All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scalatest.refspec.RefSpec.scala Maven / Gradle / Ivy

/*
 * Copyright 2001-2013 Artima, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.scalatest.refspec

import scala.collection.immutable.ListSet
import org.scalatest.{Suite, Finders, Resources}
import Suite._
import RefSpec.isTestMethod
import RefSpec.equalIfRequiredCompactify
import org.scalatest.events._
import scala.reflect.NameTransformer._
import java.lang.reflect.{Method, Modifier, InvocationTargetException}

/**
 * Facilitates a “behavior-driven” style of development (BDD), in which tests
 * are methods, optionally nested inside singleton objects defining textual scopes.
 *
 * 
* Recommended Usage: * Class RefSpec allows you to define tests as methods, which saves one function literal per test compared to style classes that represent tests as functions. * Fewer function literals translates into faster compile times and fewer generated class files, which can help minimize build times. * As a result, using RefSpec can be a good choice in large projects where build times are a concern as well as when generating large numbers of * tests programatically via static code generators. *
* *

* Here's an example RefSpec: *

* *
 * package org.scalatest.examples.spec
 * 
 * import org.scalatest.RefSpec
 * 
 * class SetSpec extends RefSpec {
 * 
 *   object `A Set` {
 *     object `when empty` {
 *       def `should have size 0` {
 *         assert(Set.empty.size === 0)
 *       }
 *     
 *       def `should produce NoSuchElementException when head is invoked` {
 *         assertThrows[NoSuchElementException] {
 *           Set.empty.head
 *         }
 *       }
 *     }
 *   }
 * }
 * 
* *

* A RefSpec can contain scopes and tests. You define a scope * with a nested singleton object, and a test with a method. The names of both scope objects and test methods * must be expressed in back ticks and contain at least one space character. *

* *

* A space placed in backticks is encoded by the Scala compiler as $u0020, as * illustrated here: *

* *
 * scala> def `an example` = ()
 * an$u0020example: Unit
 * 
* *

* RefSpec uses reflection to discover scope objects and test methods. * During discovery, RefSpec will consider any nested singleton object whose name * includes $u0020 a scope object, and any method whose name includes $u0020 a test method. * It will ignore any singleton objects or methods that do not include a $u0020 character. Thus, RefSpec would * not consider the following singleton object a scope object: *

* *
 * object `Set` { // Not discovered, because no space character
 * }
 * 
* *

* You can make such a scope discoverable by placing a space at the end, like this: *

* *
 * object `Set ` { // Discovered, because of the trailing space character
 * }
 * 
* *

* Rather than performing this discovery during construction, when instance variables used by scope objects may as yet be uninitialized, * RefSpec performs discovery lazily, the first time a method needing the results of discovery is invoked. * For example, methods run, runTests, tags, expectedTestCount, * runTest, and testNames all ensure that scopes and tests have already been discovered prior to doing anything * else. Discovery is performed, and the results recorded, only once for each RefSpec instance. *

* *

* A scope names, or gives more information about, the subject (class or other entity) you are specifying * and testing. In the previous example, `A Set` * is the subject under specification and test. With each test name you provide a string (the test text) that specifies * one bit of behavior of the subject, and a block of code (the body of the test method) that verifies that behavior. *

* *

* When you execute a RefSpec, it will send Formatters in the events it sends to the * Reporter. ScalaTest's built-in reporters will report these events in such a way * that the output is easy to read as an informal specification of the subject being tested. * For example, were you to run SetSpec from within the Scala interpreter: *

* *
 * scala> new SetSpec execute
 * 
* *

* You would see: *

* *
 * A Set
 *   when empty
 *   - should have size 0
 *   - should produce NoSuchElementException when head is invoked
 * 
* *

* Or, to run just the test named A Set when empty should have size 0, you could pass that test's name, or any unique substring of the * name, such as "size 0" or even just "0". Here's an example: *

* *
 * scala> new SetSuite execute "size 0"
 * A Set
 *   when empty
 *   - should have size 0
 * 
* *

* You can also pass to execute a config map of key-value * pairs, which will be passed down into suites and tests, as well as other parameters that configure the run itself. * For more information on running in the Scala interpreter, see the documentation for the * ScalaTest shell. *

* *

* The execute method invokes a run method that takes two * parameters. This run method, which actually executes the suite, will usually be invoked by a test runner, such * as run, tools.Runner, a build tool, or an IDE. *

* *

* The test methods shown in this example are parameterless. This is recommended even for test methods with obvious side effects. In production code * you would normally declare no-arg, side-effecting methods as empty-paren methods, and call them with * empty parentheses, to make it more obvious to readers of the code that they have a side effect. Whether or not a test method has * a side effect, however, is a less important distinction than it is for methods in production code. Moreover, test methods are not * normally invoked directly by client code, but rather through reflection by running the Suite that contains them, so a * lack of parentheses on an invocation of a side-effecting test method would not normally appear in any client code. Given the empty * parentheses do not add much value in the test methods case, the recommended style is to simply always leave them off. *

* *

* Note: The approach of using backticks around test method names to make it easier to write descriptive test names was * inspired by the SimpleSpec test framework, originally created by Coda Hale. *

