of the expectedValue is * String, a method named getTitle will be considered a candidate (the return type * of getTitle will not be checked, so it need not be String. By contrast, if 'defined * is passed as symbol, and the type of the expectedValue is Boolean, a method * named isTitle will be considered a candidate so long as its return type is Boolean. *

* TODO continue the story */ def apply(objectWithProperty: AnyRef): HavePropertyMatchResult[Any] = { // If 'empty passed, propertyName would be "empty" val propertyName = symbol.name val isBooleanProperty = expectedValue match { case o: Boolean => true case _ => false } accessProperty(objectWithProperty, symbol, isBooleanProperty) match { case None => // if propertyName is '>, mangledPropertyName would be "$greater" val mangledPropertyName = transformOperatorChars(propertyName) // methodNameToInvoke would also be "title" val methodNameToInvoke = mangledPropertyName // methodNameToInvokeWithGet would be "getTitle" val methodNameToInvokeWithGet = "get"+ mangledPropertyName(0).toUpper + mangledPropertyName.substring(1) throw newTestFailedException(Resources("propertyNotFound", methodNameToInvoke, expectedValue.toString, methodNameToInvokeWithGet)) case Some(result) => new HavePropertyMatchResult[Any]( result == expectedValue, propertyName, expectedValue, result ) } } /** * Overrides to return pretty toString. */ override def toString: String = "HavePropertyMatcher[AnyRef, Any](expectedValue = " + Prettifier.default(expectedValue) + ")" } } /** * This implicit conversion method converts a Symbol to a * HavePropertyMatcherGenerator, to enable the symbol to be used with the have ('author ("Dickens")) syntax. */ implicit def convertSymbolToHavePropertyMatcherGenerator(symbol: Symbol): HavePropertyMatcherGenerator = new HavePropertyMatcherGenerator(symbol) /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ class ResultOfBeWordForAny[T](left: T, shouldBeTrue: Boolean) { /** * This method enables the following syntax (positiveNumber is a AMatcher): * *
     * 1 should be a positiveNumber
     *             ^
     * 
*/ def a(aMatcher: AMatcher[T]) { val matcherResult = aMatcher(left) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage ) } } /** * This method enables the following syntax (positiveNumber is a AnMatcher): * *
     * 1 should be an oddNumber
     *             ^
     * 
*/ def an(anMatcher: AnMatcher[T]) { val matcherResult = anMatcher(left) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage ) } } /** * This method enables the following syntax: * *
     * result should be theSameInstanceAs anotherObject
     *                  ^
     * 
*/ def theSameInstanceAs(right: AnyRef)(implicit toAnyRef: T <:< AnyRef) { if ((toAnyRef(left) eq right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotSameInstanceAs" else "wasSameInstanceAs", left, right ) ) } /* * * This method enables the following syntax: * *
     * result should be a [String]
     *                  ^
     * 
def a[EXPECTED : ClassManifest] { val clazz = implicitly[ClassManifest[EXPECTED]].erasure.asInstanceOf[Class[EXPECTED]] if (clazz.isAssignableFrom(left.getClass)) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotAnInstanceOf", left, UnquotedString(clazz.getName)) else FailureMessages("wasAnInstanceOf") ) } } */ /** * This method enables the following syntax: * *
     * fileMock should be a ('file)
     *                    ^
     * 
*/ def a(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef) { val matcherResult = matchSymbolToPredicateMethod(toAnyRef(left), symbol, true, true) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage ) } } // TODO: Check the shouldBeTrues, are they sometimes always false or true? /** * This method enables the following syntax, where badBook is, for example, of type Book and * goodRead refers to a BePropertyMatcher[Book]: * *
     * badBook should be a (goodRead)
     *                   ^
     * 
*/ def a(bePropertyMatcher: BePropertyMatcher[T])(implicit ev: T <:< AnyRef) { // TODO: Try expanding this to 2.10 AnyVals val result = bePropertyMatcher(left) if (result.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotA", left, UnquotedString(result.propertyName)) else FailureMessages("wasA", left, UnquotedString(result.propertyName)) ) } } // TODO, in both of these, the failure message doesn't have a/an /** * This method enables the following syntax: * *
     * fruit should be an ('orange)
     *                 ^
     * 
*/ def an(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef) { val matcherResult = matchSymbolToPredicateMethod(toAnyRef(left), symbol, true, false) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage ) } } /** * This method enables the following syntax, where badBook is, for example, of type Book and * excellentRead refers to a BePropertyMatcher[Book]: * *
     * book should be an (excellentRead)
     *                ^
     * 
*/ def an(beTrueMatcher: BePropertyMatcher[T])(implicit ev: T <:< AnyRef) { // TODO: Try expanding this to 2.10 AnyVals val beTrueMatchResult = beTrueMatcher(left) if (beTrueMatchResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotAn", left, UnquotedString(beTrueMatchResult.propertyName)) else FailureMessages("wasAn", left, UnquotedString(beTrueMatchResult.propertyName)) ) } } /** * This method enables the following syntax, where fraction is, for example, of type PartialFunction: * *
     * fraction should be definedAt (6)
     *                    ^
     * 
*/ def definedAt[U](right: U)(implicit ev: T <:< PartialFunction[U, _]) { if (left.isDefinedAt(right) != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotDefinedAt", left, right) else FailureMessages("wasDefinedAt", left, right) ) } /** * Overrides to return pretty toString. * * @return "ResultOfBeWordForAny([left], [shouldBeTrue])" */ override def toString: String = "ResultOfBeWordForAny(" + Prettifier.default(left) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class RegexWord { /** * This method enables the following syntax: * *
     * "eight" should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""".r)
     *                                     ^
     * 
*/ def apply(regexString: String): ResultOfRegexWordApplication = new ResultOfRegexWordApplication(regexString, IndexedSeq.empty) /** * This method enables the following syntax: * *
     * "eight" should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *                                     ^
     * 
*/ def apply(regex: Regex): ResultOfRegexWordApplication = new ResultOfRegexWordApplication(regex, IndexedSeq.empty) /** * This method enables the following syntax: * *
     * string should not fullyMatch regex ("a(b*)c" withGroup "bb") 
     *                                    ^
     * 
*/ def apply(regexWithGroups: RegexWithGroups) = new ResultOfRegexWordApplication(regexWithGroups.regex, regexWithGroups.groups) /** * Overrides to return "regex" */ override def toString: String = "regex" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfIncludeWordForString(left: String, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * string should include regex ("world")
     *                       ^
     * 
*/ def regex(rightRegexString: String) { regex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * string should include regex ("a(b*)c" withGroup "bb")
     *                       ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { val result = includeRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage ) } /** * This method enables the following syntax: * *
     * string should include regex ("wo.ld".r)
     *                       ^
     * 
*/ def regex(rightRegex: Regex) { if (rightRegex.findFirstIn(left).isDefined != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotIncludeRegex" else "includedRegex", left, rightRegex ) ) } /** * Overrides to return pretty toString. * * @return "ResultOfIncludeWordForString([left], [shouldBeTrue])" */ override def toString: String = "ResultOfIncludeWordForString(" + Prettifier.default(left) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfStartWithWordForString(left: String, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * string should startWith regex ("Hel*o")
     *                         ^
     * 
*/ def regex(rightRegexString: String) { regex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * string should startWith regex ("a(b*)c" withGroup "bb")
     *                         ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { val result = startWithRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage ) } /** * This method enables the following syntax: * *
     * string should startWith regex ("Hel*o".r)
     *                         ^
     * 
*/ def regex(rightRegex: Regex) { if (rightRegex.pattern.matcher(left).lookingAt != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotStartWithRegex" else "startedWithRegex", left, rightRegex ) ) } /** * Overrides to return pretty toString. * * @return "ResultOfStartWithWordForString([left], [shouldBeTrue])" */ override def toString: String = "ResultOfStartWithWordForString(" + Prettifier.default(left) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfEndWithWordForString(left: String, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * string should endWith regex ("wor.d")
     *                       ^
     * 
*/ def regex(rightRegexString: String) { regex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * string should endWith regex ("a(b*)c" withGroup "bb")
     *                       ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { val result = endWithRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage ) } /** * This method enables the following syntax: * *
     * string should endWith regex ("wor.d".r)
     *                       ^
     * 
*/ def regex(rightRegex: Regex) { val allMatches = rightRegex.findAllIn(left) if ((allMatches.hasNext && (allMatches.end == left.length)) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotEndWithRegex" else "endedWithRegex", left, rightRegex ) ) } /** * Overrides to return pretty toString. * * @return "ResultOfEndWithWordForString([left], [shouldBeTrue])" */ override def toString: String = "ResultOfEndWithWordForString(" + Prettifier.default(left) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfFullyMatchWordForString(left: String, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * string should fullMatch regex ("Hel*o world")
     *                         ^
     * 
*/ def regex(rightRegexString: String) { regex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * string should fullMatch regex ("a(b*)c" withGroup "bb") 
     *                         ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { val result = fullyMatchRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage ) } /** * This method enables the following syntax: * *
     * string should fullymatch regex ("Hel*o world".r)
     *                          ^
     * 
*/ def regex(rightRegex: Regex) { if (rightRegex.pattern.matcher(left).matches != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotFullyMatchRegex" else "fullyMatchedRegex", left, rightRegex ) ) } /** * Overrides to return pretty toString. * * @return "ResultOfFullyMatchWordForString([left], [shouldBeTrue])" */ override def toString: String = "ResultOfFullyMatchWordForString(" + Prettifier.default(left) + ", " + Prettifier.default(shouldBeTrue) + ")" } // Going back to original, legacy one to get to a good place to check in. /* def equal(right: Any): Matcher[Any] = new Matcher[Any] { def apply(left: Any): MatchResult = { val (leftee, rightee) = Suite.getObjectsForFailureMessage(left, right) MatchResult( areEqualComparingArraysStructurally(left, right), FailureMessages("didNotEqual", leftee, rightee), FailureMessages("equaled", left, right) ) } } */ /** * This method enables syntax such as the following: * *
   * result should equal (100 +- 1)
   *               ^
   * 
*/ def equal[T](spread: Spread[T]): Matcher[T] = { new Matcher[T] { def apply(left: T): MatchResult = { MatchResult( spread.isWithin(left), Resources("didNotEqualPlusOrMinus"), Resources("equaledPlusOrMinus"), Vector(left, spread.pivot, spread.tolerance) ) } override def toString: String = "equal (" + Prettifier.default(spread) + ")" } } /** * This method enables syntax such as the following: * *
   * result should equal (null)
   *               ^
   * 
*/ def equal(o: Null): Matcher[AnyRef] = new Matcher[AnyRef] { def apply(left: AnyRef): MatchResult = { MatchResult( left == null, Resources("didNotEqualNull"), Resources("equaledNull"), Resources("didNotEqualNull"), Resources("midSentenceEqualedNull"), Vector(left), Vector.empty ) } override def toString: String = "equal (" + Prettifier.default(o) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class KeyWord { /** * This method enables the following syntax: * *
     * map should not contain key (10)
     *                            ^
     * 
*/ def apply(expectedKey: Any): ResultOfKeyWordApplication = new ResultOfKeyWordApplication(expectedKey) /** * Overrides to return pretty toString. * * @return "key" */ override def toString: String = "key" } /** * This field enables the following syntax: * *
   * map should not contain key (10)
   *                        ^
   * 
*/ val key = new KeyWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ValueWord { /** * This method enables the following syntax: * *
     * map should not contain key (10)
     *                            ^
     * 
*/ def apply(expectedValue: Any): ResultOfValueWordApplication = new ResultOfValueWordApplication(expectedValue) /** * Overrides to return pretty toString. * * @return "value" */ override def toString: String = "value" } /** * This field enables the following syntax: * *
   * map should not contain value (10)
   *                        ^
   * 
*/ val value = new ValueWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class AWord { /** * This method enables the following syntax: * *
     * badBook should not be a ('goodRead)
     *                         ^
     * 
*/ def apply(symbol: Symbol): ResultOfAWordToSymbolApplication = new ResultOfAWordToSymbolApplication(symbol) /** * This method enables the following syntax, where, for example, badBook is of type Book and goodRead * is a BePropertyMatcher[Book]: * *
     * badBook should not be a (goodRead)
     *                         ^
     * 
*/ def apply[T](beTrueMatcher: BePropertyMatcher[T]): ResultOfAWordToBePropertyMatcherApplication[T] = new ResultOfAWordToBePropertyMatcherApplication(beTrueMatcher) /** * This method enables the following syntax, where, positiveNumber is an AMatcher[Book]: * *
     * result should not be a (positiveNumber)
     *                        ^
     * 
*/ def apply[T](aMatcher: AMatcher[T]): ResultOfAWordToAMatcherApplication[T] = new ResultOfAWordToAMatcherApplication(aMatcher) /** * Overrides to return pretty toString. * * @return "a" */ override def toString: String = "a" } /** * This field enables the following syntax: * *
   * badBook should not be a ('goodRead)
   *                       ^
   * 
*/ val a = new AWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class AnWord { /** * This method enables the following syntax: * *
     * badBook should not be an ('excellentRead)
     *                          ^
     * 
*/ def apply(symbol: Symbol): ResultOfAnWordToSymbolApplication = new ResultOfAnWordToSymbolApplication(symbol) /** * This method enables the following syntax, where, for example, badBook is of type Book and excellentRead * is a BePropertyMatcher[Book]: * *
     * badBook should not be an (excellentRead)
     *                          ^
     * 
*/ def apply[T](beTrueMatcher: BePropertyMatcher[T]): ResultOfAnWordToBePropertyMatcherApplication[T] = new ResultOfAnWordToBePropertyMatcherApplication(beTrueMatcher) /** * This method enables the following syntax, where, positiveNumber is an AnMatcher[Book]: * *
     * result should not be an (positiveNumber)
     *                         ^
     * 
*/ def apply[T](anMatcher: AnMatcher[T]): ResultOfAnWordToAnMatcherApplication[T] = new ResultOfAnWordToAnMatcherApplication(anMatcher) /** * Overrides to return pretty toString. * * @return "an" */ override def toString: String = "an" } /** * This field enables the following syntax: * *
   * badBook should not be an (excellentRead)
   *                       ^
   * 
*/ val an = new AnWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class TheSameInstanceAsPhrase { /** * This method enables the following syntax: * *
     * oneString should not be theSameInstanceAs (anotherString)
     *                                           ^
     * 
*/ def apply(anyRef: AnyRef): ResultOfTheSameInstanceAsApplication = new ResultOfTheSameInstanceAsApplication(anyRef) /** * Overrides to return pretty toString. * * @return "theSameInstanceAs" */ override def toString: String = "theSameInstanceAs" } /** * This field enables the following syntax: * *
   * oneString should not be theSameInstanceAs (anotherString)
   *                         ^
   * 
*/ val theSameInstanceAs: TheSameInstanceAsPhrase = new TheSameInstanceAsPhrase /** * This field enables the following syntax: * *
   * "eight" should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""".r)
   *                               ^
   * 
*/ val regex = new RegexWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfHaveWordForExtent[A](left: A, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * obj should have length (2L)
     *                 ^
     * 
* *