* *

Ignored tests

* *

* To support the common use case of temporarily disabling a test in a RefSpec, with the * good intention of resurrecting the test at a later time, you can annotate the test method with @Ignore. * For example, to temporarily disable the test method with the name `should have size zero", just annotate * it with @Ignore, like this: *

* *
 * package org.scalatest.examples.spec.ignore
 * 
 * import org.scalatest._
 * 
 * class SetSpec extends RefSpec {
 *   
 *   object `A Set` {
 *     object `when empty` {
 *       @Ignore def `should have size 0` {
 *         assert(Set.empty.size === 0)
 *       }
 *       
 *       def `should produce NoSuchElementException when head is invoked` {
 *         assertThrows[NoSuchElementException] {
 *           Set.empty.head
 *         }
 *       }
 *     }
 *   }
 * }
 * 
* *

* If you run this version of SetSpec with: *

* *
 * scala> new SetSpec execute
 * 
* *

* It will run only the second test and report that the first test was ignored: *

* *
 * A Set
 *   when empty
 *   - should have size 0 !!! IGNORED !!!
 *   - should produce NoSuchElementException when head is invoked
 * 
* *

* If you wish to temporarily ignore an entire suite of tests, you can annotate the test class with @Ignore, like this: *

* *
 * package org.scalatest.examples.spec.ignoreall
 * 
 * import org.scalatest._
 *
 * @Ignore
 * class SetSpec extends RefSpec {
 *   
 *   object `A Set` {
 *     object `when empty` {
 *       def `should have size 0` {
 *         assert(Set.empty.size === 0)
 *       }
 *       
 *       def `should produce NoSuchElementException when head is invoked` {
 *         assertThrows[NoSuchElementException] {
 *           Set.empty.head
 *         }
 *       }
 *     }
 *   }
 * }
 * 
* *

* When you mark a test class with a tag annotation, ScalaTest will mark each test defined in that class with that tag. * Thus, marking the SetSpec in the above example with the @Ignore tag annotation means that both tests * in the class will be ignored. If you run the above SetSpec in the Scala interpreter, you'll see: *

* *
 * scala> new SetSpec execute
 * SetSpec:
 * A Set
 *   when empty
 *   - should have size 0 !!! IGNORED !!!
 *   - should produce NoSuchElementException when head is invoked !!! IGNORED !!!
 * 
* *

* Note that marking a test class as ignored won't prevent it from being discovered by ScalaTest. Ignored classes * will be discovered and run, and all their tests will be reported as ignored. This is intended to keep the ignored * class visible, to encourage the developers to eventually fix and “un-ignore” it. If you want to * prevent a class from being discovered at all, use the DoNotDiscover annotation instead. *

* * *

Informers

* *

* One of the objects to RefSpec's run method is a Reporter, which * will collect and report information about the running suite of tests. * Information about suites and tests that were run, whether tests succeeded or failed, * and tests that were ignored will be passed to the Reporter as the suite runs. * Most often the reporting done by default by RefSpec's methods will be sufficient, but * occasionally you may wish to provide custom information to the Reporter from a test. * For this purpose, an Informer that will forward information to the current Reporter * is provided via the info parameterless method. * You can pass the extra information to the Informer via one of its apply methods. * The Informer will then pass the information to the Reporter via an InfoProvided event. * Here's an example in which the Informer returned by info is used implicitly by the * Given, When, and Then methods of trait GivenWhenThen: *

* *
 * package org.scalatest.examples.spec.info
 * 
 * import collection.mutable
 * import org.scalatest._
 * 
 * class SetSpec extends RefSpec with GivenWhenThen {
 *   
 *   object `A mutable Set` {
 *     def `should allow an element to be added` {
 *       Given("an empty mutable Set")
 *       val set = mutable.Set.empty[String]
 * 
 *       When("an element is added")
 *       set += "clarity"
 * 
 *       Then("the Set should have size 1")
 *       assert(set.size === 1)
 * 
 *       And("the Set should contain the added element")
 *       assert(set.contains("clarity"))
 * 
 *       info("That's all folks!")
 *     }
 *   }
 * }
 * 
* * If you run this RefSpec from the interpreter, you will see the following output: * *
 * scala> new SetSpec execute
 * A mutable Set
 * - should allow an element to be added
 *   + Given an empty mutable Set 
 *   + When an element is added 
 *   + Then the Set should have size 1 
 *   + And the Set should contain the added element 
 *   + That's all folks!  
 * 
* *

Documenters

* *

* RefSpec also provides a markup method that returns a Documenter, which allows you to send * to the Reporter text formatted in Markdown syntax. * You can pass the extra information to the Documenter via its apply method. * The Documenter will then pass the information to the Reporter via an MarkupProvided event. *

* *

* Here's an example RefSpec that uses markup: *

* *
 * package org.scalatest.examples.spec.markup
 *
 * import collection.mutable
 * import org.scalatest._
 *
 * class SetSpec extends RefSpec with GivenWhenThen {
 *
 *   markup { """
 *
 * Mutable Set
 * -----------
 *
 * A set is a collection that contains no duplicate elements.
 *
 * To implement a concrete mutable set, you need to provide implementations
 * of the following methods:
 *
 *     def contains(elem: A): Boolean
 *     def iterator: Iterator[A]
 *     def += (elem: A): this.type
 *     def -= (elem: A): this.type
 *
 * If you wish that methods like `take`,
 * `drop`, `filter` return the same kind of set,
 * you should also override:
 *
 *     def empty: This
 *
 * It is also good idea to override methods `foreach` and
 * `size` for efficiency.
 *
 *   """ }
 *
 *   object `A mutable Set` {
 *     def `should allow an element to be added` {
 *       Given("an empty mutable Set")
 *       val set = mutable.Set.empty[String]
 *
 *       When("an element is added")
 *       set += "clarity"
 *
 *       Then("the Set should have size 1")
 *       assert(set.size === 1)
 *
 *       And("the Set should contain the added element")
 *       assert(set.contains("clarity"))
 *
 *       markup("This test finished with a **bold** statement!")
 *     }
 *   }
 * }
 * 
* *

* Although all of ScalaTest's built-in reporters will display the markup text in some form, * the HTML reporter will format the markup information into HTML. Thus, the main purpose of markup is to * add nicely formatted text to HTML reports. Here's what the above SetSpec would look like in the HTML reporter: *

* * * *

Notifiers and alerters

* *

* ScalaTest records text passed to info and markup during tests, and sends the recorded text in the recordedEvents field of * test completion events like TestSucceeded and TestFailed. This allows string reporters (like the standard out reporter) to show * info and markup text after the test name in a color determined by the outcome of the test. For example, if the test fails, string * reporters will show the info and markup text in red. If a test succeeds, string reporters will show the info * and markup text in green. While this approach helps the readability of reports, it means that you can't use info to get status * updates from long running tests. *

* *

* To get immediate (i.e., non-recorded) notifications from tests, you can use note (a Notifier) and alert * (an Alerter). Here's an example showing the differences: *

* *
 * package org.scalatest.examples.spec.note
 *
 * import collection.mutable
 * import org.scalatest._
 *
 * class SetSpec extends RefSpec {
 *
 *   object `A mutable Set` {
 *     def `should allow an element to be added` {
 *
 *       info("info is recorded")
 *       markup("markup is *also* recorded")
 *       note("notes are sent immediately")
 *       alert("alerts are also sent immediately")
 *
 *       val set = mutable.Set.empty[String]
 *       set += "clarity"
 *       assert(set.size === 1)
 *       assert(set.contains("clarity"))
 *     }
 *   }
 * }
 * 
* *

* Because note and alert information is sent immediately, it will appear before the test name in string reporters, and its color will * be unrelated to the ultimate outcome of the test: note text will always appear in green, alert text will always appear in yellow. * Here's an example: *

* *
 * scala> new SetSpec execute
 * SetSpec:
 * A mutable Set
 *   + notes are sent immediately
 *   + alerts are also sent immediately
 * - should allow an element to be added
 *   + info is recorded
 *   + markup is *also* recorded
 * 
* *

* In summary, use info and markup for text that should form part of the specification output. Use * note and alert to send status notifications. (Because the HTML reporter is intended to produce a * readable, printable specification, info and markup text will appear in the HTML report, but * note and alert text will not.) *

* *

Pending tests

* *

* A pending test is one that has been given a name but is not yet implemented. The purpose of * pending tests is to facilitate a style of testing in which documentation of behavior is sketched * out before tests are written to verify that behavior (and often, before the behavior of * the system being tested is itself implemented). Such sketches form a kind of specification of * what tests and functionality to implement later. *

* *

* To support this style of testing, a test can be given a name that specifies one * bit of behavior required by the system being tested. The test can also include some code that * sends more information about the behavior to the reporter when the tests run. At the end of the test, * it can call method pending, which will cause it to complete abruptly with TestPendingException. *

* *

* Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information * sent to the reporter when running the test can appear in the report of a test run. * (The code of a pending test is executed just like any other test.) However, because the test completes abruptly * with TestPendingException, the test will be reported as pending, to indicate * the actual test, and possibly the functionality, has not yet been implemented. *

* *

* You can mark a test as pending in RefSpec by using "{ pending }" as the body of the test method, * like this: *

* *
 * package org.scalatest.examples.spec.pending
 * 
 * import org.scalatest._
 * 
 * class SetSpec extends RefSpec {
 * 
 *   object `A Set` {
 *     object `when empty` {
 *       def `should have size 0` { pending }
 *       
 *       def `should produce NoSuchElementException when head is invoked` {
 *         assertThrows[NoSuchElementException] {
 *           Set.empty.head
 *         }
 *       }
 *     }
 *   }
 * }
 * 
* *

* (Note: “pending” is the body of the test. Thus the test contains just one statement, an invocation * of the pending method, which throws TestPendingException.) * If you run this version of SetSpec with: *

* *
 * scala> new SetSpec execute
 * 
* *

* It will run both tests, but report that test "should have size 0" is pending. You'll see: *

* *
 * A Set
 *   when empty
 *   - should have size 0 (pending)
 *   - should produce NoSuchElementException when head is invoked
 * 
* *

Tagging tests

* *

* A RefSpec's tests may be classified into groups by tagging them with string names. When executing * a RefSpec, groups of tests can optionally be included and/or excluded. In this * trait's implementation, tags are indicated by annotations attached to the test method. To * create a new tag type to use in RefSpecs, simply define a new Java annotation that itself is annotated with * the org.scalatest.TagAnnotation annotation. * (Currently, for annotations to be * visible in Scala programs via Java reflection, the annotations themselves must be written in Java.) For example, * to create tags named SlowTest and DbTest, you would * write in Java: *