* This method is ultimately invoked for objects that have a length property structure * of type Long, * but is of a type that is not handled by implicit conversions from nominal types such as * scala.Seq, java.lang.String, and java.util.List. *

*/ def length(expectedLength: Long)(implicit len: Length[A]) { val leftLength = len.lengthOf(left) if ((leftLength == expectedLength) != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) FailureMessages("hadLengthInsteadOfExpectedLength", left, leftLength, expectedLength) else FailureMessages("hadLength", left, expectedLength) ) } /** * This method enables the following syntax: * *
     * obj should have size (2L)
     *                 ^
     * 
* *

* This method is ultimately invoked for objects that have a size property structure * of type Long, * but is of a type that is not handled by implicit conversions from nominal types such as * Traversable and java.util.Collection. *

*/ def size(expectedSize: Long)(implicit sz: Size[A]) { val leftSize = sz.sizeOf(left) if ((leftSize == expectedSize) != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) FailureMessages("hadSizeInsteadOfExpectedSize", left, leftSize, expectedSize) else FailureMessages("hadSize", left, expectedSize) ) } /** * This method enables the following syntax: * *
     * exception should have message ("file not found")
     *                       ^
     * 
*/ def message(expectedMessage: String)(implicit messaging: Messaging[A]) { val actualMessage = messaging.messageOf(left) if ((actualMessage== expectedMessage) != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) FailureMessages("hadMessageInsteadOfExpectedMessage", left, actualMessage, expectedMessage) else FailureMessages("hadExpectedMessage", left, expectedMessage) ) } /** * Overrides to return pretty toString. * * @return "ResultOfHaveWordForExtent([left], [shouldBeTrue])" */ override def toString: String = "ResultOfHaveWordForExtent(" + Prettifier.default(left) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This method enables the following syntax: * *
   * num should (not be < (10) and not be > (17))
   *                    ^
   * 
*/ def <[T : Ordering] (right: T): ResultOfLessThanComparison[T] = new ResultOfLessThanComparison(right) /** * This method enables the following syntax: * *
   * num should (not be > (10) and not be < (7))
   *                    ^
   * 
*/ def >[T : Ordering] (right: T): ResultOfGreaterThanComparison[T] = new ResultOfGreaterThanComparison(right) /** * This method enables the following syntax: * *
   * num should (not be <= (10) and not be > (17))
   *                    ^
   * 
*/ def <=[T : Ordering] (right: T): ResultOfLessThanOrEqualToComparison[T] = new ResultOfLessThanOrEqualToComparison(right) /** * This method enables the following syntax: * *
   * num should (not be >= (10) and not be < (7))
   *                    ^
   * 
*/ def >=[T : Ordering] (right: T): ResultOfGreaterThanOrEqualToComparison[T] = new ResultOfGreaterThanOrEqualToComparison(right) /** * This method enables the following syntax: * *
   * list should (not be definedAt (7) and not be definedAt (9))
   *                     ^
   * 
*/ def definedAt[T](right: T): ResultOfDefinedAt[T] = new ResultOfDefinedAt(right) /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfEvaluatingApplication(val fun: () => Any) { /** * This method enables syntax such as the following: * *
     * evaluating { "hi".charAt(-1) } should produce [StringIndexOutOfBoundsException]
     *                                ^
     * 
*/ def should[T](resultOfProduceApplication: ResultOfProduceInvocation[T]): T = { val clazz = resultOfProduceApplication.clazz val caught = try { fun() None } catch { case u: Throwable => { if (!clazz.isAssignableFrom(u.getClass)) { val s = Resources("wrongException", clazz.getName, u.getClass.getName) throw newTestFailedException(s, Some(u)) // throw new TestFailedException(s, u, 3) } else { Some(u) } } } caught match { case None => val message = Resources("exceptionExpected", clazz.getName) throw newTestFailedException(message) // throw new TestFailedException(message, 3) case Some(e) => e.asInstanceOf[T] // I know this cast will succeed, becuase isAssignableFrom succeeded above } } /** * Overrides to return pretty toString. * * @return "evaluating { ... }" */ override def toString: String = "evaluating { ... }" } /** * The evaluating { ... } should produce [...Exception] syntax has been deprecated and * will be removed in a future version of ScalaTest. Please use a/an [...Exception] should be * thrownBy { ... } instead. * * This method enables syntax such as the following: * *
   * evaluating { "hi".charAt(-1) } should produce [StringIndexOutOfBoundsException]
   * ^
   * 
*/ @deprecated("Please use 'an [Exception] should be thrownBy { ... }' syntax instead") def evaluating(fun: => Any): ResultOfEvaluatingApplication = new ResultOfEvaluatingApplication(fun _) /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfProduceInvocation[T](val clazz: Class[T]) { /** * Overrides to return pretty toString. * * @return "ResultOfProduceInvocation(classOf([className]))" */ override def toString: String = "ResultOfProduceInvocation(classOf[" + clazz.getName + "])" } /** * This method enables the following syntax: * *
   * evaluating { "hi".charAt(-1) } should produce [StringIndexOutOfBoundsException]
   *                                       ^
   * 
*/ def produce[T : Manifest]: ResultOfProduceInvocation[T] = new ResultOfProduceInvocation(manifest.erasure.asInstanceOf[Class[T]]) /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (oneOf(1, 2))
   *                               ^
   * 
*/ def oneOf(firstEle: Any, secondEle: Any, remainingEles: Any*) = { val xs = firstEle :: secondEle :: remainingEles.toList if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("oneOfDuplicate"), getStackDepthFun("Matchers.scala", "oneOf")) new ResultOfOneOfApplication(xs) } /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (atLeastOneOf(1, 2))
   *                               ^
   * 
*/ def atLeastOneOf(firstEle: Any, secondEle: Any, remainingEles: Any*) = { val xs = firstEle :: secondEle :: remainingEles.toList if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("atLeastOneOfDuplicate"), getStackDepthFun("Matchers.scala", "atLeastOneOf")) new ResultOfAtLeastOneOfApplication(xs) } /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (noneOf(1, 2))
   *                               ^
   * 
*/ def noneOf(firstEle: Any, secondEle: Any, remainingEles: Any*) = { val xs = firstEle :: secondEle :: remainingEles.toList if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("noneOfDuplicate"), getStackDepthFun("Matchers.scala", "noneOf")) new ResultOfNoneOfApplication(xs) } /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (theSameElementsAs(List(1, 2, 3)))
   *                               ^
   * 
*/ def theSameElementsAs(xs: GenTraversable[_]) = new ResultOfTheSameElementsAsApplication(xs) /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (theSameElementsInOrderAs(List(1, 2)))
   *                               ^
   * 
*/ def theSameElementsInOrderAs(xs: GenTraversable[_]) = new ResultOfTheSameElementsInOrderAsApplication(xs) /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (only(1, 2))
   *                               ^
   * 
*/ def only(xs: Any*) = { if (xs.isEmpty) throw new NotAllowedException(FailureMessages("onlyEmpty"), getStackDepthFun("Matchers.scala", "only")) if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("onlyDuplicate"), getStackDepthFun("Matchers.scala", "only")) new ResultOfOnlyApplication(xs) } /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (inOrderOnly(1, 2))
   *                               ^
   * 
*/ def inOrderOnly[T](firstEle: Any, secondEle: Any, remainingEles: Any*) = { val xs = firstEle :: secondEle :: remainingEles.toList if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("inOrderOnlyDuplicate"), getStackDepthFun("Matchers.scala", "inOrderOnly")) new ResultOfInOrderOnlyApplication(xs) } /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (allOf(1, 2))
   *                               ^
   * 
*/ def allOf(firstEle: Any, secondEle: Any, remainingEles: Any*) = { val xs = firstEle :: secondEle :: remainingEles.toList if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("allOfDuplicate"), getStackDepthFun("Matchers.scala", "allOf")) new ResultOfAllOfApplication(xs) } /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (inOrder(1, 2))
   *                               ^
   * 
*/ def inOrder(firstEle: Any, secondEle: Any, remainingEles: Any*) = { val xs = firstEle :: secondEle :: remainingEles.toList if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("inOrderDuplicate"), getStackDepthFun("Matchers.scala", "inOrder")) new ResultOfInOrderApplication(xs) } /** * This method enables the following syntax: * *
   * List(1, 2, 3) should contain (atMostOneOf(1, 2))
   *                               ^
   * 
*/ def atMostOneOf(firstEle: Any, secondEle: Any, remainingEles: Any*) = { val xs = firstEle :: secondEle :: remainingEles.toList if (xs.distinct.size != xs.size) throw new NotAllowedException(FailureMessages("atMostOneOfDuplicate"), getStackDepthFun("Matchers.scala", "atMostOneOf")) new ResultOfAtMostOneOfApplication(xs) } /** * This method enables the following syntax: * *
   * a [RuntimeException] should be thrownBy {...}
   *                                ^
   * 
*/ def thrownBy(fun: => Any) = new ResultOfThrownByApplication(fun) /** * This method enables the following syntax: * *
   * exception should not have message ("file not found")
   *                           ^
   * 
*/ def message(expectedMessage: String) = new ResultOfMessageWordApplication(expectedMessage) /* // For safe keeping private implicit def nodeToCanonical(node: scala.xml.Node) = new Canonicalizer(node) private class Canonicalizer(node: scala.xml.Node) { def toCanonical: scala.xml.Node = { node match { case elem: scala.xml.Elem => val canonicalizedChildren = for (child <- node.child if !child.toString.trim.isEmpty) yield { child match { case elem: scala.xml.Elem => elem.toCanonical case other => other } } new scala.xml.Elem(elem.prefix, elem.label, elem.attributes, elem.scope, canonicalizedChildren: _*) case other => other } } } */ /* class AType[T : ClassManifest] { private val clazz = implicitly[ClassManifest[T]].erasure.asInstanceOf[Class[T]] def isAssignableFromClassOf(o: Any): Boolean = clazz.isAssignableFrom(o.getClass) def className: String = clazz.getName } def a[T : ClassManifest]: AType[T] = new AType[T] */ // This is where InspectorShorthands started private sealed trait Collected private case object AllCollected extends Collected private case object EveryCollected extends Collected private case class BetweenCollected(from: Int, to: Int) extends Collected private case class AtLeastCollected(num: Int) extends Collected private case class AtMostCollected(num: Int) extends Collected private case object NoCollected extends Collected private case class ExactlyCollected(num: Int) extends Collected import InspectorsHelper._ private[scalatest] def doCollected[T](collected: Collected, xs: scala.collection.GenTraversable[T], original: Any, methodName: String, stackDepth: Int)(fun: T => Unit) { collected match { case AllCollected => doForAll(xs, original, "allShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case AtLeastCollected(num) => doForAtLeast(num, xs, original, "atLeastShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case EveryCollected => doForEvery(xs, original, "everyShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case ExactlyCollected(num) => doForExactly(num, xs, original, "exactlyShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case NoCollected => doForNo(xs, original, "noShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case BetweenCollected(from, to) => doForBetween(from, to, xs, original, "betweenShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case AtMostCollected(num) => doForAtMost(num, xs, original, "atMostShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } } } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ sealed class ResultOfNotWordForCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T], original: Any, shouldBeTrue: Boolean) { import org.scalatest.InspectorsHelper._ /** * This method enables the following syntax: * *
     * all(xs) should not equal (7)
     *                    ^
     * 
*/ def equal(right: Any)(implicit equality: Equality[T]) { doCollected(collected, xs, original, "equal", 1) { e => if ((equality.areEqual(e, right)) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotEqual" else "equaled", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(xs) should not be (7)
     *                    ^
     * 
*/ def be(right: Any) { doCollected(collected, xs, original, "be", 1) { e => if ((e == right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotEqualTo" else "wasEqualTo", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(xs) should not be <= (7)
     *                    ^
     * 
*/ def be(comparison: ResultOfLessThanOrEqualToComparison[T]) { doCollected(collected, xs, original, "be", 1) { e => if (comparison(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotLessThanOrEqualTo" else "wasLessThanOrEqualTo", e, comparison.right ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be >= (7)
     *                    ^
     * 
*/ def be(comparison: ResultOfGreaterThanOrEqualToComparison[T]) { doCollected(collected, xs, original, "be", 1) { e => if (comparison(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotGreaterThanOrEqualTo" else "wasGreaterThanOrEqualTo", e, comparison.right ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be < (7)
     *                    ^
     * 
*/ def be(comparison: ResultOfLessThanComparison[T]) { doCollected(collected, xs, original, "be", 1) { e => if (comparison(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotLessThan" else "wasLessThan", e, comparison.right ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be > (7)
     *                    ^
     * 
*/ def be(comparison: ResultOfGreaterThanComparison[T]) { doCollected(collected, xs, original, "be", 1) { e => if (comparison(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotGreaterThan" else "wasGreaterThan", e, comparison.right ), None, 6 ) } } } /** * * The should be === syntax has been deprecated and will be removed in a future version of ScalaTest. Please use should equal, should ===, shouldEqual, * should be, or shouldBe instead. Note, the reason this was deprecated was so that === would mean only one thing in ScalaTest: a customizable, type- * checkable equality comparison. * * * This method enables the following syntax: * *
     * all(xs) should not be === (7)
     *                    ^
     * 
*/ @deprecated("The should be === syntax has been deprecated. Please use should equal, should ===, shouldEqual, should be, or shouldBe instead.") def be(comparison: TripleEqualsInvocation[_]) { doCollected(collected, xs, original, "be", 1) { e => if ((e == comparison.right) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotEqualTo" else "wasEqualTo", e, comparison.right ), None, 6 ) } } } /** * This method enables the following syntax, where odd refers to * a BeMatcher[Int]: * *
     * all(xs) should not be (odd)
     *                    ^
     * 
*/ def be(beMatcher: BeMatcher[T]) { doCollected(collected, xs, original, "be", 1) { e => val result = beMatcher(e) if (result.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 10 ) } } } /** * This method enables the following syntax, where stack is, for example, of type Stack and * empty refers to a BePropertyMatcher[Stack]: * *
     * all(xs) should not be (empty)
     *                    ^
     * 