* *
 * package org.scalatest.examples.spec.tagging;
 * import java.lang.annotation.*; 
 * import org.scalatest.TagAnnotation;
 * 
 * @TagAnnotation
 * @Retention(RetentionPolicy.RUNTIME)
 * @Target({ElementType.METHOD, ElementType.TYPE})
 * public @interface SlowTest {}
 * 
 * @TagAnnotation
 * @Retention(RetentionPolicy.RUNTIME)
 * @Target({ElementType.METHOD, ElementType.TYPE})
 * public @interface DbTest {}
 * 
* *

* Given these annotations, you could tag RefSpec tests like this: *

* *
 * package org.scalatest.examples.spec.tagging
 * 
 * import org.scalatest.RefSpec
 * 
 * class SetSpec extends RefSpec {
 * 
 *   object `A Set` {
 *     object `when empty` {

 *       @SlowTest
 *       def `should have size 0` {
 *         assert(Set.empty.size === 0)
 *       }
 *       
 *       @SlowTest @DbTest
 *       def `should produce NoSuchElementException when head is invoked` {
 *         assertThrows[NoSuchElementException] {
 *           Set.empty.head
 *         }
 *       }
 *     }
 *   }
 * }
 * 
* *

* The run method takes a Filter, whose constructor takes an optional * Set[String] called tagsToInclude and a Set[String] called * tagsToExclude. If tagsToInclude is None, all tests will be run * except those those with tags listed in the * tagsToExclude Set. If tagsToInclude is defined, only tests * with tags mentioned in the tagsToInclude set, and not mentioned in tagsToExclude, * will be run. *

* *

* A tag annotation also allows you to tag all the tests of a RefSpec in * one stroke by annotating the class. For more information and examples, see the * documentation for class Tag. *

* * *

Shared fixtures

* *

* A test fixture is composed of the objects and other artifacts (files, sockets, database * connections, etc.) tests use to do their work. * When multiple tests need to work with the same fixtures, it is important to try and avoid * duplicating the fixture code across those tests. The more code duplication you have in your * tests, the greater drag the tests will have on refactoring the actual production code. *

* *

* ScalaTest recommends three techniques to eliminate such code duplication: *

* *
    *
  • Refactor using Scala
  • *
  • Override withFixture
  • *
  • Mix in a before-and-after trait
  • *
* *

Each technique is geared towards helping you reduce code duplication without introducing * instance vars, shared mutable objects, or other dependencies between tests. Eliminating shared * mutable state across tests will make your test code easier to reason about and more amenable for parallel * test execution.

The following sections * describe these techniques, including explaining the recommended usage * for each. But first, here's a table summarizing the options:

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Refactor using Scala when different tests need different fixtures. *
* get-fixture methods * * The extract method refactor helps you create a fresh instances of mutable fixture objects in each test * that needs them, but doesn't help you clean them up when you're done. *
* fixture-context objects * * By placing fixture methods and fields into traits, you can easily give each test just the newly created * fixtures it needs by mixing together traits. Use this technique when you need different combinations * of mutable fixture objects in different tests, and don't need to clean up after. *
* loan-fixture methods * * Factor out dupicate code with the loan pattern when different tests need different fixtures that must be cleaned up afterwards. *
* Override withFixture when most or all tests need the same fixture. *
* * withFixture(NoArgTest) * *

* The recommended default approach when most or all tests need the same fixture treatment. This general technique * allows you, for example, to perform side effects at the beginning and end of all or most tests, * transform the outcome of tests, retry tests, make decisions based on test names, tags, or other test data. * Use this technique unless: *

*
    *
  • Different tests need different fixtures (refactor using Scala instead)
  • *
  • An exception in fixture code should abort the suite, not fail the test (use a before-and-after trait instead)
  • *
  • You have objects to pass into tests (override withFixture(OneArgTest) instead)
  • *
*
* * withFixture(OneArgTest) * * * Use when you want to pass the same fixture object or objects as a parameter into all or most tests. *
* Mix in a before-and-after trait when you want an aborted suite, not a failed test, if the fixture code fails. *
* BeforeAndAfter * * Use this boilerplate-buster when you need to perform the same side-effects before and/or after tests, rather than at the beginning or end of tests. *
* BeforeAndAfterEach * * Use when you want to stack traits that perform the same side-effects before and/or after tests, rather than at the beginning or end of tests. *
* * *

Calling get-fixture methods

* *

* If you need to create the same mutable fixture objects in multiple tests, and don't need to clean them up after using them, the simplest approach is to write one or * more get-fixture methods. A get-fixture method returns a new instance of a needed fixture object (or a holder object containing * multiple fixture objects) each time it is called. You can call a get-fixture method at the beginning of each * test that needs the fixture, storing the returned object or objects in local variables. Here's an example: *

* *
 * package org.scalatest.examples.spec.getfixture
 * 
 * import org.scalatest.RefSpec
 * import collection.mutable.ListBuffer
 * 
 * class ExampleSpec extends RefSpec {
 * 
 *   class Fixture {
 *     val builder = new StringBuilder("ScalaTest is ")
 *     val buffer = new ListBuffer[String]
 *   }
 *   
 *   def fixture = new Fixture
 *   
 *   object `Testing ` {
 *     def `should be easy` {
 *       val f = fixture
 *       f.builder.append("easy!")
 *       assert(f.builder.toString === "ScalaTest is easy!")
 *       assert(f.buffer.isEmpty)
 *       f.buffer += "sweet"
 *     }
 *   
 *     def `should be fun` {
 *       val f = fixture
 *       f.builder.append("fun!")
 *       assert(f.builder.toString === "ScalaTest is fun!")
 *       assert(f.buffer.isEmpty)
 *     }
 *   }
 * }
 * 
* *

* The “f.” in front of each use of a fixture object provides a visual indication of which objects * are part of the fixture, but if you prefer, you can import the the members with “import f._” and use the names directly. *

* *

* If you need to configure fixture objects differently in different tests, you can pass configuration into the get-fixture method. For example, you could pass * in an initial value for a mutable fixture object as a parameter to the get-fixture method. *

* * *

Instantiating fixture-context objects

* *

* An alternate technique that is especially useful when different tests need different combinations of fixture objects is to define the fixture objects as instance variables * of fixture-context objects whose instantiation forms the body of tests. Like get-fixture methods, fixture-context objects are only * appropriate if you don't need to clean up the fixtures after using them. *

* * To use this technique, you define instance variables intialized with fixture objects in traits and/or classes, then in each test instantiate an object that * contains just the fixture objects needed by the test. Traits allow you to mix together just the fixture objects needed by each test, whereas classes * allow you to pass data in via a constructor to configure the fixture objects. Here's an example in which fixture objects are partitioned into two traits * and each test just mixes together the traits it needs: *

* *
 * package org.scalatest.examples.spec.fixturecontext
 * 
 * import collection.mutable.ListBuffer
 * import org.scalatest.RefSpec
 * 
 * class ExampleSpec extends RefSpec {
 * 
 *   trait Builder {
 *     val builder = new StringBuilder("ScalaTest is ")
 *   }
 * 
 *   trait Buffer {
 *     val buffer = ListBuffer("ScalaTest", "is")
 *   }
 * 
 *   object `Testing ` {
 *     // This test needs the StringBuilder fixture
 *     def `should be productive` {
 *       new Builder {
 *         builder.append("productive!")
 *         assert(builder.toString === "ScalaTest is productive!")
 *       }
 *     }
 *   }
 * 
 *   object `Test code` {
 *     // This test needs the ListBuffer[String] fixture
 *     def `should be readable` {
 *       new Buffer {
 *         buffer += ("readable!")
 *         assert(buffer === List("ScalaTest", "is", "readable!"))
 *       }
 *     }
 * 
 *     // This test needs both the StringBuilder and ListBuffer
 *     def `should be clear and concise` {
 *       new Builder with Buffer {
 *         builder.append("clear!")
 *         buffer += ("concise!")
 *         assert(builder.toString === "ScalaTest is clear!")
 *         assert(buffer === List("ScalaTest", "is", "concise!"))
 *       }
 *     }
 *   }
 * }
 * 
* * *

Overriding withFixture(NoArgTest)

* *

* Although the get-fixture method and fixture-context object approaches take care of setting up a fixture at the beginning of each * test, they don't address the problem of cleaning up a fixture at the end of the test. If you just need to perform a side-effect at the beginning or end of * a test, and don't need to actually pass any fixture objects into the test, you can override withFixture(NoArgTest), one of ScalaTest's * lifecycle methods defined in trait Suite. *

* *

* Trait Suite's implementation of runTest passes a no-arg test function to withFixture(NoArgTest). It is withFixture's * responsibility to invoke that test function. Suite's implementation of withFixture simply * invokes the function, like this: *

* *
 * // Default implementation in trait Suite
 * protected def withFixture(test: NoArgTest) = {
 *   test()
 * }
 * 
* *

* You can, therefore, override withFixture to perform setup before and/or cleanup after invoking the test function. If * you have cleanup to perform, you should invoke the test function inside a try block and perform the cleanup in * a finally clause, in case an exception propagates back through withFixture. (If a test fails because of an exception, * the test function invoked by withFixture will result in a [[org.scalatest.Failed Failed]] wrapping the exception. Nevertheless, * best practice is to perform cleanup in a finally clause just in case an exception occurs.) *

* *

* The withFixture method is designed to be stacked, and to enable this, you should always call the super implementation * of withFixture, and let it invoke the test function rather than invoking the test function directly. In other words, instead of writing * “test()”, you should write “super.withFixture(test)”, like this: *

* *
 * // Your implementation
 * override def withFixture(test: NoArgTest) = {
 *   // Perform setup
 *   try super.withFixture(test) // Invoke the test function
 *   finally {
 *     // Perform cleanup
 *   }
 * }
 * 
* *

* Here's an example in which withFixture(NoArgTest) is used to take a snapshot of the working directory if a test fails, and * and send that information to the reporter: *