*/ def be(bePropertyMatcher: BePropertyMatcher[T]) { doCollected(collected, xs, original, "be", 1) { e => val result = bePropertyMatcher(e) if (result.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNot", e, UnquotedString(result.propertyName)) else FailureMessages("was", e, UnquotedString(result.propertyName)), None, 6 ) } } } /** * This method enables the following syntax, where notFileMock is, for example, of type File and * file refers to a BePropertyMatcher[File]: * *
     * all(xs) should not be a (file)
     *                    ^
     * 
*/ def be[U >: T](resultOfAWordApplication: ResultOfAWordToBePropertyMatcherApplication[U]) { doCollected(collected, xs, original, "be", 1) { e => val result = resultOfAWordApplication.bePropertyMatcher(e) if (result.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotA", e, UnquotedString(result.propertyName)) else FailureMessages("wasA", e, UnquotedString(result.propertyName)), None, 6 ) } } } /** * This method enables the following syntax, where keyEvent is, for example, of type KeyEvent and * actionKey refers to a BePropertyMatcher[KeyEvent]: * *
     * all(keyEvents) should not be an (actionKey)
     *                           ^
     * 
*/ def be[U >: T](resultOfAnWordApplication: ResultOfAnWordToBePropertyMatcherApplication[U]) { doCollected(collected, xs, original, "be", 1) { e => val result = resultOfAnWordApplication.bePropertyMatcher(e) if (result.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotAn", e, UnquotedString(result.propertyName)) else FailureMessages("wasAn", e, UnquotedString(result.propertyName)), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be theSameInstanceAs (string)
     *                    ^
     * 
*/ def be(resultOfSameInstanceAsApplication: ResultOfTheSameInstanceAsApplication) { doCollected(collected, xs, original, "be", 1) { e => e match { case ref: AnyRef => if ((resultOfSameInstanceAsApplication.right eq ref) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotSameInstanceAs" else "wasSameInstanceAs", e, resultOfSameInstanceAsApplication.right ), None, 6 ) } case _ => throw new IllegalArgumentException("theSameInstanceAs should only be used for AnyRef") } } } /** * This method enables the following syntax: * *
     * all(xs) should not be definedAt ("apple")
     *                    ^
     * 
*/ def be[U](resultOfDefinedAt: ResultOfDefinedAt[U])(implicit ev: T <:< PartialFunction[U, _]) { doCollected(collected, xs, original, "be", 1) { e => if (e.isDefinedAt(resultOfDefinedAt.right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotDefinedAt" else "wasDefinedAt", e, resultOfDefinedAt.right ), None, 6 ) } } // TODO: Write tests and implement cases for: // have(length (9), title ("hi")) (this one we'll use this have method but add a HavePropertyMatcher* arg) // have(size (9), title ("hi")) (this one we'll use the next have method but add a HavePropertyMatcher* arg) // have(length(9), size (9), title ("hi")) (for this one we'll need a new overloaded have(ROLWA, ROSWA, HPM*)) // have(size(9), length (9), title ("hi")) (for this one we'll need a new overloaded have(ROSWA, ROLWA, HPM*)) /** * This method enables the following syntax: * *
     * all(xs) should not have length (0)
     *                    ^
     * 
* */ def have(resultOfLengthWordApplication: ResultOfLengthWordApplication)(implicit len: Length[T]) { doCollected(collected, xs, original, "have", 1) { e => val right = resultOfLengthWordApplication.expectedLength val leftLength = len.lengthOf(e) if ((leftLength == right) != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("hadLengthInsteadOfExpectedLength", e, leftLength, right) else FailureMessages("hadLength", e, right), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not have size (0)
     *                    ^
     * 
* */ def have(resultOfSizeWordApplication: ResultOfSizeWordApplication)(implicit sz: Size[T]) { doCollected(collected, xs, original, "have", 1) { e => val right = resultOfSizeWordApplication.expectedSize val leftSize = sz.sizeOf(e) if ((leftSize == right) != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("hadSizeInsteadOfExpectedSize", e, leftSize, right) else FailureMessages("hadSize", e, right), None, 6 ) } } } /** * This method enables the following syntax, where badBook is, for example, of type Book and * title ("One Hundred Years of Solitude") results in a HavePropertyMatcher[Book]: * *
     * all(books) should not have (title ("One Hundred Years of Solitude"))
     *                       ^
     * 
*/ def have[U >: T](firstPropertyMatcher: HavePropertyMatcher[U, _], propertyMatchers: HavePropertyMatcher[U, _]*) { doCollected(collected, xs, original, "have", 1) { e => val results = for (propertyVerifier <- firstPropertyMatcher :: propertyMatchers.toList) yield propertyVerifier(e) val firstFailureOption = results.find(pv => !pv.matches) val justOneProperty = propertyMatchers.length == 0 // if shouldBeTrue is false, then it is like "not have ()", and should throw TFE if firstFailureOption.isDefined is false // if shouldBeTrue is true, then it is like "not (not have ()), which should behave like have ()", and should throw TFE if firstFailureOption.isDefined is true if (firstFailureOption.isDefined == shouldBeTrue) { firstFailureOption match { case Some(firstFailure) => // This is one of these cases, thus will only get here if shouldBeTrue is true // 0 0 | 0 | 1 // 0 1 | 0 | 1 // 1 0 | 0 | 1 throw newTestFailedException( FailureMessages( "propertyDidNotHaveExpectedValue", UnquotedString(firstFailure.propertyName), firstFailure.expectedValue, firstFailure.actualValue, e ), None, 6 ) case None => // This is this cases, thus will only get here if shouldBeTrue is false // 1 1 | 1 | 0 val failureMessage = if (justOneProperty) { val firstPropertyResult = results.head // know this will succeed, because firstPropertyMatcher was required FailureMessages( "propertyHadExpectedValue", UnquotedString(firstPropertyResult.propertyName), firstPropertyResult.expectedValue, e ) } else FailureMessages("allPropertiesHadExpectedValues", e) throw newTestFailedException(failureMessage, None, 6) } } } } /** * This method enables the following syntax: * *
     * all(xs) should not be (null)
     *                    ^
     * 
*/ def be(o: Null)(implicit ev: T <:< AnyRef) { doCollected(collected, xs, original, "be", 1) { e => if ((e == null) != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotNull", e) else FailureMessages("wasNull"), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be ('empty)
     *                    ^
     * 
*/ def be(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "be", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), symbol, false, false) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage, None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be a ('file)
     *                    ^
     * 
*/ def be(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "be", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), resultOfAWordApplication.symbol, true, true) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage, None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be an ('actionKey)
     *                    ^
     * 
*/ def be(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "be", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), resultOfAnWordApplication.symbol, true, false) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage, None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be sorted
     *                    ^
     * 
*/ def be(sortedWord: SortedWord)(implicit sortable: Sortable[T]) { doCollected(collected, xs, original, "be", 1) { e => if (sortable.isSorted(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages(if (shouldBeTrue) "wasNotSorted" else "wasSorted", e), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be readable
     *                    ^
     * 
*/ def be(readableWord: ReadableWord)(implicit readability: Readability[T]) { doCollected(collected, xs, original, "be", 1) { e => if (readability.isReadable(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages(if (shouldBeTrue) "wasNotReadable" else "wasReadable", e), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be writable
     *                    ^
     * 
*/ def be(writableWord: WritableWord)(implicit writability: Writability[T]) { doCollected(collected, xs, original, "be", 1) { e => if (writability.isWritable(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages(if (shouldBeTrue) "wasNotWritable" else "wasWritable", e), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be empty
     *                    ^
     * 
*/ def be(emptyWord: EmptyWord)(implicit emptiness: Emptiness[T]) { doCollected(collected, xs, original, "be", 1) { e => if (emptiness.isEmpty(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages(if (shouldBeTrue) "wasNotEmpty" else "wasEmpty", e), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should not be defined
     *                    ^
     * 
*/ def be(definedWord: DefinedWord)(implicit definition: Definition[T]) { doCollected(collected, xs, original, "be", 1) { e => if (definition.isDefined(e) != shouldBeTrue) { throw newTestFailedException( FailureMessages(if (shouldBeTrue) "wasNotDefined" else "wasDefined", e), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all (xs) should not contain ("one")
     *                     ^
     * 
*/ def contain(expectedElement: Any)(implicit containing: Containing[T]) { doCollected(collected, xs, original, "contain", 1) { e => val right = expectedElement if ((containing.contains(e, right)) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainExpectedElement" else "containedExpectedElement", e, right ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all (xs) should not contain oneOf ("one")
     *                     ^
     * 
*/ def contain(oneOf: ResultOfOneOfApplication)(implicit containing: Containing[T]) { val right = oneOf.right doCollected(collected, xs, original, "contain", 1) { e => if (containing.containsOneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainOneOfElements" else "containedOneOfElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain atLeastOneOf ("one")
     *                     ^
     * 
*/ def contain(atLeastOneOf: ResultOfAtLeastOneOfApplication)(implicit aggregating: Aggregating[T]) { val right = atLeastOneOf.right doCollected(collected, xs, original, "contain", 1) { e => if (aggregating.containsAtLeastOneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAtLeastOneOf" else "containedAtLeastOneOf", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain noneOf ("one")
     *                     ^
     * 
*/ def contain(noneOf: ResultOfNoneOfApplication)(implicit containing: Containing[T]) { val right = noneOf.right doCollected(collected, xs, original, "contain", 1) { e => if (containing.containsNoneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "containedOneOfElements" else "didNotContainOneOfElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain theSameElementsAs ("one")
     *                     ^
     * 
*/ def contain(theSameElementsAs: ResultOfTheSameElementsAsApplication)(implicit aggregating: Aggregating[T]) { val right = theSameElementsAs.right doCollected(collected, xs, original, "contain", 1) { e => if (aggregating.containsTheSameElementsAs(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainSameElements" else "containedSameElements", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain theSameElementsInOrderAs ("one")
     *                     ^
     * 
*/ def contain(theSameElementsInOrderAs: ResultOfTheSameElementsInOrderAsApplication)(implicit sequencing: Sequencing[T]) { val right = theSameElementsInOrderAs.right doCollected(collected, xs, original, "contain", 1) { e => if (sequencing.containsTheSameElementsInOrderAs(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainSameElementsInOrder" else "containedSameElementsInOrder", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain only ("one")
     *                     ^
     * 
*/ def contain(only: ResultOfOnlyApplication)(implicit aggregating: Aggregating[T]) { val right = only.right doCollected(collected, xs, original, "contain", 1) { e => if (aggregating.containsOnly(e, right) != shouldBeTrue) { val postfix = if (right.size == 1 && (right(0).isInstanceOf[scala.collection.GenTraversable[_]] || right(0).isInstanceOf[Every[_]])) "WithFriendlyReminder" else "" throw newTestFailedException( FailureMessages( (if (shouldBeTrue) "didNotContainOnlyElements" else "containedOnlyElements") + postfix, e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all (xs) should not contain inOrderOnly ("one", "two")
     *                     ^
     * 
*/ def contain(only: ResultOfInOrderOnlyApplication)(implicit sequencing: Sequencing[T]) { val right = only.right doCollected(collected, xs, original, "contain", 1) { e => if (sequencing.containsInOrderOnly(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainInOrderOnlyElements" else "containedInOrderOnlyElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain allOf ("one")
     *                     ^
     * 
*/ def contain(only: ResultOfAllOfApplication)(implicit aggregating: Aggregating[T]) { val right = only.right doCollected(collected, xs, original, "contain", 1) { e => if (aggregating.containsAllOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAllOfElements" else "containedAllOfElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain inOrder ("one")
     *                     ^
     * 
*/ def contain(inOrder: ResultOfInOrderApplication)(implicit sequencing: Sequencing[T]) { val right = inOrder.right doCollected(collected, xs, original, "contain", 1) { e => if (sequencing.containsInOrder(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAllOfElementsInOrder" else "containedAllOfElementsInOrder", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should not contain atMostOneOf ("one")
     *                     ^
     * 
*/ def contain(atMostOneOf: ResultOfAtMostOneOfApplication)(implicit aggregating: Aggregating[T]) { val right = atMostOneOf.right doCollected(collected, xs, original, "contain", 1) { e => if (aggregating.containsAtMostOneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAtMostOneOf" else "containedAtMostOneOf", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(colOfMap) should not contain key ("three")
     *                          ^
     * 
*/ def contain(resultOfKeyWordApplication: ResultOfKeyWordApplication)(implicit keyMapping: KeyMapping[T]) { doCollected(collected, xs, original, "contain", 1) { map => val expectedKey = resultOfKeyWordApplication.expectedKey if ((keyMapping.containsKey(map, expectedKey)) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainKey" else "containedKey", map, expectedKey ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(colOfMap) should not contain value (3)
     *                          ^
     * 
*/ def contain(resultOfValueWordApplication: ResultOfValueWordApplication)(implicit valueMapping: ValueMapping[T]) { doCollected(collected, xs, original, "contain", 1) { map => val expectedValue = resultOfValueWordApplication.expectedValue if ((valueMapping.containsValue(map, expectedValue)) != shouldBeTrue) { throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainValue" else "containedValue", map, expectedValue ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(string) should not startWith ("1.7")
     *                        ^
     * 
*/ def startWith(right: String)(implicit ev: T <:< String) { doCollected(collected, xs, original, "startWith", 1) { e => if ((e.indexOf(right) == 0) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotStartWith" else "startedWith", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(string) should not startWith regex ("Hel*o")
     *                        ^
     * 
* *