* *
 * package org.scalatest.examples.spec.noargtest
 * 
 * import java.io.File
 * import org.scalatest._
 * 
 * class ExampleSpec extends RefSpec {
 * 
 *   override def withFixture(test: NoArgTest) = {
 * 
 *     super.withFixture(test) match {
 *       case failed: Failed =>
 *         val currDir = new File(".")
 *         val fileNames = currDir.list()
 *         info("Dir snapshot: " + fileNames.mkString(", "))
 *         failed
 *       case other => other
 *     }
 *   }
 * 
 *   object `This test` {
 *     def `should succeed` {
 *       assert(1 + 1 === 2)
 *     }
 * 
 *     def `should fail` {
 *       assert(1 + 1 === 3)
 *     }
 *   }
 * }
 * 
* *

* Running this version of ExampleSuite in the interpreter in a directory with two files, hello.txt and world.txt * would give the following output: *

* *
 * scala> new ExampleSuite execute
 * ExampleSuite:
 * This test
 * - should fail *** FAILED ***
 *   2 did not equal 3 (:33)
 *   + Dir snapshot: hello.txt, world.txt 
 * - should succeed
 * 
* *

* Note that the NoArgTest passed to withFixture, in addition to * an apply method that executes the test, also includes the test name and the config * map passed to runTest. Thus you can also use the test name and configuration objects in your withFixture * implementation. *

* * *

Calling loan-fixture methods

* *

* If you need to both pass a fixture object into a test and perform cleanup at the end of the test, you'll need to use the loan pattern. * If different tests need different fixtures that require cleanup, you can implement the loan pattern directly by writing loan-fixture methods. * A loan-fixture method takes a function whose body forms part or all of a test's code. It creates a fixture, passes it to the test code by invoking the * function, then cleans up the fixture after the function returns. *

* *

* The following example shows three tests that use two fixtures, a database and a file. Both require cleanup after, so each is provided via a * loan-fixture method. (In this example, the database is simulated with a StringBuffer.) *

* *
 * package org.scalatest.examples.spec.loanfixture
 * 
 * import java.util.concurrent.ConcurrentHashMap
 * 
 * object DbServer { // Simulating a database server
 *   type Db = StringBuffer
 *   private val databases = new ConcurrentHashMap[String, Db]
 *   def createDb(name: String): Db = {
 *     val db = new StringBuffer
 *     databases.put(name, db)
 *     db
 *   }
 *   def removeDb(name: String) {
 *     databases.remove(name)
 *   }
 * }
 * 
 * import org.scalatest.RefSpec
 * import DbServer._
 * import java.util.UUID.randomUUID
 * import java.io._
 * 
 * class ExampleSpec extends RefSpec {
 * 
 *   def withDatabase(testCode: Db => Any) {
 *     val dbName = randomUUID.toString
 *     val db = createDb(dbName) // create the fixture
 *     try {
 *       db.append("ScalaTest is ") // perform setup
 *       testCode(db) // "loan" the fixture to the test
 *     }
 *     finally removeDb(dbName) // clean up the fixture
 *   }
 * 
 *   def withFile(testCode: (File, FileWriter) => Any) {
 *     val file = File.createTempFile("hello", "world") // create the fixture
 *     val writer = new FileWriter(file)
 *     try {
 *       writer.write("ScalaTest is ") // set up the fixture
 *       testCode(file, writer) // "loan" the fixture to the test
 *     }
 *     finally writer.close() // clean up the fixture
 *   }
 * 
 *   object `Testing ` {
 *     // This test needs the file fixture
 *     def `should be productive` {
 *       withFile { (file, writer) =>
 *         writer.write("productive!")
 *         writer.flush()
 *         assert(file.length === 24)
 *       }
 *     }
 *   }
 *   
 *   object `Test code` {
 *     // This test needs the database fixture
 *     def `should be readable` {
 *       withDatabase { db =>
 *         db.append("readable!")
 *         assert(db.toString === "ScalaTest is readable!")
 *       }
 *     }
 * 
 *     // This test needs both the file and the database
 *     def `should be clear and concise` {
 *       withDatabase { db =>
 *        withFile { (file, writer) => // loan-fixture methods compose
 *           db.append("clear!")
 *           writer.write("concise!")
 *           writer.flush()
 *           assert(db.toString === "ScalaTest is clear!")
 *           assert(file.length === 21)
 *         }
 *       }
 *     }
 *   }
 * }
 * 
* *

* As demonstrated by the last test, loan-fixture methods compose. Not only do loan-fixture methods allow you to * give each test the fixture it needs, they allow you to give a test multiple fixtures and clean everything up afterwards. *

* *

* Also demonstrated in this example is the technique of giving each test its own "fixture sandbox" to play in. When your fixtures * involve external side-effects, like creating files or databases, it is a good idea to give each file or database a unique name as is * done in this example. This keeps tests completely isolated, allowing you to run them in parallel if desired. *

* * *

Overriding withFixture(OneArgTest)

* *

* fixture.Spec is deprecated, please use fixture.FunSpec instead. * * *

Mixing in BeforeAndAfter

* *

* In all the shared fixture examples shown so far, the activities of creating, setting up, and cleaning up the fixture objects have been * performed during the test. This means that if an exception occurs during any of these activities, it will be reported as a test failure. * Sometimes, however, you may want setup to happen before the test starts, and cleanup after the test has completed, so that if an * exception occurs during setup or cleanup, the entire suite aborts and no more tests are attempted. The simplest way to accomplish this in ScalaTest is * to mix in trait BeforeAndAfter. With this trait you can denote a bit of code to run before each test * with before and/or after each test each test with after, like this: *

* *
 * package org.scalatest.examples.spec.beforeandafter
 * 
 * import org.scalatest.RefSpec
 * import org.scalatest.BeforeAndAfter
 * import collection.mutable.ListBuffer
 * 
 * class ExampleSpec extends RefSpec with BeforeAndAfter {
 * 
 *   val builder = new StringBuilder
 *   val buffer = new ListBuffer[String]
 * 
 *   before {
 *     builder.append("ScalaTest is ")
 *   }
 * 
 *   after {
 *     builder.clear()
 *     buffer.clear()
 *   }
 * 
 *   object `Testing ` {
 *     def `should be easy` {
 *       builder.append("easy!")
 *       assert(builder.toString === "ScalaTest is easy!")
 *       assert(buffer.isEmpty)
 *       buffer += "sweet"
 *     }
 * 
 *     def `should be fun` {
 *       builder.append("fun!")
 *       assert(builder.toString === "ScalaTest is fun!")
 *       assert(buffer.isEmpty)
 *     }
 *   }
 * }
 * 
* *

* Note that the only way before and after code can communicate with test code is via some side-effecting mechanism, commonly by * reassigning instance vars or by changing the state of mutable objects held from instance vals (as in this example). If using * instance vars or mutable objects held from instance vals you wouldn't be able to run tests in parallel in the same instance * of the test class unless you synchronized access to the shared, mutable state. This is why ScalaTest's ParallelTestExecution trait extends * OneInstancePerTest. By running each test in its own instance of the class, each test has its own copy of the instance variables, so you * don't need to synchronize. If you mixed ParallelTestExecution into the ExampleSuite above, the tests would run in parallel just fine * without any synchronization needed on the mutable StringBuilder and ListBuffer[String] objects. *

* *

* Although BeforeAndAfter provides a minimal-boilerplate way to execute code before and after tests, it isn't designed to enable stackable * traits, because the order of execution would be non-obvious. If you want to factor out before and after code that is common to multiple test suites, you * should use trait BeforeAndAfterEach instead, as shown later in the next section, * composing fixtures by stacking traits. *

* *

Composing fixtures by stacking traits

* *

* In larger projects, teams often end up with several different fixtures that test classes need in different combinations, * and possibly initialized (and cleaned up) in different orders. A good way to accomplish this in ScalaTest is to factor the individual * fixtures into traits that can be composed using the stackable trait pattern. This can be done, for example, by placing * withFixture methods in several traits, each of which call super.withFixture. Here's an example in * which the StringBuilder and ListBuffer[String] fixtures used in the previous examples have been * factored out into two stackable fixture traits named Builder and Buffer: *

* *
 * package org.scalatest.examples.spec.composingwithfixture
 * 
 * import org.scalatest._
 * import collection.mutable.ListBuffer
 * 
 * trait Builder extends SuiteMixin { this: Suite =>
 * 
 *   val builder = new StringBuilder
 * 
 *   abstract override def withFixture(test: NoArgTest) = {
 *     builder.append("ScalaTest is ")
 *     try super.withFixture(test) // To be stackable, must call super.withFixture
 *     finally builder.clear()
 *   }
 * }
 * 
 * trait Buffer extends SuiteMixin { this: Suite =>
 * 
 *   val buffer = new ListBuffer[String]
 * 
 *   abstract override def withFixture(test: NoArgTest) = {
 *     try super.withFixture(test) // To be stackable, must call super.withFixture
 *     finally buffer.clear()
 *   }
 * }
 * 
 * class ExampleSpec extends RefSpec with Builder with Buffer {
 * 
 *   object `Testing ` {
 *     def `should be easy` {
 *       builder.append("easy!")
 *       assert(builder.toString === "ScalaTest is easy!")
 *       assert(buffer.isEmpty)
 *       buffer += "sweet"
 *     }
 * 
 *     def `should be fun` {
 *       builder.append("fun!")
 *       assert(builder.toString === "ScalaTest is fun!")
 *       assert(buffer.isEmpty)
 *       buffer += "clear"
 *     }
 *   }
 * }
 * 
* *

* By mixing in both the Builder and Buffer traits, ExampleSpec gets both fixtures, which will be * initialized before each test and cleaned up after. The order the traits are mixed together determines the order of execution. * In this case, Builder is “super” to Buffer. If you wanted Buffer to be “super” * to Builder, you need only switch the order you mix them together, like this: *

* *
 * class Example2Spec extends RefSpec with Buffer with Builder
 * 
* *

* And if you only need one fixture you mix in only that trait: *

* *
 * class Example3Spec extends RefSpec with Builder
 * 
* *

* Another way to create stackable fixture traits is by extending the BeforeAndAfterEach * and/or BeforeAndAfterAll traits. * BeforeAndAfterEach has a beforeEach method that will be run before each test (like JUnit's setUp), * and an afterEach method that will be run after (like JUnit's tearDown). * Similarly, BeforeAndAfterAll has a beforeAll method that will be run before all tests, * and an afterAll method that will be run after all tests. Here's what the previously shown example would look like if it * were rewritten to use the BeforeAndAfterEach methods instead of withFixture: *