* The regular expression passed following the regex token can be either a String * or a scala.util.matching.Regex. *

*/ def startWith(resultOfRegexWordApplication: ResultOfRegexWordApplication)(implicit ev: T <:< String) { doCollected(collected, xs, original, "startWith", 1) { e => val result = startWithRegexWithGroups(e, resultOfRegexWordApplication.regex, resultOfRegexWordApplication.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 6 ) } } /** * This method enables the following syntax: * *
     * all(string) should not endWith ("1.7")
     *                        ^
     * 
*/ def endWith(expectedSubstring: String)(implicit ev: T <:< String) { doCollected(collected, xs, original, "endWith", 1) { e => if ((e endsWith expectedSubstring) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotEndWith" else "endedWith", e, expectedSubstring ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(string) should not endWith regex ("wor.d")
     *                        ^
     * 
*/ def endWith(resultOfRegexWordApplication: ResultOfRegexWordApplication)(implicit ev: T <:< String) { doCollected(collected, xs, original, "endWith", 1) { e => val result = endWithRegexWithGroups(e, resultOfRegexWordApplication.regex, resultOfRegexWordApplication.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 6 ) } } /** * This method enables the following syntax: * *
     * all(string) should not include regex ("wo.ld")
     *                        ^
     * 
* *

* The regular expression passed following the regex token can be either a String * or a scala.util.matching.Regex. *

*/ def include(resultOfRegexWordApplication: ResultOfRegexWordApplication)(implicit ev: T <:< String) { doCollected(collected, xs, original, "include", 1) { e => val result = includeRegexWithGroups(e, resultOfRegexWordApplication.regex, resultOfRegexWordApplication.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 6 ) } } /** * This method enables the following syntax: * *
     * all(string) should not include ("world")
     *                        ^
     * 
*/ def include(expectedSubstring: String)(implicit ev: T <:< String) { doCollected(collected, xs, original, "include", 1) { e => if ((e.indexOf(expectedSubstring) >= 0) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotIncludeSubstring" else "includedSubstring", e, expectedSubstring ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(string) should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *                        ^
     * 
* *

* The regular expression passed following the regex token can be either a String * or a scala.util.matching.Regex. *

*/ def fullyMatch(resultOfRegexWordApplication: ResultOfRegexWordApplication)(implicit ev: T <:< String) { doCollected(collected, xs, original, "fullyMatch", 1) { e => val result = fullyMatchRegexWithGroups(e, resultOfRegexWordApplication.regex, resultOfRegexWordApplication.groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 6 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfNotWordForCollectedAny([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfNotWordForCollectedAny(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ final class ResultOfContainWordForCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T], original: Any, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * option should contain oneOf (1, 2)
     *                       ^
     * 
*/ def oneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit containing: Containing[T]) { val right = firstEle :: secondEle :: remainingEles.toList if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("oneOfDuplicate"), getStackDepthFun("Matchers.scala", "oneOf")) doCollected(collected, xs, original, "oneOf", 1) { e => if (containing.containsOneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainOneOfElements" else "containedOneOfElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * option should contain atLeastOneOf (1, 2)
     *                       ^
     * 
*/ def atLeastOneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit aggregating: Aggregating[T]) { val right = firstEle :: secondEle :: remainingEles.toList if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("atLeastOneOfDuplicate"), getStackDepthFun("Matchers.scala", "atLeastOneOf")) doCollected(collected, xs, original, "atLeastOneOf", 1) { e => if (aggregating.containsAtLeastOneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAtLeastOneOf" else "containedAtLeastOneOf", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * option should contain noneOf (1, 2)
     *                       ^
     * 
*/ def noneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit containing: Containing[T]) { val right = firstEle :: secondEle :: remainingEles.toList if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("noneOfDuplicate"), getStackDepthFun("Matchers.scala", "noneOf")) doCollected(collected, xs, original, "noneOf", 1) { e => if (containing.containsNoneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "containedOneOfElements" else "didNotContainOneOfElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * option should contain theSameElementsAs (1, 2)
     *                       ^
     * 
*/ def theSameElementsAs(right: GenTraversable[_])(implicit aggregating: Aggregating[T]) { doCollected(collected, xs, original, "theSameElementsAs", 1) { e => if (aggregating.containsTheSameElementsAs(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainSameElements" else "containedSameElements", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * option should contain theSameElementsInOrderAs (1, 2)
     *                       ^
     * 
*/ def theSameElementsInOrderAs(right: GenTraversable[_])(implicit sequencing: Sequencing[T]) { doCollected(collected, xs, original, "theSameElementsInOrderAs", 1) { e => if (sequencing.containsTheSameElementsInOrderAs(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainSameElementsInOrder" else "containedSameElementsInOrder", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * option should contain only (1, 2)
     *                       ^
     * 
*/ def only(right: Any*)(implicit aggregating: Aggregating[T]) { if (right.isEmpty) throw new NotAllowedException(FailureMessages("onlyEmpty"), getStackDepthFun("Matchers.scala", "only")) if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("onlyDuplicate"), getStackDepthFun("Matchers.scala", "only")) doCollected(collected, xs, original, "only", 1) { e => if (aggregating.containsOnly(e, right) != shouldBeTrue) { val postfix = if (right.size == 1 && (right(0).isInstanceOf[scala.collection.GenTraversable[_]] || right(0).isInstanceOf[Every[_]])) "WithFriendlyReminder" else "" throw newTestFailedException( FailureMessages( (if (shouldBeTrue) "didNotContainOnlyElements" else "containedOnlyElements") + postfix, e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } } /** * This method enables the following syntax: * *
     * option should contain inOrderOnly (1, 2)
     *                       ^
     * 
*/ def inOrderOnly(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit sequencing: Sequencing[T]) { val right = firstEle :: secondEle :: remainingEles.toList if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("inOrderOnlyDuplicate"), getStackDepthFun("Matchers.scala", "inOrderOnly")) doCollected(collected, xs, original, "inOrderOnly", 1) { e => if (sequencing.containsInOrderOnly(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainInOrderOnlyElements" else "containedInOrderOnlyElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * option should contain allOf (1, 2)
     *                       ^
     * 
*/ def allOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit aggregating: Aggregating[T]) { val right = firstEle :: secondEle :: remainingEles.toList if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("allOfDuplicate"), getStackDepthFun("Matchers.scala", "allOf")) doCollected(collected, xs, original, "allOf", 1) { e => if (aggregating.containsAllOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAllOfElements" else "containedAllOfElements", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * option should contain inOrder (1, 2)
     *                       ^
     * 
*/ def inOrder(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit sequencing: Sequencing[T]) { val right = firstEle :: secondEle :: remainingEles.toList if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("inOrderDuplicate"), getStackDepthFun("Matchers.scala", "inOrder")) doCollected(collected, xs, original, "inOrder", 1) { e => if (sequencing.containsInOrder(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAllOfElementsInOrder" else "containedAllOfElementsInOrder", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(xs) should contain atMostOneOf (1, 2)
     *                        ^
     * 
*/ def atMostOneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit aggregating: Aggregating[T]) { val right = firstEle :: secondEle :: remainingEles.toList if (right.distinct.size != right.size) throw new NotAllowedException(FailureMessages("atMostOneOfDuplicate"), getStackDepthFun("Matchers.scala", "atMostOneOf")) doCollected(collected, xs, original, "atMostOneOf", 1) { e => if (aggregating.containsAtMostOneOf(e, right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainAtMostOneOf" else "containedAtMostOneOf", e, UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", ")) ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(colOfMap) should contain key ("one")
     *                              ^
     * 
*/ def key(expectedKey: Any)(implicit keyMapping: KeyMapping[T]) { doCollected(collected, xs, original, "key", 1) { map => if (keyMapping.containsKey(map, expectedKey) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainKey" else "containedKey", map, expectedKey), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(colOfMap) should contain value (1)
     *                              ^
     * 
*/ def value(expectedValue: Any)(implicit valueMapping: ValueMapping[T]) { doCollected(collected, xs, original, "value", 1) { map => if (valueMapping.containsValue(map, expectedValue) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "didNotContainValue" else "containedValue", map, expectedValue), None, 6 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfContainWordForCollectedAny([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfContainWordForCollectedAny(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ sealed class ResultOfBeWordForCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T], original: Any, shouldBeTrue: Boolean) { // TODO: Missing should(AMatcher) and should(AnMatcher) /** * This method enables the following syntax: * *
     * all(xs) should be theSameInstanceAs anotherObject
     *                   ^
     * 
*/ def theSameInstanceAs(right: AnyRef)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "theSameInstanceAs", 1) { e => if ((toAnyRef(e) eq right) != shouldBeTrue) throw newTestFailedException( FailureMessages( if (shouldBeTrue) "wasNotSameInstanceAs" else "wasSameInstanceAs", e, right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(xs) should be a ('file)
     *                   ^
     * 
*/ def a(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "a", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), symbol, true, true) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage, None, 6 ) } } } /** * This method enables the following syntax: * *
     * all(xs) should be an ('orange)
     *                   ^
     * 
*/ def an(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "an", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), symbol, true, false) if (matcherResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage, None, 6 ) } } } /** * This method enables the following syntax, where badBook is, for example, of type Book and * goodRead refers to a BePropertyMatcher[Book]: * *
     * all(books) should be a (goodRead)
     *                      ^
     * 
*/ def a[U <: T](bePropertyMatcher: BePropertyMatcher[U])(implicit ev: T <:< AnyRef) { // TODO: Try supporting 2.10 AnyVals doCollected(collected, xs, original, "a", 1) { e => val result = bePropertyMatcher(e.asInstanceOf[U]) if (result.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotA", e, UnquotedString(result.propertyName)) else FailureMessages("wasA", e, UnquotedString(result.propertyName)), None, 6 ) } } } /** * This method enables the following syntax, where badBook is, for example, of type Book and * excellentRead refers to a BePropertyMatcher[Book]: * *
     * all(books) should be an (excellentRead)
     *                      ^
     * 
*/ def an[U <: T](beTrueMatcher: BePropertyMatcher[U])(implicit ev: T <:< AnyRef) { // TODO: Try supporting 2.10 AnyVals doCollected(collected, xs, original, "an", 1) { e => val beTrueMatchResult = beTrueMatcher(e.asInstanceOf[U]) if (beTrueMatchResult.matches != shouldBeTrue) { throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotAn", e, UnquotedString(beTrueMatchResult.propertyName)) else FailureMessages("wasAn", e, UnquotedString(beTrueMatchResult.propertyName)), None, 6 ) } } } /** * This method enables the following syntax, where fraction is, for example, of type PartialFunction: * *
     * all(xs) should be definedAt (6)
     *                   ^
     * 
*/ def definedAt[U](right: U)(implicit ev: T <:< PartialFunction[U, _]) { doCollected(collected, xs, xs, "definedAt", 1) { e => if (e.isDefinedAt(right) != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) FailureMessages("wasNotDefinedAt", e, right) else FailureMessages("wasDefinedAt", e, right), None, 6 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfBeWordForCollectedAny([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfBeWordForCollectedAny(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ final class ResultOfBeWordForCollectedArray[T](collected: Collected, xs: scala.collection.GenTraversable[Array[T]], original: Any, shouldBeTrue: Boolean) extends ResultOfBeWordForCollectedAny(collected, xs, original, shouldBeTrue) { /** * This method enables the following syntax: * *
     * all(colOfArray) should be ('empty)
     *                           ^
     * 
*/ def apply(right: Symbol): Matcher[Array[T]] = new Matcher[Array[T]] { def apply(left: Array[T]): MatchResult = matchSymbolToPredicateMethod(left.deep, right, false, false) } /** * Overrides to return pretty toString. * * @return "ResultOfBeWordForCollectedArray([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfBeWordForCollectedArray(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ final class ResultOfCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T], original: Any) { // TODO: shouldBe null works, b ut should be (null) does not when type is Any: /* scala> val ys = List(null, null, 1) ys: List[Any] = List(null, null, 1) scala> all (ys) shouldBe null :15: error: ambiguous reference to overloaded definition, both method shouldBe in class ResultOfCollectedAny of type (spread: org.scalautils.Spread[Any])Unit and method shouldBe in class ResultOfCollectedAny of type (beMatcher: org.scalatest.matchers.BeMatcher[Any])Unit match argument types (Null) all (ys) shouldBe null ^ scala> all (ys) should be (null) org.scalatest.exceptions.TestFailedException: org.scalatest.Matchers$ResultOfCollectedAny@18515783 was not null at org.scalatest.MatchersHelper$.newTestFailedException(MatchersHelper.scala:163) at org.scalatest.Matchers$ShouldMethodHelper$.shouldMatcher(Matchers.scala:5529) at org.scalatest.Matchers$AnyShouldWrapper.should(Matchers.scala:5563) at .(:15) at .() */ /** * This method enables syntax such as the following: * *
     * all(xs) should be (3)
     *         ^
     * 
*/ def should(rightMatcher: Matcher[T]) { doCollected(collected, xs, original, "should", 1) { e => rightMatcher(e) match { case MatchFailed(failureMessage) => throw newTestFailedException(failureMessage, None, 6) case _ => () } } } /** * This method enables syntax such as the following: * *
     * all (xs) shouldEqual 7
     *          ^
     * 
*/ def shouldEqual(right: Any)(implicit equality: Equality[T]) { doCollected(collected, xs, original, "shouldEqual", 1) { e => if (!equality.areEqual(e, right)) { val (eee, rightee) = Suite.getObjectsForFailureMessage(e, right) throw newTestFailedException(FailureMessages("didNotEqual", eee, rightee), None, 6) } } } /** * This method enables syntax such as the following: * *
     * result shouldEqual 7.1 +- 0.2
     *        ^
     * 
*/ def shouldEqual(spread: Spread[T]) { doCollected(collected, xs, original, "shouldEqual", 1) { e => if (!spread.isWithin(e)) { throw newTestFailedException(FailureMessages("didNotEqualPlusOrMinus", e, spread.pivot, spread.tolerance), None, 6) } } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe sorted
     *         ^
     * 
*/ def shouldBe(sortedWord: SortedWord)(implicit sortable: Sortable[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!sortable.isSorted(e)) throw newTestFailedException(FailureMessages("wasNotSorted", e), None, 6) } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe readable
     *         ^
     * 
*/ def shouldBe(readableWord: ReadableWord)(implicit readability: Readability[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!readability.isReadable(e)) throw newTestFailedException(FailureMessages("wasNotReadable", e), None, 6) } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe writable
     *         ^
     * 
*/ def shouldBe(writableWord: WritableWord)(implicit writability: Writability[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!writability.isWritable(e)) throw newTestFailedException(FailureMessages("wasNotWritable", e), None, 6) } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe empty
     *         ^
     * 
*/ def shouldBe(emptyWord: EmptyWord)(implicit emptiness: Emptiness[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!emptiness.isEmpty(e)) throw newTestFailedException(FailureMessages("wasNotEmpty", e), None, 6) } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe defined
     *         ^
     * 
*/ def shouldBe(definedWord: DefinedWord)(implicit definition: Definition[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!definition.isDefined(e)) throw newTestFailedException(FailureMessages("wasNotDefined", e), None, 6) } } /** * This method enables syntax such as the following: * *
     * result shouldEqual null
     *        ^
     * 
*/ def shouldEqual(right: Null)(implicit ev: T <:< AnyRef) { doCollected(collected, xs, original, "shouldEqual", 1) { e => if (e != null) { throw newTestFailedException(FailureMessages("didNotEqualNull", e), None, 6) } } } /** * This method enables syntax such as the following: * *
     * all(xs) should equal (3)
     *         ^
     * 
*/ def should[TYPECLASS1[_]](rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]) { val rightMatcher = rightMatcherFactory1.matcher doCollected(collected, xs, original, "should", 1) { e => rightMatcher(e) match { case MatchFailed(failureMessage) => throw newTestFailedException(failureMessage, None, 6) case _ => () } } } /** * This method enables syntax such as the following: * *
     * all(xs) should (equal (expected) and have length 12)
     *         ^
     * 
*/ def should[TYPECLASS1[_], TYPECLASS2[_]](rightMatcherFactory2: MatcherFactory2[T, TYPECLASS1, TYPECLASS2])(implicit typeClass1: TYPECLASS1[T], typeClass2: TYPECLASS2[T]) { val rightMatcher = rightMatcherFactory2.matcher doCollected(collected, xs, original, "should", 1) { e => rightMatcher(e) match { case MatchFailed(failureMessage) => throw newTestFailedException(failureMessage, None, 6) case _ => () } } } /** * This method enables syntax such as the following: * *
     * all(xs) should be theSameInstanceAs anotherObject
     *         ^
     * 
*/ def should(beWord: BeWord) = new ResultOfBeWordForCollectedAny[T](collected, xs, original, true) /** * This method enables syntax such as the following: * *
     * all(xs) should not equal (3)
     *         ^
     * 
*/ def should(notWord: NotWord): ResultOfNotWordForCollectedAny[T] = new ResultOfNotWordForCollectedAny(collected, xs, original, false) /** * This method enables syntax such as the following: * *
     * all (results) should have length (3)
     *        ^
     * all (results) should have size (3)
     *        ^
     * 
*/ def should(haveWord: HaveWord): ResultOfHaveWordForCollectedExtent[T] = new ResultOfHaveWordForCollectedExtent(collected, xs, original, true) /** * This method enables syntax such as the following: * *
     * all (xs) shouldBe 7
     *          ^
     * 
*/ def shouldBe(right: Any) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (e != right) { val (eee, rightee) = Suite.getObjectsForFailureMessage(e, right) throw newTestFailedException(FailureMessages("wasNot", eee, rightee), None, 6) } } } /** * This method enables syntax such as the following: * *
     * all(4, 5, 6) shouldBe < (7) 
     *              ^
     * 
*/ def shouldBe(comparison: ResultOfLessThanComparison[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!comparison(e)) { throw newTestFailedException( FailureMessages( "wasNotLessThan", e, comparison.right ), None, 6 ) } } } /** * This method enables syntax such as the following: * *
     * all(4, 5, 6) shouldBe <= (7) 
     *              ^
     * 
*/ def shouldBe(comparison: ResultOfLessThanOrEqualToComparison[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!comparison(e)) { throw newTestFailedException( FailureMessages( "wasNotLessThanOrEqualTo", e, comparison.right ), None, 6 ) } } } /** * This method enables syntax such as the following: * *
     * all(8, 9, 10) shouldBe > (7) 
     *               ^
     * 
*/ def shouldBe(comparison: ResultOfGreaterThanComparison[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!comparison(e)) { throw newTestFailedException( FailureMessages( "wasNotGreaterThan", e, comparison.right ), None, 6 ) } } } /** * This method enables syntax such as the following: * *
     * all(8, 9, 10) shouldBe >= (7) 
     *               ^
     * 
*/ def shouldBe(comparison: ResultOfGreaterThanOrEqualToComparison[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!comparison(e)) { throw newTestFailedException( FailureMessages( "wasNotGreaterThanOrEqualTo", e, comparison.right ), None, 6 ) } } } /** * This method enables the following syntax, where odd refers to a BeMatcher[Int]: * *
testing
     * all(xs) shouldBe odd
     *         ^
     * 
*/ def shouldBe(beMatcher: BeMatcher[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => val result = beMatcher.apply(e) if (!result.matches) throw newTestFailedException(result.failureMessage, None, 6) } } /** * This method enables syntax such as the following: * *
     * all(xs) shouldBe 7.1 +- 0.2
     *         ^
     * 
*/ def shouldBe(spread: Spread[T]) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (!spread.isWithin(e)) throw newTestFailedException(FailureMessages("wasNotPlusOrMinus", e, spread.pivot, spread.tolerance), None, 6) } } /** * This method enables syntax such as the following: * *
     * all(xs) shouldBe theSameInstanceAs (anotherObject)
     *         ^
     * 
*/ def shouldBe(resultOfSameInstanceAsApplication: ResultOfTheSameInstanceAsApplication)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (toAnyRef(e) ne resultOfSameInstanceAsApplication.right) throw newTestFailedException( FailureMessages( "wasNotSameInstanceAs", e, resultOfSameInstanceAsApplication.right ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe 'empty
     *         ^
     * 
*/ def shouldBe(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "shouldBe", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), symbol, false, true, 6) if (!matcherResult.matches) throw newTestFailedException(matcherResult.failureMessage, None, 6) } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe a ('empty)
     *         ^
     * 
*/ def shouldBe(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "shouldBe", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), resultOfAWordApplication.symbol, true, true, 6) if (!matcherResult.matches) { throw newTestFailedException(matcherResult.failureMessage, None, 6) } } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe an ('empty)
     *         ^
     * 
*/ def shouldBe(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef) { doCollected(collected, xs, original, "shouldBe", 1) { e => val matcherResult = matchSymbolToPredicateMethod(toAnyRef(e), resultOfAnWordApplication.symbol, true, false, 6) if (!matcherResult.matches) { throw newTestFailedException(matcherResult.failureMessage, None, 6) } } } /** * This method enables the following syntax: * *
     * all(xs) shouldBe null
     *         ^
     * 
*/ def shouldBe(o: Null)(implicit ev: T <:< AnyRef) { doCollected(collected, xs, original, "shouldBe", 1) { e => if (e != null) throw newTestFailedException(FailureMessages("wasNotNull", e), None, 6) } } /** * This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]: * *
     * all(xs) shouldBe excellentRead
     *         ^
     * 
*/ def shouldBe[U <: T](bePropertyMatcher: BePropertyMatcher[U])(implicit ev: T <:< AnyRef) { // TODO: Try supporting this with 2.10 AnyVals doCollected(collected, xs, original, "shouldBe", 1) { e => val result = bePropertyMatcher(e.asInstanceOf[U]) if (!result.matches) throw newTestFailedException(FailureMessages("wasNot", e, UnquotedString(result.propertyName)), None, 6) } } /** * This method enables the following syntax, where goodRead refers to a BePropertyMatcher[Book]: * *
     * all(xs) shouldBe a (goodRead)
     *         ^
     * 
*/ def shouldBe[U <: T](resultOfAWordApplication: ResultOfAWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try supporting this with 2.10 AnyVals doCollected(collected, xs, original, "shouldBe", 1) { e => val result = resultOfAWordApplication.bePropertyMatcher(e.asInstanceOf[U]) if (!result.matches) throw newTestFailedException(FailureMessages("wasNotA", e, UnquotedString(result.propertyName)), None, 6) } } /** * This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]: * *
     * all(xs) shouldBe an (excellentRead)
     *         ^
     * 
*/ def shouldBe[U <: T](resultOfAnWordApplication: ResultOfAnWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try supporting this with 2.10 AnyVals doCollected(collected, xs, original, "shouldBe", 1) { e => val result = resultOfAnWordApplication.bePropertyMatcher(e.asInstanceOf[U]) if (!result.matches) throw newTestFailedException(FailureMessages("wasNotAn", e, UnquotedString(result.propertyName)), None, 6) } } /** * This method enables syntax such as the following: * *
     * all(xs) shouldNot (be (3))
     *         ^
     * 
*/ def shouldNot[U <: T](rightMatcherX1: Matcher[U]) { doCollected(collected, xs, original, "shouldNot", 1) { e => val result = try rightMatcherX1.apply(e.asInstanceOf[U]) catch { case tfe: TestFailedException => throw newTestFailedException(tfe.getMessage, tfe.cause, 6) } if (result.matches) throw newTestFailedException(result.negatedFailureMessage, None, 6) } } /** * This method enables syntax such as the following: * *
     * all(xs) shouldNot (equal (3))
     *         ^
     * 
*/ def shouldNot[TYPECLASS1[_]](rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]) { val rightMatcher = rightMatcherFactory1.matcher doCollected(collected, xs, original, "shouldNot", 1) { e => rightMatcher(e) match { case MatchSucceeded(negatedFailureMessage) => throw newTestFailedException(negatedFailureMessage, None, 6) case _ => () } } } /** * This method enables syntax such as the following: * *
     * all (xs) should === (b)
     *          ^
     * 
*/ def should[U](inv: TripleEqualsInvocation[U])(implicit constraint: Constraint[T, U]) { doCollected(collected, xs, original, "should", 1) { e => if ((constraint.areEqual(e, inv.right)) != inv.expectingEqual) throw newTestFailedException( FailureMessages( if (inv.expectingEqual) "didNotEqual" else "equaled", e, inv.right ), None, 6 ) } } /** * This method enables syntax such as the following: * *
     * all (xs) should === (100 +- 1)
     *          ^
     * 
*/ def should(inv: TripleEqualsInvocationOnSpread[T])(implicit ev: Numeric[T]) { doCollected(collected, xs, original, "should", 1) { e => if ((inv.spread.isWithin(e)) != inv.expectingEqual) throw newTestFailedException( FailureMessages( if (inv.expectingEqual) "didNotEqualPlusOrMinus" else "equaledPlusOrMinus", e, inv.spread.pivot, inv.spread.tolerance ), None, 6 ) } } /** * This method enables the following syntax: * *
     * all(xs) shouldNot be theSameInstanceAs anotherInstance
     *         ^
     * 
*/ def shouldNot(beWord: BeWord): ResultOfBeWordForCollectedAny[T] = new ResultOfBeWordForCollectedAny[T](collected, xs, original, false) /** * This method enables syntax such as the following: * *
     * all (xs) should contain oneOf (1, 2, 3)
     *          ^
     * 
*/ def should(containWord: ContainWord): ResultOfContainWordForCollectedAny[T] = { new ResultOfContainWordForCollectedAny(collected, xs, original, true) } /** * This method enables syntax such as the following: * *
     * all (xs) shouldNot contain (oneOf (1, 2, 3))
     *          ^
     * 
*/ def shouldNot(containWord: ContainWord): ResultOfContainWordForCollectedAny[T] = { new ResultOfContainWordForCollectedAny(collected, xs, original, false) } /** * This method enables syntax such as the following: * *
     * all(xs) should exist
     *         ^
     * 
*/ def should(existWord: ExistWord)(implicit existence: Existence[T]) { doCollected(collected, xs, original, "should", 1) { e => if (!existence.exists(e)) throw newTestFailedException( FailureMessages("doesNotExist", e), None, 6 ) } } /** * This method enables syntax such as the following: * *
     * all(xs) should not (exist)
     *         ^
     * 
*/ def should(notExist: ResultOfNotExist)(implicit existence: Existence[T]) { doCollected(collected, xs, original, "should", 1) { e => if (existence.exists(e)) throw newTestFailedException( FailureMessages("exists", e), None, 6 ) } } /** * This method enables syntax such as the following: * *
     * all(xs) shouldNot exist
     *         ^
     * 
*/ def shouldNot(existWord: ExistWord)(implicit existence: Existence[T]) { doCollected(collected, xs, original, "shouldNot", 1) { e => if (existence.exists(e)) throw newTestFailedException( FailureMessages("exists", e), None, 6 ) } } /** * This method enables syntax such as the following: * *
     * all(string) should startWith regex ("Hel*o")
     *             ^
     * 
*/ def should(startWithWord: StartWithWord)(implicit ev: T <:< String): ResultOfStartWithWordForCollectedString = new ResultOfStartWithWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, true) /** * This method enables syntax such as the following: * *
     * all(string) should endWith regex ("wo.ld")
     *             ^
     * 
*/ def should(endWithWord: EndWithWord)(implicit ev: T <:< String): ResultOfEndWithWordForCollectedString = new ResultOfEndWithWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, true) /** * This method enables syntax such as the following: * *
     * all(string) should include regex ("wo.ld")
     *             ^
     * 
*/ def should(includeWord: IncludeWord)(implicit ev: T <:< String): ResultOfIncludeWordForCollectedString = new ResultOfIncludeWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, true) /** * This method enables syntax such as the following: * *
     * all(string) should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *             ^
     * 
*/ def should(fullyMatchWord: FullyMatchWord)(implicit ev: T <:< String): ResultOfFullyMatchWordForCollectedString = new ResultOfFullyMatchWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, true) /** * This method enables syntax such as the following: * *
     * all(string) shouldNot fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *             ^
     * 
*/ def shouldNot(fullyMatchWord: FullyMatchWord)(implicit ev: T <:< String): ResultOfFullyMatchWordForCollectedString = new ResultOfFullyMatchWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, false) /** * This method enables syntax such as the following: * *
     * all(string) shouldNot startWith regex ("Hel*o")
     *             ^
     * 
*/ def shouldNot(startWithWord: StartWithWord)(implicit ev: T <:< String): ResultOfStartWithWordForCollectedString = new ResultOfStartWithWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, false) /** * This method enables syntax such as the following: * *
     * all(string) shouldNot endWith regex ("wo.ld")
     *             ^
     * 
*/ def shouldNot(endWithWord: EndWithWord)(implicit ev: T <:< String): ResultOfEndWithWordForCollectedString = new ResultOfEndWithWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, false) /** * This method enables syntax such as the following: * *
     * all(string) shouldNot include regex ("wo.ld")
     *             ^
     * 
*/ def shouldNot(includeWord: IncludeWord)(implicit ev: T <:< String): ResultOfIncludeWordForCollectedString = new ResultOfIncludeWordForCollectedString(collected, xs.asInstanceOf[GenTraversable[String]], original, false) /** * Overrides to return pretty toString. * * @return "ResultOfCollectedAny([collected], [xs])" */ override def toString: String = "ResultOfCollectedAny(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * * @author Bill Venners */ final class ResultOfHaveWordForCollectedExtent[A](collected: Collected, xs: scala.collection.GenTraversable[A], original: Any, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * all (xs) should have length (12)
     *                      ^
     * 
*/ def length(expectedLength: Long)(implicit len: Length[A]) { doCollected(collected, xs, original, "length", 1) { e => val eLength = len.lengthOf(e) if ((eLength == expectedLength) != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) FailureMessages("hadLengthInsteadOfExpectedLength", e, eLength, expectedLength) else FailureMessages("hadLength", e, expectedLength), None, 6 ) } } /** * This method enables the following syntax: * *
     * all (xs) should have size (12)
     *                      ^
     * 
*/ def size(expectedSize: Long)(implicit sz: Size[A]) { doCollected(collected, xs, original, "size", 1) { e => val eSize = sz.sizeOf(e) if ((eSize == expectedSize) != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) FailureMessages("hadSizeInsteadOfExpectedSize", e, eSize, expectedSize) else FailureMessages("hadSize", e, expectedSize), None, 6 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfHaveWordForCollectedExtent([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfHaveWordForCollectedExtent(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ final class ResultOfStartWithWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], original: Any, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * all(string) should startWith regex ("Hel*o")
     *                              ^
     * 
*/ def regex(rightRegexString: String) { checkRegex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * all(string) should fullMatch regex ("a(b*)c" withGroup "bb") 
     *                              ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) } /** * This method enables the following syntax: * *
     * all(string) should startWith regex ("Hel*o".r)
     *                              ^
     * 
*/ def regex(rightRegex: Regex) { checkRegex(rightRegex) } private def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) { doCollected(collected, xs, original, "regex", 2) { e => val result = startWithRegexWithGroups(e, rightRegex, groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 7 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfStartWithWordForCollectedString([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfStartWithWordForCollectedString(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ final class ResultOfIncludeWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], original: Any, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * all(string) should include regex ("world")
     *                            ^
     * 
*/ def regex(rightRegexString: String) { checkRegex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * all(string) should include regex ("a(b*)c" withGroup "bb") 
     *                            ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) } /** * This method enables the following syntax: * *
     * all(string) should include regex ("wo.ld".r)
     *                            ^
     * 
*/ def regex(rightRegex: Regex) { checkRegex(rightRegex) } private def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) { doCollected(collected, xs, original, "regex", 2) { e => val result = includeRegexWithGroups(e, rightRegex, groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 7 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfIncludeWordForCollectedString([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfIncludeWordForCollectedString(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ final class ResultOfEndWithWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], original: Any, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * all(string) should endWith regex ("wor.d")
     *                            ^
     * 
*/ def regex(rightRegexString: String) { checkRegex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * all(string) should endWith regex ("a(b*)c" withGroup "bb") 
     *                            ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) } /** * This method enables the following syntax: * *
     * all(string) should endWith regex ("wor.d".r)
     *                            ^
     * 
*/ def regex(rightRegex: Regex) { checkRegex(rightRegex) } private def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) { doCollected(collected, xs, original, "regex", 2) { e => val result = endWithRegexWithGroups(e, rightRegex, groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 7 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfEndWithWordForCollectedString([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfEndWithWordForCollectedString(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of * the matchers DSL. * * @author Bill Venners * @author Chee Seng */ final class ResultOfFullyMatchWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], original: Any, shouldBeTrue: Boolean) { /** * This method enables the following syntax: * *
     * all(string) should fullMatch regex ("Hel*o world")
     *                              ^
     * 
*/ def regex(rightRegexString: String) { checkRegex(rightRegexString.r) } /** * This method enables the following syntax: * *
     * all(string) should fullMatch regex ("a(b*)c" withGroup "bb") 
     *                              ^
     * 
*/ def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) } /** * This method enables the following syntax: * *
     * all(string) should fullymatch regex ("Hel*o world".r)
     *                               ^
     * 
*/ def regex(rightRegex: Regex) { checkRegex(rightRegex) } private def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) { doCollected(collected, xs, original, "regex", 2) { e => val result = fullyMatchRegexWithGroups(e, rightRegex, groups) if (result.matches != shouldBeTrue) throw newTestFailedException( if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage, None, 7 ) } } /** * Overrides to return pretty toString. * * @return "ResultOfFullyMatchWordForCollectedString([collected], [xs], [shouldBeTrue])" */ override def toString: String = "ResultOfFullyMatchWordForCollectedString(" + Prettifier.default(collected) + ", " + Prettifier.default(xs) + ", " + Prettifier.default(shouldBeTrue) + ")" } /** * This method enables the following syntax: * *
   * all(xs) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def all[E, C[_]](xs: C[E])(implicit collecting: Collecting[E, C[E]]): ResultOfCollectedAny[E] = new ResultOfCollectedAny(AllCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for java.util.Map: * *
   * all(jmap) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def all[K, V, JMAP[k, v] <: java.util.Map[k, v]](xs: JMAP[K, V])(implicit collecting: Collecting[org.scalatest.Entry[K, V], JMAP[K, V]]): ResultOfCollectedAny[org.scalatest.Entry[K, V]] = new ResultOfCollectedAny(AllCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for String: * *
   * all(str) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def all(xs: String)(implicit collecting: Collecting[Char, String]): ResultOfCollectedAny[Char] = new ResultOfCollectedAny(AllCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax: * *
   * atLeast(1, xs) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def atLeast[E, C[_]](num: Int, xs: C[E])(implicit collecting: Collecting[E, C[E]]): ResultOfCollectedAny[E] = new ResultOfCollectedAny(AtLeastCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for java.util.Map: * *
   * atLeast(1, jmap) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def atLeast[K, V, JMAP[k, v] <: java.util.Map[k, v]](num: Int, xs: JMAP[K, V])(implicit collecting: Collecting[org.scalatest.Entry[K, V], JMAP[K, V]]): ResultOfCollectedAny[org.scalatest.Entry[K, V]] = new ResultOfCollectedAny(AtLeastCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for String: * *
   * atLeast(1, str) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def atLeast(num: Int, xs: String)(implicit collecting: Collecting[Char, String]): ResultOfCollectedAny[Char] = new ResultOfCollectedAny(AtLeastCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax: * *
   * every(xs) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def every[E, C[_]](xs: C[E])(implicit collecting: Collecting[E, C[E]]): ResultOfCollectedAny[E] = new ResultOfCollectedAny(EveryCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for java.util.Map: * *
   * every(jmap) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def every[K, V, JMAP[k, v] <: java.util.Map[k, v]](xs: JMAP[K, V])(implicit collecting: Collecting[org.scalatest.Entry[K, V], JMAP[K, V]]): ResultOfCollectedAny[org.scalatest.Entry[K, V]] = new ResultOfCollectedAny(EveryCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for String: * *
   * every(str) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def every(xs: String)(implicit collecting: Collecting[Char, String]): ResultOfCollectedAny[Char] = new ResultOfCollectedAny(EveryCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax: * *
   * exactly(xs) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def exactly[E, C[_]](num: Int, xs: C[E])(implicit collecting: Collecting[E, C[E]]): ResultOfCollectedAny[E] = new ResultOfCollectedAny(ExactlyCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for java.util.Map: * *
   * exactly(jmap) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def exactly[K, V, JMAP[k, v] <: java.util.Map[k, v]](num: Int, xs: JMAP[K, V])(implicit collecting: Collecting[org.scalatest.Entry[K, V], JMAP[K, V]]): ResultOfCollectedAny[org.scalatest.Entry[K, V]] = new ResultOfCollectedAny(ExactlyCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for String: * *
   * exactly(str) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def exactly(num: Int, xs: String)(implicit collecting: Collecting[Char, String]): ResultOfCollectedAny[Char] = new ResultOfCollectedAny(ExactlyCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax: * *
   * no(xs) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def no[E, C[_]](xs: C[E])(implicit collecting: Collecting[E, C[E]]): ResultOfCollectedAny[E] = new ResultOfCollectedAny(NoCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for java.util.Map: * *
   * no(jmap) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def no[K, V, JMAP[k, v] <: java.util.Map[k, v]](xs: JMAP[K, V])(implicit collecting: Collecting[org.scalatest.Entry[K, V], JMAP[K, V]]): ResultOfCollectedAny[org.scalatest.Entry[K, V]] = new ResultOfCollectedAny(NoCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for String: * *
   * no(str) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def no(xs: String)(implicit collecting: Collecting[Char, String]): ResultOfCollectedAny[Char] = new ResultOfCollectedAny(NoCollected, collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax: * *
   * between(1, 3, xs) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def between[E, C[_]](from: Int, upTo:Int, xs: C[E])(implicit collecting: Collecting[E, C[E]]): ResultOfCollectedAny[E] = new ResultOfCollectedAny(BetweenCollected(from, upTo), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for java.util.Map: * *
   * between(1, 3, jmap) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def between[K, V, JMAP[k, v] <: java.util.Map[k, v]](from: Int, upTo:Int, xs: JMAP[K, V])(implicit collecting: Collecting[org.scalatest.Entry[K, V], JMAP[K, V]]): ResultOfCollectedAny[org.scalatest.Entry[K, V]] = new ResultOfCollectedAny(BetweenCollected(from, upTo), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for String: * *
   * between(1, 3, str) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def between(from: Int, upTo:Int, xs: String)(implicit collecting: Collecting[Char, String]): ResultOfCollectedAny[Char] = new ResultOfCollectedAny(BetweenCollected(from, upTo), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax: * *
   * atMost(3, xs) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def atMost[E, C[_]](num: Int, xs: C[E])(implicit collecting: Collecting[E, C[E]]): ResultOfCollectedAny[E] = new ResultOfCollectedAny(AtMostCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for java.util.Map: * *
   * atMost(3, jmap) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def atMost[K, V, JMAP[k, v] <: java.util.Map[k, v]](num: Int, xs: JMAP[K, V])(implicit collecting: Collecting[org.scalatest.Entry[K, V], JMAP[K, V]]): ResultOfCollectedAny[org.scalatest.Entry[K, V]] = new ResultOfCollectedAny(AtMostCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax for String: * *
   * atMost(3, str) should fullymatch regex ("Hel*o world".r)
   * ^
   * 
*/ def atMost(num: Int, xs: String)(implicit collecting: Collecting[Char, String]): ResultOfCollectedAny[Char] = new ResultOfCollectedAny(AtMostCollected(num), collecting.genTraversableFrom(xs), xs) /** * This method enables the following syntax: * *
   * a [RuntimeException] should be thrownBy { ... }
   * ^
   * 
*/ def a[T : Manifest]: ResultOfATypeInvocation[T] = new ResultOfATypeInvocation(manifest.erasure.asInstanceOf[Class[T]]) /** * This method enables the following syntax: * *
   * an [Exception] should be thrownBy { ... }
   * ^
   * 
*/ def an[T : Manifest]: ResultOfAnTypeInvocation[T] = new ResultOfAnTypeInvocation(manifest.erasure.asInstanceOf[Class[T]]) /** * This method enables the following syntax: * *
   * the [FileNotFoundException] should be thrownBy { ... }
   * ^
   * 
*/ def the[T : Manifest]: ResultOfTheTypeInvocation[T] = new ResultOfTheTypeInvocation(manifest.erasure.asInstanceOf[Class[T]]) // This is where ShouldMatchers.scala started private object ShouldMethodHelper { def shouldMatcher[T](left: T, rightMatcher: Matcher[T], stackDepthAdjustment: Int = 0) { rightMatcher(left) match { case MatchFailed(failureMessage) => throw newTestFailedException(failureMessage, None, stackDepthAdjustment) case _ => () } } def shouldNotMatcher[T](left: T, rightMatcher: Matcher[T], stackDepthAdjustment: Int = 0) { rightMatcher(left) match { case MatchSucceeded(negatedFailureMessage) => throw newTestFailedException(negatedFailureMessage, None, stackDepthAdjustment) case _ => () } } } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * *

* This class is used in conjunction with an implicit conversion to enable should methods to * be invoked on objects of type Any. *

* * @author Bill Venners */ sealed class AnyShouldWrapper[T](leftSideValue: T) { /** * This method enables syntax such as the following: * *
     * result should be (3)
     *        ^
     * 
*/ def should(rightMatcherX1: Matcher[T]) { ShouldMethodHelper.shouldMatcher(leftSideValue, rightMatcherX1) } /** * This method enables syntax such as the following: * *
     * result should equal (3)
     *        ^
     * 
*/ def should[TYPECLASS1[_]](rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]) { ShouldMethodHelper.shouldMatcher(leftSideValue, rightMatcherFactory1.matcher) } /** * This method enables syntax such as the following: * *
     * result should (equal (expected) and have length 3)
     *        ^
     * 
*/ def should[TYPECLASS1[_], TYPECLASS2[_]](rightMatcherFactory2: MatcherFactory2[T, TYPECLASS1, TYPECLASS2])(implicit typeClass1: TYPECLASS1[T], typeClass2: TYPECLASS2[T]) { ShouldMethodHelper.shouldMatcher(leftSideValue, rightMatcherFactory2.matcher) } /** * This method enables syntax such as the following: * *
     * a shouldEqual b
     *   ^
     * 
*/ def shouldEqual(right: Any)(implicit equality: Equality[T]) { if (!equality.areEqual(leftSideValue, right)) { val (leftee, rightee) = Suite.getObjectsForFailureMessage(leftSideValue, right) throw newTestFailedException(FailureMessages("didNotEqual", leftee, rightee)) } } /** * This method enables syntax such as the following: * *
     * result shouldEqual 7.1 +- 0.2
     *        ^
     * 
*/ def shouldEqual(spread: Spread[T]) { if (!spread.isWithin(leftSideValue)) { throw newTestFailedException(FailureMessages("didNotEqualPlusOrMinus", leftSideValue, spread.pivot, spread.tolerance)) } } /** * This method enables syntax such as the following: * *
     * result shouldEqual null
     *        ^
     * 
*/ def shouldEqual(right: Null)(implicit ev: T <:< AnyRef) { if (leftSideValue != null) { throw newTestFailedException(FailureMessages("didNotEqualNull", leftSideValue)) } } /** * This method enables syntax such as the following: * *
     * result should not equal (3)
     *        ^
     * 
*/ def should(notWord: NotWord): ResultOfNotWordForAny[T] = new ResultOfNotWordForAny[T](leftSideValue, false) // In 2.10, will work with AnyVals. TODO: Also, Need to ensure Char works /** * This method enables syntax such as the following: * *
     * a should === (b)
     *        ^
     * 
*/ def should[U](inv: TripleEqualsInvocation[U])(implicit constraint: Constraint[T, U]) { if ((constraint.areEqual(leftSideValue, inv.right)) != inv.expectingEqual) throw newTestFailedException( FailureMessages( if (inv.expectingEqual) "didNotEqual" else "equaled", leftSideValue, inv.right ) ) } /** * This method enables syntax such as the following: * *
     * result should === (100 +- 1)
     *        ^
     * 
*/ def should(inv: TripleEqualsInvocationOnSpread[T])(implicit ev: Numeric[T]) { if ((inv.spread.isWithin(leftSideValue)) != inv.expectingEqual) throw newTestFailedException( FailureMessages( if (inv.expectingEqual) "didNotEqualPlusOrMinus" else "equaledPlusOrMinus", leftSideValue, inv.spread.pivot, inv.spread.tolerance ) ) } // TODO: Need to make sure this works in inspector shorthands. I moved this // up here from NumericShouldWrapper. /** * This method enables syntax such as the following: * *
     * result should be a aMatcher
     *        ^
     * 
*/ def should(beWord: BeWord): ResultOfBeWordForAny[T] = new ResultOfBeWordForAny(leftSideValue, true) /** * This method enables syntax such as the following: * *
     * aDouble shouldBe 8.8
     *         ^
     * 
*/ def shouldBe(right: Any) { if (!areEqualComparingArraysStructurally(leftSideValue, right)) { val (leftee, rightee) = Suite.getObjectsForFailureMessage(leftSideValue, right) throw newTestFailedException(FailureMessages("wasNotEqualTo", leftee, rightee)) } } /** * This method enables syntax such as the following: * *
     * 5 shouldBe < (7) 
     *   ^
     * 
*/ def shouldBe(comparison: ResultOfLessThanComparison[T]) { if (!comparison(leftSideValue)) { throw newTestFailedException( FailureMessages( "wasNotLessThan", leftSideValue, comparison.right ) ) } } /** * This method enables syntax such as the following: * *
     * 8 shouldBe > (7) 
     *   ^
     * 
*/ def shouldBe(comparison: ResultOfGreaterThanComparison[T]) { if (!comparison(leftSideValue)) { throw newTestFailedException( FailureMessages( "wasNotGreaterThan", leftSideValue, comparison.right ) ) } } /** * This method enables syntax such as the following: * *
     * 5 shouldBe <= (7) 
     *   ^
     * 
*/ def shouldBe(comparison: ResultOfLessThanOrEqualToComparison[T]) { if (!comparison(leftSideValue)) { throw newTestFailedException( FailureMessages( "wasNotLessThanOrEqualTo", leftSideValue, comparison.right ) ) } } /** * This method enables syntax such as the following: * *
     * 8 shouldBe >= (7) 
     *   ^
     * 
*/ def shouldBe(comparison: ResultOfGreaterThanOrEqualToComparison[T]) { if (!comparison(leftSideValue)) { throw newTestFailedException( FailureMessages( "wasNotGreaterThanOrEqualTo", leftSideValue, comparison.right ) ) } } /** * This method enables the following syntax, where odd refers to a BeMatcher[Int]: * *
testing
     * 1 shouldBe odd
     *   ^
     * 
*/ def shouldBe(beMatcher: BeMatcher[T]) { val result = beMatcher.apply(leftSideValue) if (!result.matches) throw newTestFailedException(result.failureMessage) } /** * This method enables syntax such as the following: * *
     * result shouldBe 7.1 +- 0.2
     *        ^
     * 
*/ def shouldBe(spread: Spread[T]) { if (!spread.isWithin(leftSideValue)) { throw newTestFailedException(FailureMessages("wasNotPlusOrMinus", leftSideValue, spread.pivot, spread.tolerance)) } } /** * This method enables syntax such as the following: * *
     * result shouldBe sorted
     *        ^
     * 
*/ def shouldBe(right: SortedWord)(implicit sortable: Sortable[T]) { if (!sortable.isSorted(leftSideValue)) throw newTestFailedException(FailureMessages("wasNotSorted", leftSideValue)) } /** * This method enables syntax such as the following: * *
     * aDouble shouldBe a [Book]
     *         ^
     * 
*/ def shouldBe(aType: ResultOfATypeInvocation[_]) { val clazz = aType.clazz if (!clazz.isAssignableFrom(leftSideValue.getClass)) { val (leftee, rightee) = Suite.getObjectsForFailureMessage(leftSideValue, clazz.getName) throw newTestFailedException(FailureMessages("wasNotAnInstanceOf", leftSideValue, UnquotedString(clazz.getName))) } } /** * This method enables syntax such as the following: * *
     * aDouble shouldBe an [Book]
     *         ^
     * 
*/ def shouldBe(anType: ResultOfAnTypeInvocation[_]) { val clazz = anType.clazz if (!clazz.isAssignableFrom(leftSideValue.getClass)) { val (leftee, rightee) = Suite.getObjectsForFailureMessage(leftSideValue, clazz.getName) throw newTestFailedException(FailureMessages("wasNotAnInstanceOf", leftSideValue, UnquotedString(clazz.getName))) } } /** * This method enables syntax such as the following: * *
     * result shouldBe readable
     *        ^
     * 
*/ def shouldBe(right: ReadableWord)(implicit readability: Readability[T]) { if (!readability.isReadable(leftSideValue)) throw newTestFailedException(FailureMessages("wasNotReadable", leftSideValue)) } /** * This method enables syntax such as the following: * *
     * result shouldBe writable
     *        ^
     * 
*/ def shouldBe(right: WritableWord)(implicit writability: Writability[T]) { if (!writability.isWritable(leftSideValue)) throw newTestFailedException(FailureMessages("wasNotWritable", leftSideValue)) } /** * This method enables syntax such as the following: * *
     * result shouldBe empty
     *        ^
     * 
*/ def shouldBe(right: EmptyWord)(implicit emptiness: Emptiness[T]) { if (!emptiness.isEmpty(leftSideValue)) throw newTestFailedException(FailureMessages("wasNotEmpty", leftSideValue)) } /** * This method enables syntax such as the following: * *
     * result shouldBe defined
     *        ^
     * 
*/ def shouldBe(right: DefinedWord)(implicit definition: Definition[T]) { if (!definition.isDefined(leftSideValue)) throw newTestFailedException(FailureMessages("wasNotDefined", leftSideValue)) } /** * This method enables syntax such as the following: * *
     * result shouldNot be (3)
     *        ^
     * 
*/ def shouldNot(beWord: BeWord): ResultOfBeWordForAny[T] = new ResultOfBeWordForAny(leftSideValue, false) /** * This method enables syntax such as the following: * *
     * result shouldNot (be (3))
     *        ^
     * 
*/ def shouldNot(rightMatcherX1: Matcher[T]) { ShouldMethodHelper.shouldNotMatcher(leftSideValue, rightMatcherX1) } /** * This method enables syntax such as the following: * *
     * result shouldNot (be readable)
     *        ^
     * 
*/ def shouldNot[TYPECLASS1[_]](rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]) { ShouldMethodHelper.shouldNotMatcher(leftSideValue, rightMatcherFactory1.matcher) } /** * This method enables syntax such as the following: * *
     * result shouldNot have length (3)
     *        ^
     * result shouldNot have size (3)
     *        ^
     * exception shouldNot have message ("file not found")
     *           ^
     * 
*/ def shouldNot(haveWord: HaveWord): ResultOfHaveWordForExtent[T] = new ResultOfHaveWordForExtent(leftSideValue, false) /** * This method enables syntax such as the following: * *
     * result should have length (3)
     *        ^
     * result should have size (3)
     *        ^
     * 
*/ def should(haveWord: HaveWord): ResultOfHaveWordForExtent[T] = new ResultOfHaveWordForExtent(leftSideValue, true) /** * This method enables syntax such as the following: * *
     * result shouldBe null
     *        ^
     * 
*/ def shouldBe(right: Null)(implicit ev: T <:< AnyRef) { if (leftSideValue != null) { throw newTestFailedException(FailureMessages("wasNotNull", leftSideValue)) } } /** * This method enables syntax such as the following: * *
     * result shouldBe theSameInstanceAs (anotherObject)
     *        ^
     * 
*/ def shouldBe(resultOfSameInstanceAsApplication: ResultOfTheSameInstanceAsApplication)(implicit toAnyRef: T <:< AnyRef) { if (resultOfSameInstanceAsApplication.right ne toAnyRef(leftSideValue)) { throw newTestFailedException( FailureMessages( "wasNotSameInstanceAs", leftSideValue, resultOfSameInstanceAsApplication.right ) ) } } // TODO: Remember to write tests for inspector shorthands uncovering the bug below, always a empty because always true true passed to matchSym /** * This method enables the following syntax: * *
     * list shouldBe 'empty
     *      ^
     * 
*/ def shouldBe(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef) { val matcherResult = matchSymbolToPredicateMethod(toAnyRef(leftSideValue), symbol, false, true) if (!matcherResult.matches) throw newTestFailedException(matcherResult.failureMessage) } /** * This method enables the following syntax: * *
     * list shouldBe a ('empty)
     *      ^
     * 
*/ def shouldBe(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef) { val matcherResult = matchSymbolToPredicateMethod(toAnyRef(leftSideValue), resultOfAWordApplication.symbol, true, true) if (!matcherResult.matches) { throw newTestFailedException( matcherResult.failureMessage ) } } /** * This method enables the following syntax: * *
     * list shouldBe an ('empty)
     *      ^
     * 
*/ def shouldBe(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef) { val matcherResult = matchSymbolToPredicateMethod(toAnyRef(leftSideValue), resultOfAnWordApplication.symbol, true, false) if (!matcherResult.matches) { throw newTestFailedException( matcherResult.failureMessage ) } } /** * This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]: * *
     * programmingInScala shouldBe excellentRead
     *                    ^
     * 
*/ def shouldBe(bePropertyMatcher: BePropertyMatcher[T])(implicit ev: T <:< AnyRef) { // TODO: Try expanding this to 2.10 AnyVal val result = bePropertyMatcher(leftSideValue) if (!result.matches) throw newTestFailedException(FailureMessages("wasNot", leftSideValue, UnquotedString(result.propertyName))) } /** * This method enables the following syntax, where goodRead refers to a BePropertyMatcher[Book]: * *
     * programmingInScala shouldBe a (goodRead)
     *                    ^
     * 
*/ def shouldBe[U >: T](resultOfAWordApplication: ResultOfAWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try expanding this to 2.10 AnyVal val result = resultOfAWordApplication.bePropertyMatcher(leftSideValue) if (!result.matches) { throw newTestFailedException(FailureMessages("wasNotA", leftSideValue, UnquotedString(result.propertyName))) } } /** * This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]: * *
     * programmingInScala shouldBe an (excellentRead)
     *                    ^
     * 
*/ def shouldBe[U >: T](resultOfAnWordApplication: ResultOfAnWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try expanding this to 2.10 AnyVal val result = resultOfAnWordApplication.bePropertyMatcher(leftSideValue) if (!result.matches) { throw newTestFailedException(FailureMessages("wasNotAn", leftSideValue, UnquotedString(result.propertyName))) } } /* def shouldBe[U](right: AType[U]) { if (!right.isAssignableFromClassOf(leftSideValue)) { throw newTestFailedException(FailureMessages("wasNotAnInstanceOf", leftSideValue, UnquotedString(right.className))) } } */ /** * This method enables syntax such as the following: * *
     * xs should contain oneOf (1, 2, 3)
     *    ^
     * 
*/ def should(containWord: ContainWord): ResultOfContainWord[T] = { new ResultOfContainWord(leftSideValue, true) } /** * This method enables syntax such as the following: * *
     * xs shouldNot contain (oneOf (1, 2, 3))
     *    ^
     * 
*/ def shouldNot(contain: ContainWord): ResultOfContainWord[T] = new ResultOfContainWord(leftSideValue, false) /** * This method enables syntax such as the following: * *
     * file should exist
     *      ^
     * 
*/ def should(existWord: ExistWord)(implicit existence: Existence[T]) { if (!existence.exists(leftSideValue)) throw newTestFailedException(FailureMessages("doesNotExist", leftSideValue)) } /** * This method enables syntax such as the following: * *
     * file should not (exist)
     *      ^
     * 
*/ def should(notExist: ResultOfNotExist)(implicit existence: Existence[T]) { if (existence.exists(leftSideValue)) throw newTestFailedException(FailureMessages("exists", leftSideValue)) } /** * This method enables syntax such as the following: * *
     * file shouldNot exist
     *      ^
     * 
*/ def shouldNot(existWord: ExistWord)(implicit existence: Existence[T]) { if (existence.exists(leftSideValue)) throw newTestFailedException(FailureMessages("exists", leftSideValue)) } // From StringShouldWrapper /** * This method enables syntax such as the following: * *
     * string should include regex ("hi")
     *        ^
     * 
*/ def should(includeWord: IncludeWord)(implicit ev: T <:< String): ResultOfIncludeWordForString = { new ResultOfIncludeWordForString(leftSideValue, true) } /** * This method enables syntax such as the following: * *
     * string should startWith regex ("hello")
     *        ^
     * 
*/ def should(startWithWord: StartWithWord)(implicit ev: T <:< String): ResultOfStartWithWordForString = { new ResultOfStartWithWordForString(leftSideValue, true) } /** * This method enables syntax such as the following: * *
     * string should endWith regex ("world")
     *        ^
     * 
*/ def should(endWithWord: EndWithWord)(implicit ev: T <:< String): ResultOfEndWithWordForString = { new ResultOfEndWithWordForString(leftSideValue, true) } /** * This method enables syntax such as the following: * *
     * string shouldNot startWith regex ("hello")
     *        ^
     * 
*/ def shouldNot(startWithWord: StartWithWord)(implicit ev: T <:< String): ResultOfStartWithWordForString = new ResultOfStartWithWordForString(leftSideValue, false) /** * This method enables syntax such as the following: * *
     * string shouldNot endWith regex ("world")
     *        ^
     * 
*/ def shouldNot(endWithWord: EndWithWord)(implicit ev: T <:< String): ResultOfEndWithWordForString = new ResultOfEndWithWordForString(leftSideValue, false) /** * This method enables syntax such as the following: * *
     * string shouldNot include regex ("hi")
     *        ^
     * 
*/ def shouldNot(includeWord: IncludeWord)(implicit ev: T <:< String): ResultOfIncludeWordForString = new ResultOfIncludeWordForString(leftSideValue, false) } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * *

* This class is used in conjunction with an implicit conversion to enable should methods to * be invoked on Strings. *

* * @author Bill Venners */ final class StringShouldWrapper(val leftSideString: String) extends AnyShouldWrapper(leftSideString) with StringShouldWrapperForVerb { /** * This method enables syntax such as the following: * *
     * string should fullyMatch regex ("a(b*)c" withGroup "bb") 
     *                                          ^
     * 
*/ def withGroup(group: String) = new RegexWithGroups(leftSideString.r, IndexedSeq(group)) /** * This method enables syntax such as the following: * *
     * string should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
     *                                             ^
     * 
*/ def withGroups(groups: String*) = new RegexWithGroups(leftSideString.r, IndexedSeq(groups: _*)) /** * This method enables syntax such as the following: * *
     * string should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *        ^
     * 
*/ def should(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString = { new ResultOfFullyMatchWordForString(leftSideString, true) } /** * This method enables syntax such as the following: * *
     * string shouldNot fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *        ^
     * 
*/ def shouldNot(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString = new ResultOfFullyMatchWordForString(leftSideString, false) /** * This method enables syntax such as the following: * *
     * string shouldNot compile
     *        ^
     * 
*/ def shouldNot(compileWord: CompileWord): Unit = macro CompileMacro.shouldNotCompileImpl /* /** * This method enables syntax such as the following: * *
     * string should include regex ("hi")
     *        ^
     * 
*/ def should(includeWord: IncludeWord): ResultOfIncludeWordForString = { new ResultOfIncludeWordForString(leftSideString, true) } /** * This method enables syntax such as the following: * *
     * string should startWith regex ("hello")
     *        ^
     * 
*/ def should(startWithWord: StartWithWord): ResultOfStartWithWordForString = { new ResultOfStartWithWordForString(leftSideString, true) } /** * This method enables syntax such as the following: * *
     * string should endWith regex ("world")
     *        ^
     * 
*/ def should(endWithWord: EndWithWord): ResultOfEndWithWordForString = { new ResultOfEndWithWordForString(leftSideString, true) } /** * This method enables syntax such as the following: * *
     * string should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *        ^
     * 
*/ def should(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString = { new ResultOfFullyMatchWordForString(leftSideString, true) } /** * This method enables syntax such as the following: * *
     * string should not have length (3)
     *        ^
     * 
*/ override def should(notWord: NotWord): ResultOfNotWordForString = { new ResultOfNotWordForString(leftSideString, false) } /** * This method enables syntax such as the following: * *
     * string should fullyMatch regex ("a(b*)c" withGroup "bb") 
     *                                          ^
     * 
*/ def withGroup(group: String) = new RegexWithGroups(leftSideString.r, IndexedSeq(group)) /** * This method enables syntax such as the following: * *
     * string should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
     *                                             ^
     * 
*/ def withGroups(groups: String*) = new RegexWithGroups(leftSideString.r, IndexedSeq(groups: _*)) /** * This method enables syntax such as the following: * *
     * string shouldNot fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
     *        ^
     * 
*/ def shouldNot(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString = new ResultOfFullyMatchWordForString(leftSideString, false) /** * This method enables syntax such as the following: * *
     * string shouldNot startWith regex ("hello")
     *        ^
     * 
*/ def shouldNot(startWithWord: StartWithWord): ResultOfStartWithWordForString = new ResultOfStartWithWordForString(leftSideString, false) /** * This method enables syntax such as the following: * *
     * string shouldNot endWith regex ("world")
     *        ^
     * 
*/ def shouldNot(endWithWord: EndWithWord): ResultOfEndWithWordForString = new ResultOfEndWithWordForString(leftSideString, false) /** * This method enables syntax such as the following: * *
     * string shouldNot include regex ("hi")
     *        ^
     * 
*/ def shouldNot(includeWord: IncludeWord): ResultOfIncludeWordForString = new ResultOfIncludeWordForString(leftSideString, false) */ } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of * the matchers DSL. * *

* This class is used in conjunction with an implicit conversion to enable withGroup and withGroups methods to * be invoked on Regexs. *

* * @author Bill Venners */ final class RegexWrapper(regex: Regex) { /** * This method enables syntax such as the following: * *
     * regex should fullyMatch regex ("a(b*)c" withGroup "bb") 
     *                                         ^
     * 
*/ def withGroup(group: String) = new RegexWithGroups(regex, IndexedSeq(group)) /** * This method enables syntax such as the following: * *
     * regex should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
     *                                            ^
     * 
*/ def withGroups(groups: String*) = new RegexWithGroups(regex, IndexedSeq(groups: _*)) } /** * Implicitly converts an object of type T to a AnyShouldWrapper[T], * to enable should methods to be invokable on that object. */ implicit def convertToAnyShouldWrapper[T](o: T): AnyShouldWrapper[T] = new AnyShouldWrapper(o) /** * Implicitly converts an object of type java.lang.String to a StringShouldWrapper, * to enable should methods to be invokable on that object. */ implicit override def convertToStringShouldWrapper(o: String): StringShouldWrapper = new StringShouldWrapper(o) /** * Implicitly converts an object of type scala.util.matching.Regex to a RegexWrapper, * to enable withGroup and withGroups methods to be invokable on that object. */ implicit def convertToRegexWrapper(o: Regex): RegexWrapper = new RegexWrapper(o) /** * This method enables syntax such as the following: * *
   * book should have (message ("A TALE OF TWO CITIES") (of [Book]), title ("A Tale of Two Cities"))
   *                                                     ^
   * 
*/ def of[T](implicit ev: Manifest[T]): ResultOfOfTypeInvocation[T] = new ResultOfOfTypeInvocation[T] } /** * Companion object that facilitates the importing of Matchers members as an alternative to mixing it the trait. One use case is to import Matchers members so you can use * them in the Scala interpreter. * * @author Bill Venners */ object Matchers extends Matchers




© 2015 - 2024 Weber Informatics LLC | Privacy Policy