* *
 * package org.scalatest.examples.spec.composingbeforeandaftereach
 * 
 * import org.scalatest._
 * import org.scalatest.BeforeAndAfterEach
 * import collection.mutable.ListBuffer
 * 
 * trait Builder extends BeforeAndAfterEach { this: Suite =>
 * 
 *   val builder = new StringBuilder
 * 
 *   override def beforeEach() {
 *     builder.append("ScalaTest is ")
 *     super.beforeEach() // To be stackable, must call super.beforeEach
 *   }
 * 
 *   override def afterEach() {
 *     try super.afterEach() // To be stackable, must call super.afterEach
 *     finally builder.clear()
 *   }
 * }
 * 
 * trait Buffer extends BeforeAndAfterEach { this: Suite =>
 * 
 *   val buffer = new ListBuffer[String]
 * 
 *   override def afterEach() {
 *     try super.afterEach() // To be stackable, must call super.afterEach
 *     finally buffer.clear()
 *   }
 * }
 * 
 * class ExampleSpec extends RefSpec with Builder with Buffer {
 * 
 *   object `Testing ` {
 *     def `should be easy` {
 *       builder.append("easy!")
 *       assert(builder.toString === "ScalaTest is easy!")
 *       assert(buffer.isEmpty)
 *       buffer += "sweet"
 *     }
 * 
 *     def `should be fun` {
 *       builder.append("fun!")
 *       assert(builder.toString === "ScalaTest is fun!")
 *       assert(buffer.isEmpty)
 *       buffer += "clear"
 *     }
 *   }
 * }
 * 
* *

* To get the same ordering as withFixture, place your super.beforeEach call at the end of each * beforeEach method, and the super.afterEach call at the beginning of each afterEach * method, as shown in the previous example. It is a good idea to invoke super.afterEach in a try * block and perform cleanup in a finally clause, as shown in the previous example, because this ensures the * cleanup code is performed even if super.afterEach throws an exception. *

* *

* The difference between stacking traits that extend BeforeAndAfterEach versus traits that implement withFixture is * that setup and cleanup code happens before and after the test in BeforeAndAfterEach, but at the beginning and * end of the test in withFixture. Thus if a withFixture method completes abruptly with an exception, it is * considered a failed test. By contrast, if any of the beforeEach or afterEach methods of BeforeAndAfterEach * complete abruptly, it is considered an aborted suite, which will result in a SuiteAborted event. *

* *

Shared tests

* *

* Because RefSpec represents tests as methods, you cannot share or otherwise dynamically generate tests. Instead, use static code generation * if you want to generate tests in a RefSpec. In other words, write a program that statically generates the entire source file of * a RefSpec subclass. *

* * @author Bill Venners */ @Finders(Array("org.scalatest.finders.SpecFinder")) class RefSpec extends RefSpecLike { /** * Returns a user friendly string for this suite, composed of the * simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite * contains nested suites, the result of invoking toString on each * of the nested suites, separated by commas and surrounded by parentheses. * * @return a user-friendly string for this suite */ override def toString: String = Suite.suiteToString(None, this) } private[scalatest] object RefSpec { def isTestMethod(m: Method): Boolean = { val isInstanceMethod = !Modifier.isStatic(m.getModifiers()) val hasNoParams = m.getParameterTypes.isEmpty // name must have at least one encoded space: "$u0220" val includesEncodedSpace = m.getName.indexOf("$u0020") >= 0 val isOuterMethod = m.getName.endsWith("$$outer") val isNestedMethod = m.getName.matches(".+\\$\\$.+\\$[1-9]+") //val isOuterMethod = m.getName.endsWith("$$$outer") // def maybe(b: Boolean) = if (b) "" else "!" // println("m.getName: " + m.getName + ": " + maybe(isInstanceMethod) + "isInstanceMethod, " + maybe(hasNoParams) + "hasNoParams, " + maybe(includesEncodedSpace) + "includesEncodedSpace") isInstanceMethod && hasNoParams && includesEncodedSpace && !isOuterMethod && !isNestedMethod } import java.security.MessageDigest import scala.io.Codec // The following compactify code is written based on scala compiler source code at:- // https://github.com/scala/scala/blob/master/src/reflect/scala/reflect/internal/StdNames.scala#L47 private val compactifiedMarker = "$$$$" def equalIfRequiredCompactify(value: String, compactified: String): Boolean = { if (compactified.matches(".+\\$\\$\\$\\$.+\\$\\$\\$\\$.+")) { val firstDolarIdx = compactified.indexOf("$$$$") val lastDolarIdx = compactified.lastIndexOf("$$$$") val prefix = compactified.substring(0, firstDolarIdx) val suffix = compactified.substring(lastDolarIdx + 4) val lastIndexOfDot = value.lastIndexOf(".") val toHash = if (lastIndexOfDot >= 0) value.substring(0, value.length - 1).substring(value.lastIndexOf(".") + 1) else value val bytes = Codec.toUTF8(toHash.toArray) val md5 = MessageDigest.getInstance("MD5") md5.update(bytes) val md5chars = (md5.digest() map (b => (b & 0xFF).toHexString)).mkString (prefix + compactifiedMarker + md5chars + compactifiedMarker + suffix) == compactified } else value == compactified } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy