org.scalatest.Matchers.scala Maven / Gradle / Ivy
Show all versions of scalatest_2.9.1 Show documentation
/* * Copyright 2001-2013 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalatest // Change me in MustMatchers import org.scalatest.matchers._ import org.scalatest.enablers._ import java.lang.reflect.Method import java.lang.reflect.Modifier import scala.util.matching.Regex import java.lang.reflect.Field import scala.reflect.Manifest import MatchersHelper.transformOperatorChars import scala.collection.Traversable import Assertions.areEqualComparingArraysStructurally import scala.collection.GenTraversable import scala.collection.GenSeq import scala.collection.GenMap import org.scalautils.Tolerance import org.scalautils.Explicitly import org.scalautils.Interval import org.scalautils.TripleEqualsInvocation import org.scalautils.Equality import org.scalautils.TripleEqualsInvocationOnInterval import org.scalautils.EqualityConstraint import MatchersHelper.andMatchersAndApply import MatchersHelper.orMatchersAndApply import org.scalatest.words._ import MatchersHelper.matchSymbolToPredicateMethod import MatchersHelper.accessProperty import MatchersHelper.newTestFailedException import MatchersHelper.fullyMatchRegexWithGroups import MatchersHelper.startWithRegexWithGroups import MatchersHelper.endWithRegexWithGroups import MatchersHelper.includeRegexWithGroups import org.scalautils.NormalizingEquality // TODO: drop generic support for be as an equality comparison, in favor of specific ones. // TODO: mention on JUnit and TestNG docs that you can now mix in ShouldMatchers or MustMatchers // TODO: Put links from ShouldMatchers to wherever I reveal the matrix and algo of how properties are checked dynamically. // TODO: double check that I wrote tests for (length (7)) and (size (8)) in parens // TODO: document how to turn off the === implicit conversion // TODO: Document you can use JMock, EasyMock, etc. /** * Trait that provides a domain specific language (DSL) for expressing assertions in tests * using the wordSize[T] for your typeshould. * ** For example, if you mix
* *Matchersinto * a suite class, you can write an equality assertion in that suite like this: ** result should equal (3) ** ** Here
* * *resultis a variable, and can be of any type. If the object is an *Intwith the value 3, execution will continue (i.e., the expression will result * in the unit value,()). Otherwise, aTestFailedException* will be thrown with a detail message that explains the problem, such as"7 did not equal 3". * ThisTestFailedExceptionwill cause the test to fail. *Matchers migration in ScalaTest 2.0
* ** In ScalaTest 2.0, traits
* *org.scalatest.matchers.ShouldMatchersandorg.scalatest.matchers.MustMatchersare deprecated, replaced * by traitorg.scalatest.Matchers. *ShouldMatchersandMustMatcherswill continue to work during a lengthy deprecation cycle, but will eventually be removed in * a future version of ScalaTest. You can migrate existing uses ofShouldMatchers* by simply importing or mixing inorg.scalatest.Matchersinstead oforg.scalatest.matchers.ShouldMatchers. You can migrate existing * uses oforg.scalatest.matchers.MustMatchersin the same manner, by importing or mixing inorg.scalatest.Matchersinstead of *org.scalatest.matchers.MustMatchers, but with one extra step: replacing "must" with "should".org.scalatest.Matchers* only supports the verb "should"; We apologize for imposing such a large search-and-replace job on users, but we want to * make the verb"must"available to be used for a different purpose in ScalaTest after the deprecation cycle forMustMatchers* is completed. ** All previously documented syntax for matchers should continue to work exactly the same in the current ScalaTest 2.0.M6-SNAP release, with two potential breakages, both of * which should be quite rare, and one deprecation. First, support for "
havelength" and "havesize" based solely on * structural types has been removed. Any use of this syntax on types other than Scala or Java collections, arrays, or strings will no longer compile. * To migrate such code, you will need to implicitly provide either aLength[T]orT, as * described below. * The other, even rarer (and likely temporary), potential breakage is that iflengthor size were used along with other custom have-property matchers, *lengthandsizemust now come first in the list, as described below. * The deprecation isbe===<value>syntax. This will continue to work as before, but will generate a deprecation * warning and eventually be removed in a later version of ScalaTest. Please replace uses of this syntax with one of the other * ways to check equality described in the next section. * * * *Checking equality with matchers
* ** ScalaTest matchers provides five different ways to check equality, each designed to address a different need. They are: *
* ** result should equal (3) // can customize equality * result should === (3) // can customize equality and enforce type constraints * result should be (3) // cannot customize equality * result shouldEqual 3 // can customize equality, no parentheses required * result shouldBe 3 // cannot customize equality, no parentheses required ** ** The "
* *leftshouldequal(right)" syntax requires anorg.scalautils.Equality[L]to be provided (either implicitly or explicitly), where *Lis the left-hand type on whichshouldis invoked. In the "leftshouldequal(right)" case, * for example,Lis the type ofleft. Thus ifleftis typeInt, the "leftshould*equal(right)" * statement would require anEquality[Int]. ** By default, an implicit
* *Equality[T]instance is available for any typeT, in which equality is implemented * by simply invoking==on theleft* value, passing in therightvalue, with special treatment for arrays. If eitherleftorrightis an array,deep* will be invoked on it before comparing with ==. Thus, even though the following expression * will yield false, becauseArray'sequalsmethod compares object identity: ** Array(1, 2) == Array(1, 2) // yields false ** ** The next expression will by default not result in a
* *TestFailedException, because defaultEquality[Array[Int]]compares * the two arrays structurally, taking into consideration the equality of the array's contents: ** Array(1, 2) should equal (Array(1, 2)) // succeeds (i.e., does not throw TestFailedException) ** ** If you ever do want to verify that two arrays are actually the same object (have the same identity), you can use the *
* *be theSameInstanceAssyntax, described below. ** You can customize the meaning of equality for a type when using "
* *shouldequal," "should===," * orshouldEqualsyntax by defining implicitEqualityinstances that will be used instead of defaultEquality. * You might do this to normalize types before comparing them with==, for instance, or to avoid calling the==method entirely, * such as if you want to compareDoubles with a tolerance. * For an example, see the main documentation of traitEquality. ** You can always supply implicit parameters explicitly, but in the case of implicit parameters of type
* *Equality[T], ScalaTest provides a * simple "explictly" DSL. For example, here's how you could explicitly supply anEquality[String]instance that normalizes both left and right * sides (which must be strings), by transforming them to lowercase: ** scala> import org.scalatest.Matchers._ * import org.scalatest.Matchers._ * * scala> import org.scalautils.Explicitly._ * import org.scalautils.Explicitly._ * * scala> import org.scalautils.StringNormalizations._ * import org.scalautils.StringNormalizations._ * * scala> "Hi" should equal ("hi") (after being lowerCased) ** ** The
* *afterbeinglowerCasedexpression results in anEquality[String], which is then passed * explicitly as the second curried parameter toequal. For more information on the explictly DSL, see the main documentation * for traitExplicitly. ** The "
* *shouldbe" andshouldBesyntax do not take anEquality[T]and can therefore not be customized. * They always use the default approach to equality described above. As a result, "shouldbe" andshouldBewill * likely be the fastest-compiling matcher syntax for equality comparisons, since the compiler need not search for * an implicitEquality[T]each time. ** The
* *should===syntax (and its complement,should!==) can be used to enforce type * constraints at compile-time between the left and right sides of the equality comparison. Here's an example: ** scala> import org.scalatest.Matchers._ * import org.scalatest.Matchers._ * * scala> import org.scalautils.TypeCheckedTripleEquals._ * import org.scalautils.TypeCheckedTripleEquals._ * * scala> Some(2) should === (2) * <console>:17: error: types Some[Int] and Int do not adhere to the equality constraint * selected for the === and !== operators; the missing implicit parameter is of * type org.scalautils.EqualityConstraint[Some[Int],Int] * Some(2) should === (2) * ^ ** ** By default, the "
* * *Some(2)should===(2)" statement would fail at runtime. By mixing in * the equality constraints provided byTypeCheckedTripleEquals, however, the statement fails to compile. For more information * and examples, see the main documentation for traitTypeCheckedTripleEquals. *Checking size and length
* ** You can check the size or length of any type of object for which it * makes sense. Here's how checking for length looks: *
** result should have length (3) ** ** Size is similar: *
* ** result should have size (10) ** ** The
* *lengthsyntax can be used withString,Array, anyscala.collection.GenSeq, * anyjava.util.List, and any typeTfor which an implicitLength[T]type class is * available in scope. * Similarly, thesizesyntax can be used withArray, anyscala.collection.GenTraversable, * anyjava.util.Collection, anyjava.util.Map, and any typeTfor which an implicitSize[T]type class is * available in scope. You can enable thelengthorsizesyntax for your own arbitrary types, therefore, * by definingLengthorSizetype * classes for those types. *Checking strings
* ** You can check for whether a string starts with, ends with, or includes a substring like this: *
* ** string should startWith ("Hello") * string should endWith ("world") * string should include ("seven") ** ** You can check for whether a string starts with, ends with, or includes a regular expression, like this: *
* ** string should startWith regex ("Hel*o") * string should endWith regex ("wo.ld") * string should include regex ("wo.ld") ** ** And you can check whether a string fully matches a regular expression, like this: *
* ** string should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""") ** ** The regular expression passed following the
* *regextoken can be either aString* or ascala.util.matching.Regex. ** With the
* *startWith,endWith,include, andfullyMatch* tokens can also be used with an optional specification of required groups, like this: ** "abbccxxx" should startWith regex ("a(b*)(c*)" withGroups ("bb", "cc")) * "xxxabbcc" should endWith regex ("a(b*)(c*)" withGroups ("bb", "cc")) * "xxxabbccxxx" should include regex ("a(b*)(c*)" withGroups ("bb", "cc")) * "abbcc" should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc")) ** *Greater and less than
** You can check whether any type that is, or can be implicitly converted to, * an
*Ordered[T]is greater than, less than, greater than or equal, or less * than or equal to a value of typeT. The syntax is: ** one should be < (7) * one should be > (0) * one should be <= (7) * one should be >= (0) ** *Checking
* *Booleanproperties withbe* If an object has a method that takes no parameters and returns boolean, you can check * it by placing a
* *Symbol(afterbe) that specifies the name * of the method (excluding an optional prefix of "is"). A symbol literal * in Scala begins with a tick mark and ends at the first non-identifier character. Thus, *'emptyresults in aSymbolobject at runtime, as does *'definedand'file. Here's an example: ** emptySet should be ('empty) ** * Given this code, ScalaTest will use reflection to look on the object referenced from *emptySetfor a method that takes no parameters and results inBoolean, * with either the nameemptyorisEmpty. If found, it will invoke * that method. If the method returnstrue, execution will continue. But if it returns *false, aTestFailedExceptionwill be thrown that will contain a detail message, such as: * ** Set(1, 2, 3) was not empty ** ** This
* *besyntax can be used with any type. If the object does * not have an appropriately named predicate method, you'll get aTestFailedException* at runtime with a detail message that explains the problem. * (For the details on how a field or method is selected during this * process, see the documentation forBeWord.) ** If you think it reads better, you can optionally put
* *aoranafter *be. For example,java.io.Filehas two predicate methods, *isFileandisDirectory. Thus with aFileobject * namedtemp, you could write: ** temp should be a ('file) ** ** Or, given
* *java.awt.event.KeyEventhas a methodisActionKeythat takes * no arguments and returnsBoolean, you could assert that aKeyEventis * an action key with: ** keyEvent should be an ('actionKey) ** ** If you prefer to check
* *Booleanproperties in a type-safe manner, you can use aBePropertyMatcher. * This would allow you to write expressions such as: ** emptySet should be (empty) * temp should be a (file) * keyEvent should be an (actionKey) ** ** These expressions would fail to compile if
* *shouldis used on an inappropriate type, as determined * by the type parameter of theBePropertyMatcherbeing used. (For example,filein this example * would likely be of typeBePropertyMatcher[java.io.File]. If used with an appropriate type, such an expression will compile * and at run time theBooleanproperty method or field will be accessed directly; i.e., no reflection will be used. * See the documentation forBePropertyMatcherfor more information. *Using custom
* * If you want to create a new way of usingBeMatchersbe, which doesn't map to an actual property on the * type you care about, you can create aBeMatcher. You could use this, for example, to createBeMatcher[Int]* calledodd, which would match any oddInt, andeven, which would match * any evenInt. * Given this pair ofBeMatchers, you could check whether anIntwas odd or even with expressions like: * * ** num should be (odd) * num should not be (even) ** * For more information, see the documentation forBeMatcher. * *Checking object identity
* ** If you need to check that two references refer to the exact same object, you can write: *
* ** ref1 should be theSameInstanceAs (ref2) ** *Checking numbers against a range
* ** To check whether a floating point number has a value that exactly matches another, you * can use
* *should equal: ** sevenDotOh should equal (7.0) ** ** Often, however, you may want to check whether a floating point number is within a * range. You can do that using
* *beand+-, like this: ** sevenDotOh should be (6.9 +- 0.2) ** ** This expression will cause a
* *TestFailedExceptionto be thrown if the floating point * value,sevenDotOhis outside the range6.7to7.1. * You can also use+-with integral types, for example: ** seven should be (6 +- 2) ** *Working with collections
* ** You can use some of the syntax shown previously with Scala collections, i.e.,
* *GenTraversableand its * subtypes. For example, you can check whether aGenTraversableisempty, * like this: ** traversable should be ('empty) ** ** You can check the length of a
* *GenSeq(or anArray) * like this: ** array should have length 3 * list should have length 9 ** ** You can check the size of any
* *GenTraversable, like this: ** map should have size 20 * set should have size 90 ** ** In addition, you can check whether an
* *GenTraversablecontains a particular * element, like this: ** traversable should contain ("five") ** ** You can also check whether a
* *GenMapcontains a particular key, or value, like this: ** map should contain key 1 * map should contain value "Howdy" ** *Java collections and maps
* ** You can use similar syntax on Java collections (
* *java.util.Collection) and maps (java.util.Map). * For example, you can check whether a JavaCollectionorMapisempty, * like this: ** javaCollection should be ('empty) * javaMap should be ('empty) ** ** Even though Java's
* *Listtype doesn't actually have alengthorgetLengthmethod, * you can nevertheless check the length of a JavaList(java.util.List) like this: ** javaList should have length 9 ** ** You can check the size of any Java
* *CollectionorMap, like this: ** javaMap should have size 20 * javaSet should have size 90 ** ** In addition, you can check whether a Java
* *Collectioncontains a particular * element, like this: ** javaCollection should contain ("five") ** ** One difference to note between the syntax supported on Java collections and that of Scala *
* *GenTraversables is that you can't usecontain (...)syntax with a JavaMap. * Java differs from Scala in that itsMapis not a subtype of itsCollectiontype. * If you want to check that a JavaMapcontains a specific key/value pair, the best approach is * to invokeentrySeton the JavaMapand check that entry set for the appropriate * element (ajava.util.Map.Entry) usingcontain (...). ** Despite this difference, the other (more commonly used) map matcher syntax works just fine on Java
* *Maps. * You can, for example, check whether a JavaMapcontains a particular key, or value, like this: ** javaMap should contain key 1 * javaMap should contain value "Howdy" ** * *Working with "containers"
* ** The
* *containsyntax shown above can be used with any typeCthat has a "containing" nature, as evidenced by * anorg.scalatest.enablers.Containing[L]instance that must be supplied as a curried parameter tocontain, either implicitly or * explicitly, withLbeing the left-hand type on whichshouldis invoked. In theContaining* companion object, implicits are provided for typesGenTraversable[E],java.util.Collection[E], *java.util.Map[K, V],String,Array[E], andOption[E]. (Note: in 2.0.M6, Scala and JavaIterators * will be added to this list.) Here are some examples: ** scala> import org.scalatest.Matchers._ * import org.scalatest.Matchers._ * * scala> List(1, 2, 3) should contain (2) * * scala> Map('a' -> 1, 'b' -> 2, 'c' -> 3) should contain ('b' -> 2) * * scala> Set(1, 2, 3) should contain (2) * * scala> Array(1, 2, 3) should contain (2) * * scala> "123" should contain ('2') * * scala> Some(2) should contain (2) ** ** ScalaTest's implicit methods that provide the
* *Containing[L]typeclasses require anEquality[E], where *Eis an element type. For example, to obtain aContaining[Array[Int]]you must supply anEquality[Int], * either implicitly or explicitly. Thecontainsyntax uses thisEquality[E]to determine containership. * Thus if you want to change how containership is determined for an element typeE, place an implicitEquality[E]* in scope or use the explicitly DSL. Although the implicit parameter required for thecontainsyntax is of typeContaining[L], * implicit conversions are provided in theContainingcompanion object fromEquality[E]to the various * types of containers ofE. Here's an example: ** scala> import org.scalatest.Matchers._ * import org.scalatest.Matchers._ * * scala> List("Hi", "Di", "Ho") should contain ("ho") * org.scalatest.exceptions.TestFailedException: List(Hi, Di, Ho) did not contain element "ho" * at ... * * scala> import org.scalautils.Explicitly._ * import org.scalautils.Explicitly._ * * scala> import org.scalautils.StringNormalizations._ * import org.scalautils.StringNormalizations._ * * scala> (List("Hi", "Di", "Ho") should contain ("ho")) (after being lowerCased) ** ** Note that when you use the explicitly DSL with
* *containyou need to wrap the entire *containexpression in parentheses, as shown here. ** (List("Hi", "Di", "Ho") should contain ("ho")) (after being lowerCased) * ^ ^ ** ** In addition to determining whether an object contains another object, you can use
* *containto * make other determinations. * For exmple, thecontainoneOfsyntax ensures that one and only one of the specified elements are * contained in the containing object: ** List(1, 2, 3, 4, 5) should contain oneOf (5, 7, 9) * Some(7) should contain oneOf (5, 7, 9) * "howdy" should contain oneOf ('a', 'b', 'c', 'd') ** ** Note that if multiple specified elements appear in the containing object,
* *oneOfwill fail: ** scala> List(1, 2, 3) should contain oneOf (2, 3, 4) * org.scalatest.exceptions.TestFailedException: List(1, 2, 3) did not contain one of (2, 3, 4) * at ... ** ** If you really want to ensure one or more of the specified elements are contained in the containing object, * use
* *atLeastOneOf, described below, instead ofoneOf. In other words,oneOf* means "exactly one of." ** Note also that with any
* *containsyntax, you can place custom implicitEquality[E]instances in scope * to customize how containership is determined, or use the explicitly DSL. Here's an example: ** (Array("Doe", "Ray", "Me") should contain oneOf ("X", "RAY", "BEAM")) (after being lowerCased) ** ** The
* *containnoneOfsyntax does the opposite ofoneOf: it ensures none of the specified elements * are contained in the containing object: ** List(1, 2, 3, 4, 5) should contain noneOf (7, 8, 9) * Some(0) should contain noneOf (7, 8, 9) * "12345" should contain noneOf ('7', '8', '9') ** * *Working with "aggregations"
* ** As mentioned, the "
* *contain," "containoneOf," and "containnoneOf" syntax requires a *Containing[L]be provided, whereLis the left-hand type. By contrast, the rest of thecontainsyntax, which * will be described in this section, requires anAggregating[L]be provided, where againLis the left-hand type. * (AnAggregating[L]instance defines the "aggregating nature" of a typeL.) * The reason, essentially, is thatcontainsyntax that makes sense forOptionis enabled by *Containing[L], whereas syntax that does not make sense forOptionis enabled * byAggregating[L]. For example, it doesn't make sense to assert that anOption[Int]contains all of a set of integers, as it * could only ever contain one of them. But this does make sense for a type such asList[Int]that can aggregate zero to many integers. ** The
* *Aggregatingcompanion object provides implicit instances ofAggregating[L]* for typesGenTraversable[E],java.util.Collection[E], *java.util.Map[K, V],String,Array[E]. Note that these are the same types as are supported with *Containing, but withOption[E]missing. * (And as withContaining, in 2.0.M6, Scala and JavaIterators * will be added to this list.) Here are some examples: ** The
* *containatLeastOneOfsyntax, for example, works for any typeLfor which anAggregating[L]exists. It ensures * that at least one of (i.e., one or more of) the specified objects are contained in the containing object: ** List(1, 2, 3) should contain atLeastOneOf (2, 3, 4) * Array(1, 2, 3) should contain atLeastOneOf (3, 4, 5) * "abc" should contain atLeastOneOf ('c', 'a', 't') ** ** Note: The
* *containatMostOneOfsyntax is currently unimplemented, but will be added for 2.0.M6. ** Similar to
* *Containing[L], the implicit methods that provide theAggregating[L]instances require anEquality[E], where *Eis an element type. For example, to obtain aAggregating[Vector[String]]you must supply anEquality[String], * either implicitly or explicitly. Thecontainsyntax uses thisEquality[E]to determine containership. * Thus if you want to change how containership is determined for an element typeE, place an implicitEquality[E]* in scope or use the explicitly DSL. Although the implicit parameter required for thecontainsyntax is of typeAggregating[L], * implicit conversions are provided in theAggregatingcompanion object fromEquality[E]to the various * types of aggregations ofE. Here's an example: ** (Vector(" A", "B ") should contain atLeastOneOf ("a ", "b", "c")) (after being lowerCased and trimmed) ** ** The "
* *containallOf" syntax lets you specify a set of objects that should all be contained in the containing object: ** List(1, 2, 3, 4, 5) should contain allOf (2, 3, 5) ** ** The "
* *containonly" syntax lets you assert that the containing object contains only the specified objects, though it may * contain more than one of each: ** List(1, 2, 3, 2, 1) should contain only (1, 2, 3) ** ** Note: In the current SNAP release,
* *containonlycurrently allows a specified right-hand element to not appear in the left-hand aggregation. * This will be disallowed in 2.0.M6. ** The "
* *containinOrderOnly" syntax lets you assert that the containing object contains only the specified objects, in order. * The specified objects may appear multiple times, but must appear in the order they appear in the right-hand list. Here's an example: ** List(1, 2, 2, 3, 3, 3) should contain inOrderOnly (1, 2, 3) ** ** The "
* *containinOrder" syntax lets you assert that the containing object contains only the specified objects in order, like *inOrderOnly, but allows other objects to appear in the left-hand aggregation as well: * contain more than one of each: ** List(0, 1, 2, 2, 99, 3, 3, 3, 5) should contain inOrder (1, 2, 3) ** ** Note that "order" in
* *inOrder,inOrderOnly, andtheSameElementsInOrderAs(described below) * in theAggregation[L]instances built-in to ScalaTest is defined as "iteration order". ** The "
* *containtheSameElementsAs" and "containtheSameElementsInOrderAssyntax differ from the others * in that the right hand side is aGenTraversable[_]rather than a varargs ofAny. (Note: in a future 2.0 milestone release, possibly * 2.0.M6, these will likely be widened to accept any typeRfor which anAggregating[R]exists.) ** The "
* *containtheSameElementsAs" syntax lets you assert that two aggregations contain the same objects: ** List(1, 2, 2, 3, 3, 3) should contain theSameElementsAs Vector(3, 2, 3, 1, 2, 3) ** ** The number of times any family of equal objects appears must also be the same in both the left and right aggregations. * The specified objects may appear multiple times, but must appear in the order they appear in the right-hand list. For example, if * the last 3 element is left out of the right-hand list in the previous example, the expression would fail because the left side * has three 3's and the right hand side has only two: *
* ** List(1, 2, 2, 3, 3, 3) should contain theSameElementsAs Vector(3, 2, 3, 1, 2) * org.scalatest.exceptions.TestFailedException: List(1, 2, 2, 3, 3, 3) did not contain the same elements as Vector(3, 2, 3, 1, 2) * at ... ** ** Lastly, the "
* *containtheSameElementsInOrderAs" syntax lets you assert that two aggregations contain * the same exact elements in the same (iteration) order: ** List(1, 2, 3) should contain theSameElementsInOrderAs collection.mutable.TreeSet(3, 2, 1) ** ** The previous assertion succeeds because the iteration order of a
* * *TreeSetis the natural * ordering of its elements, which in this case is 1, 2, 3. An iterator obtained from the left-handListwill produce the same elements * in the same order. *Inspector shorthands
* ** You can use the
* *Inspectorssyntax with matchers as well as assertions. If you have a multi-dimensional collection, such as an * list of lists, usingInspectorsis your best option: ** val yss = * List( * List(1, 2, 3), * List(1, 2, 3), * List(1, 2, 3) * ) * * forAll (yss) { ys => * forAll (ys) { y => y should be > 0 } * } ** ** For assertions on one-dimensional collections, however, matchers provides "inspector shorthands." Instead of writing: *
* ** val xs = List(1, 2, 3) * forAll (xs) { x => x should be < 10 } ** ** You can write: *
* ** all (xs) should be < 10 ** ** The previous statement asserts that all elements of the
* *xslist should be less than 10. * All of the inspectors have shorthands in matchers. Here is the full list: *
-
*
all- succeeds if the assertion holds true for every element
* atLeast- succeeds if the assertion holds true for at least the specified number of elements
* atMost- succeeds if the assertion holds true for at most the specified number of elements
* between- succeeds if the assertion holds true for between the specified minimum and maximum number of elements, inclusive
* every- same asall, but lists all failing elements if it fails (whereasalljust reports the first failing element)
* exactly- succeeds if the assertion holds true for exactly the specified number of elements
*
* Here are some examples: *
* ** scala> import org.scalatest.Matchers._ * import org.scalatest.Matchers._ * * scala> val xs = List(1, 2, 3, 4, 5) * xs: List[Int] = List(1, 2, 3, 4, 5) * * scala> all (xs) should be > 0 * * scala> atMost(2, xs) should be >= 4 * * scala> atLeast(3, xs) should be < 5 * * scala> between(2, 3, xs) should (be > 1 and be < 5) * * scala> exactly (2, xs) should be <= 2 * * scala> every (xs) should be < 10 * * scala> // And one that fails... * * scala> exactly (2, xs) shouldEqual 2 * org.scalatest.exceptions.TestFailedException: 'exactly(2)' inspection failed, because only 1 element * satisfied the assertion block at index 1: * at index 0, 1 did not equal 2, * at index 2, 3 did not equal 2, * at index 3, 4 did not equal 2, * at index 4, 5 did not equal 2 * in List(1, 2, 3, 4, 5) * at ... ** *
* Note: in the current 2.0.M6-SNAP release, the type of object used with inspector shorthands must be GenTraversable, but this will likely be widened to
* include Java collections, arrays, iterators, etc., for 2.0.M6.
*
Single-element collections
* *
* To assert both that a collection contains just one "lone" element as well as something else about that element, you can use
* the loneElement syntax. For example, if a Set[Int] should contain just one element, an Int
* less than or equal to 10, you could write:
*
* set.loneElement should be <= 10 ** *
* Note: in the current 2.0.M6-SNAP release, the type of object on which you can invoke loneElement must be GenTraversable, but this
* will likely be widened to include Java collections, arrays, iterators, etc., for 2.0.M6.
*
Be as an equality comparison
* *
* All uses of be other than those shown previously perform an equality comparison. In other words, they work
* the same as equal when it is used with default equality. This redundancy between be and equals exists in part
* because it enables syntax that sometimes sounds more natural. For example, instead of writing:
*
* result should equal (null) ** *
* You can write: *
* ** result should be (null) ** *
* (Hopefully you won't write that too much given null is error prone, and Option
* is usually a better, well, option.)
* Here are some other examples of be used for equality comparison:
*
* sum should be (7.0) * boring should be (false) * fun should be (true) * list should be (Nil) * option should be (None) * option should be (Some(1)) ** *
* As with equal used with default equality, using be on arrays results in deep being called on both arrays prior to
* calling equal. As a result,
* the following expression would not throw a TestFailedException:
*
* Array(1, 2) should be (Array(1, 2)) // succeeds (i.e., does not throw TestFailedException) ** *
* Because be is used in several ways in ScalaTest matcher syntax, just as it is used in many ways in English, one
* potential point of confusion in the event of a failure is determining whether be was being used as an equality comparison or
* in some other way, such as a property assertion. To make it more obvious when be is being used for equality, the failure
* messages generated for those equality checks will include the word equal in them. For example, if this expression fails with a
* TestFailedException:
*
* option should be (Some(1)) ** *
* The detail message in that TestFailedException will include the words "equal to" to signify be
* was in this case being used for equality comparison:
*
* Some(2) was not equal to Some(1) ** *
Being negative
* *
* If you wish to check the opposite of some condition, you can simply insert not in the expression.
* Here are a few examples:
*
* result should not be (null)
* sum should not be <= (10)
* mylist should not equal (yourList)
* string should not startWith ("Hello")
*
*
* Logical expressions with and and or
*
*
* You can also combine matcher expressions with and and/or or, however,
* you must place parentheses or curly braces around the and or or expression. For example,
* this and-expression would not compile, because the parentheses are missing:
*
* map should contain key ("two") and not contain value (7) // ERROR, parentheses missing!
*
*
* * Instead, you need to write: *
* *
* map should (contain key ("two") and not contain value (7))
*
*
* * Here are some more examples: *
* *
* number should (be > (0) and be <= (10))
* option should (equal (Some(List(1, 2, 3))) or be (None))
* string should (
* equal ("fee") or
* equal ("fie") or
* equal ("foe") or
* equal ("fum")
* )
*
*
*
* Two differences exist between expressions composed of these and and or operators and the expressions you can write
* on regular Booleans using its && and || operators. First, expressions with and
* and or do not short-circuit. The following contrived expression, for example, would print "hello, world!":
*
* "yellow" should (equal ("blue") and equal { println("hello, world!"); "green" })
*
*
*
* In other words, the entire and or or expression is always evaluated, so you'll see any side effects
* of the right-hand side even if evaluating
* only the left-hand side is enough to determine the ultimate result of the larger expression. Failure messages produced by these
* expressions will "short-circuit," however,
* mentioning only the left-hand side if that's enough to determine the result of the entire expression. This "short-circuiting" behavior
* of failure messages is intended
* to make it easier and quicker for you to ascertain which part of the expression caused the failure. The failure message for the previous
* expression, for example, would be:
*
* "yellow" did not equal "blue" ** *
* Most likely this lack of short-circuiting would rarely be noticeable, because evaluating the right hand side will usually not
* involve a side effect. One situation where it might show up, however, is if you attempt to and a null check on a variable with an expression
* that uses the variable, like this:
*
* map should (not be (null) and contain key ("ouch"))
*
*
*
* If map is null, the test will indeed fail, but with a NullPointerException, not a
* TestFailedException. Here, the NullPointerException is the visible right-hand side effect. To get a
* TestFailedException, you would need to check each assertion separately:
*
* map should not be (null)
* map should contain key ("ouch")
*
*
*
* If map is null in this case, the null check in the first expression will fail with
* a TestFailedException, and the second expression will never be executed.
*
* The other difference with Boolean operators is that although && has a higher precedence than ||,
* and and or
* have the same precedence. Thus although the Boolean expression (a || b && c) will evaluate the && expression
* before the || expression, like (a || (b && c)), the following expression:
*
* traversable should (contain (7) or contain (8) and have size (9)) ** *
* Will evaluate left to right, as: *
* ** traversable should ((contain (7) or contain (8)) and have size (9)) ** *
* If you really want the and part to be evaluated first, you'll need to put in parentheses, like this:
*
* traversable should (contain (7) or (contain (8) and have size (9))) ** *
Working with Options
*
*
* ScalaTest matchers has no special support for Options, but you can
* work with them quite easily using syntax shown previously. For example, if you wish to check
* whether an option is None, you can write any of:
*
* option should equal (None)
* option should be (None)
* option should not be ('defined)
* option should be ('empty)
*
*
* * If you wish to check an option is defined, and holds a specific value, you can write either of: *
* *
* option should equal (Some("hi"))
* option should be (Some("hi"))
*
*
* * If you only wish to check that an option is defined, but don't care what it's value is, you can write: *
* *
* option should be ('defined)
*
*
*
* If you mix in (or import the members of) OptionValues,
* you can write one statement that indicates you believe an option should be defined and then say something else about its value. Here's an example:
*
* import org.scalatest.OptionValues._ * option.value should be < (7) ** *
Checking arbitrary properties with have
*
*
* Using have, you can check properties of any type, where a property is an attribute of any
* object that can be retrieved either by a public field, method, or JavaBean-style get
* or is method, like this:
*
* book should have (
* 'title ("Programming in Scala"),
* 'author (List("Odersky", "Spoon", "Venners")),
* 'pubYear (2008)
* )
*
*
*
* This expression will use reflection to ensure the title, author, and pubYear properties of object book
* are equal to the specified values. For example, it will ensure that book has either a public Java field or method
* named title, or a public method named getTitle, that when invoked (or accessed in the field case) results
* in a the string "Programming in Scala". If all specified properties exist and have their expected values, respectively,
* execution will continue. If one or more of the properties either does not exist, or exists but results in an unexpected value,
* a TestFailedException will be thrown that explains the problem. (For the details on how a field or method is selected during this
* process, see the documentation for HavePropertyMatcherGenerator.)
*
* When you use this syntax, you must place one or more property values in parentheses after have, seperated by commas, where a property
* value is a symbol indicating the name of the property followed by the expected value in parentheses. The only exceptions to this rule is the syntax
* for checking size and length shown previously, which does not require parentheses. If you forget and put parentheses in, however, everything will
* still work as you'd expect. Thus instead of writing:
*
* array should have length (3) * set should have size (90) ** *
* You can alternatively, write: *
* ** array should have (length (3)) * set should have (size (90)) ** *
* If a property has a value different from the specified expected value, a TestFailedError will be thrown
* with a detail message that explains the problem. For example, if you assert the following on
* a book whose title is Moby Dick:
*
* book should have ('title ("A Tale of Two Cities"))
*
*
*
* You'll get a TestFailedException with this detail message:
*
* The title property had value "Moby Dick", instead of its expected value "A Tale of Two Cities",
* on object Book("Moby Dick", "Melville", 1851)
*
*
*
* If you prefer to check properties in a type-safe manner, you can use a HavePropertyMatcher.
* This would allow you to write expressions such as:
*
* book should have (
* title ("Programming in Scala"),
* author (List("Odersky", "Spoon", "Venners")),
* pubYear (2008)
* )
*
*
*
* These expressions would fail to compile if should is used on an inappropriate type, as determined
* by the type parameter of the HavePropertyMatcher being used. (For example, title in this example
* might be of type HavePropertyMatcher[org.publiclibrary.Book]. If used with an appropriate type, such an expression will compile
* and at run time the property method or field will be accessed directly; i.e., no reflection will be used.
* See the documentation for HavePropertyMatcher for more information.
*
Using length and size with HavePropertyMatchers
*
*
* In the currenty 2.0.M6-SNAP release, if you want to use length or size syntax with your own custom HavePropertyMatchers, you
* can do so, but you must put the length or size statement first in the list. For example, you could write:
*
* book should have (
* length (220),
* title ("A Tale of Two Cities"),
* author ("Dickens")
* )
*
*
*
* By contrast, the following code would not compile, because length does not come first in the list:
*
* book should have (
* title ("A Tale of Two Cities"),
* length (220),
* author ("Dickens")
* )
*
*
*
* Prior to ScalaTest 2.0, length (22) yielded a HavePropertyMatcher[Any, Int] that used reflection to dynamically look
* for a length field or getLength method. In ScalaTest 2.0, length (22) yields a
* MatcherFactory1[Any, Length], so it is no longer a HavePropertyMatcher. In 2.0.M6 this restriction will likely be lifted via
* an implicit conversions in the HavePropertyMatcher companion object, but for the current SNAP release the restriction exists.
*
Using custom matchers
* *
* If none of the built-in matcher syntax (or options shown so far for extending the syntax) satisfy a particular need you have, you can create
* custom Matchers that allow
* you to place your own syntax directly after should. For example, class java.io.File has a method exists, which
* indicates whether a file of a certain path and name exists. Because the exists method takes no parameters and returns Boolean,
* you can call it using be with a symbol or BePropertyMatcher, yielding assertions like:
*
* file should be ('exists) // using a symbol
* file should be (inExistance) // using a BePropertyMatcher
*
*
*
* Although these expressions will achieve your goal of throwing a TestFailedException if the file does not exist, they don't produce
* the most readable code because the English is either incorrect or awkward. In this case, you might want to create a
* custom Matcher[java.io.File]
* named exist, which you could then use to write expressions like:
*
* // using a plain-old Matcher
* file should exist
* file should not (exist)
* file should (exist and have ('name ("temp.txt")))
*
*
*
* Note that when you use custom Matchers, you will need to put parentheses around the custom matcher in more cases than with
* the built-in syntax. For example you will often need the parentheses after not, as shown above. (There's no penalty for
* always surrounding custom matchers with parentheses, and if you ever leave them off when they are needed, you'll get a compiler error.)
* For more information about how to create custom Matchers, please see the documentation for the Matcher trait.
*
Checking for expected exceptions
* *
* Sometimes you need to test whether a method throws an expected exception under certain circumstances, such
* as when invalid arguments are passed to the method. With Matchers mixed in, you can
* check for an expected exception like this:
*
* evaluating { s.charAt(-1) } should produce [IndexOutOfBoundsException]
*
*
*
* If charAt throws an instance of StringIndexOutOfBoundsException,
* this expression will result in that exception. But if charAt completes normally, or throws a different
* exception, this expression will complete abruptly with a TestFailedException.
* This expression returns the caught exception so that you can inspect it further if you wish, for
* example, to ensure that data contained inside the exception has the expected values. Here's an
* example:
*
* val thrown = evaluating { s.charAt(-1) } should produce [IndexOutOfBoundsException]
* thrown.getMessage should equal ("String index out of range: -1")
*
*
* Those pesky parens
* ** Perhaps the most tricky part of writing assertions using ScalaTest matchers is remembering * when you need or don't need parentheses, but bearing in mind a few simple rules should help. * It is also reassuring to know that if you ever leave off a set of parentheses when they are * required, your code will not compile. Thus the compiler will help you remember when you need the parens. * That said, the rules are: *
* *
* 1. Although you don't always need them, it is recommended style to always put parentheses
* around right-hand values, such as the 7 in num should equal (7):
*
* result should equal (4) * array should have length (3) * book should have ( * 'title ("Programming in Scala"), * 'author (List("Odersky", "Spoon", "Venners")), * 'pubYear (2008) * ) * option should be ('defined) * catMap should (contain key (9) and contain value ("lives")) * keyEvent should be an ('actionKey) * javaSet should have size (90) ** *
* 2. Except for length and size, you must always put parentheses around
* the list of one or more property values following a have:
*
* file should (exist and have ('name ("temp.txt"))) * book should have ( * title ("Programming in Scala"), * author (List("Odersky", "Spoon", "Venners")), * pubYear (2008) * ) * javaList should have length (9) // parens optional for length and size ** *
* 3. You must always put parentheses around and and or expressions, as in:
*
* catMap should (contain key (9) and contain value ("lives")) * number should (equal (2) or equal (4) or equal (8)) ** *
* 4. Although you don't always need them, it is recommended style to always put parentheses
* around custom Matchers when they appear directly after not:
*
* file should exist * file should not (exist) * file should (exist and have ('name ("temp.txt"))) * file should (not (exist) and have ('name ("temp.txt")) * file should (have ('name ("temp.txt") or exist) * file should (have ('name ("temp.txt") or not (exist)) ** *
* That's it. With a bit of practice it should become natural to you, and the compiler will always be there to tell you if you * forget a set of needed parentheses. *
*/ trait Matchers extends Assertions with Tolerance with ShouldVerb with LoneElement with MatcherWords with Explicitly { matchers => // // This class is used as the return type of the overloaded should method (in MapShouldWrapper) // that takes a HaveWord. It's key method will be called in situations like this: // // map should have key 1 // // This gets changed to : // // convertToMapShouldWrapper(map).should(have).key(1) // // Thus, the map is wrapped in a convertToMapShouldWrapper call via an implicit conversion, which results in // a MapShouldWrapper. This has a should method that takes a HaveWord. That method returns a // ResultOfHaveWordPassedToShould that remembers the map to the left of should. Then this class // ha a key method that takes a K type, they key type of the map. It does the assertion thing. // /** * This class is part of the ScalaTest matchers DSL. Please see the documentation forMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfContainWordForMap[K, V, L[_, _] <: scala.collection.GenMap[_, _]](val left: scala.collection.GenMap[K, V], val shouldBeTrue: Boolean) extends ResultOfContainWord[L[K, V]](left.asInstanceOf[L[K, V]]) with ContainMethods[(K, V)] {
/**
* This method enables the following syntax:
*
*
* map should contain key ("one")
* ^
*
*/
def key(expectedKey: K) {
if (left.exists(_._1 == expectedKey) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainKey" else "containedKey",
left,
expectedKey)
)
}
/**
* This method enables the following syntax:
*
*
* map should contain value (1)
* ^
*
*/
def value(expectedValue: V) {
// if (left.values.contains(expectedValue) != shouldBeTrue) CHANGING FOR 2.8.0 RC1
if (left.exists(expectedValue == _._2) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainValue" else "containedValue",
left,
expectedValue)
)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfContainWordForJavaMap[K, V, L[_, _] <: java.util.Map[_, _]](left: L[K, V], shouldBeTrue: Boolean) extends ResultOfContainWord[L[K, V]](left) {
/**
* This method enables the following syntax (javaMap is a java.util.Map):
*
*
* javaMap should contain key ("two")
* ^
*
*/
def key(expectedKey: K) {
if (left.containsKey(expectedKey) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainKey" else "containedKey",
left,
expectedKey)
)
}
/**
* This method enables the following syntax (javaMap is a java.util.Map):
*
*
* javaMap should contain value ("2")
* ^
*
*/
def value(expectedValue: V) {
if (left.containsValue(expectedValue) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainValue" else "containedValue",
left,
expectedValue)
)
}
/**
* This method enables the following syntax (positiveNumberKey is a AMatcher):
*
*
* javaMap should contain a positiveNumberKey
* ^
*
*/
def a(aMatcher: AMatcher[(K, V)]) {
val leftWrapper = new JavaMapWrapper(left.asInstanceOf[java.util.Map[K, V]])
leftWrapper.find(e => aMatcher(e).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = aMatcher(e)
throw newTestFailedException(FailureMessages("containedA", leftWrapper, UnquotedString(aMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainA", leftWrapper, UnquotedString(aMatcher.nounName)))
}
}
/**
* This method enables the following syntax (oddNumberKey is a AnMatcher):
*
*
* javaMap should contain an oddNumberKey
* ^
*
*/
def an(anMatcher: AnMatcher[(K, V)]) {
val leftWrapper = new JavaMapWrapper(left.asInstanceOf[java.util.Map[K, V]])
leftWrapper.find(e => anMatcher(e).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = anMatcher(e)
throw newTestFailedException(FailureMessages("containedAn", leftWrapper, UnquotedString(anMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainAn", leftWrapper, UnquotedString(anMatcher.nounName)))
}
}
}
// TODO: I think I'll be able to drop the next three implicit conversions after the enablers for contain are done.
/**
* This implicit conversion method enables the following syntax (javaColl is a java.util.Collection):
*
*
* javaColl should contain ("two")
*
*
* The (contain ("two")) expression will result in a Matcher[GenTraversable[String]]. This
* implicit conversion method will convert that matcher to a Matcher[java.util.Collection[String]].
*/
implicit def convertTraversableMatcherToJavaCollectionMatcher[T](traversableMatcher: Matcher[scala.collection.GenTraversable[T]]): Matcher[java.util.Collection[T]] =
new Matcher[java.util.Collection[T]] {
def apply(left: java.util.Collection[T]): MatchResult =
traversableMatcher.apply(new JavaCollectionWrapper(left))
}
/**
* This implicit conversion method enables the following syntax:
*
* * Array(1, 2) should (not contain (3) and not contain (2)) ** * The
(not contain ("two")) expression will result in a Matcher[GenTraversable[String]]. This
* implicit conversion method will convert that matcher to a Matcher[Array[String]].
*/
implicit def convertTraversableMatcherToArrayMatcher[T](traversableMatcher: Matcher[scala.collection.GenTraversable[T]]): Matcher[Array[T]] =
new Matcher[Array[T]] {
def apply(left: Array[T]): MatchResult =
traversableMatcher.apply(new ArrayWrapper(left))
}
/**
* This implicit conversion method enables the following syntax (javaMap is a java.util.Map):
*
*
* javaMap should (contain key ("two"))
*
*
* The (contain key ("two")) expression will result in a Matcher[scala.collection.GenMap[String, Any]]. This
* implicit conversion method will convert that matcher to a Matcher[java.util.Map[String, Any]].
*/
implicit def convertMapMatcherToJavaMapMatcher[K, V](mapMatcher: Matcher[scala.collection.GenMap[K, V]]): Matcher[java.util.Map[K, V]] =
new Matcher[java.util.Map[K, V]] {
def apply(left: java.util.Map[K, V]): MatchResult =
mapMatcher.apply(new JavaMapWrapper(left))
}
// Ack. The above conversion doesn't apply to java.util.Maps, because java.util.Map is not a subinterface
// of java.util.Collection. But right now Matcher[Traversable] supports only "contain" and "have size"
// syntax, and thus that should work on Java maps too, why not. Well I'll tell you why not. It is too complicated.
// Since java Map is not a java Collection, I'll say the contain syntax doesn't work on it. But you can say
// have key.
// The getLength and getSize field conversions seem inconsistent with
// what I do in symbol HavePropertyMatchers. It isn't, though because the difference is here
// it's a Scala field and there a Java field: a val getLength is a
// perfectly valid Scala way to get a JavaBean property Java method in the bytecodes.
// This guy is generally done through an implicit conversion from a symbol. It takes that symbol, and
// then represents an object with an apply method. So it gives an apply method to symbols.
// book should have ('author ("Gibson"))
// ^ // Basically this 'author symbol gets converted into this class, and its apply method takes "Gibson"
// TODO, put the documentation of the details of the algo for selecting a method or field to use here.
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used as the result of an implicit conversion from class Symbol, to enable symbols to be
* used in have ('author ("Dickens")) syntax. The name of the implicit conversion method is
* convertSymbolToHavePropertyMatcherGenerator.
*
* Class HavePropertyMatcherGenerator's primary constructor takes a Symbol. The
* apply method uses reflection to find and access a property that has the name specified by the
* Symbol passed to the constructor, so it can determine if the property has the expected value
* passed to apply.
* If the symbol passed is 'title, for example, the apply method
* will use reflection to look for a public Java field named
* "title", a public method named "title", or a public method named "getTitle".
* If a method, it must take no parameters. If multiple candidates are found,
* the apply method will select based on the following algorithm:
*
| Field | Method | "get" Method | Result |
|---|---|---|---|
Throws TestFailedException, because no candidates found | |||
getTitle() | Invokes getTitle() | ||
title() | Invokes title() | ||
title() | getTitle() | Invokes title() (this can occur when BeanProperty annotation is used) | |
title | Accesses field title | ||
title | getTitle() | Invokes getTitle() | |
title | title() | Invokes title() | |
title | title() | getTitle() | Invokes title() (this can occur when BeanProperty annotation is used) |
* book should have ('title ("A Tale of Two Cities"))
* ^
*
*
*
* This class has an apply method that will produce a HavePropertyMatcher[AnyRef, Any].
* The implicit conversion method, convertSymbolToHavePropertyMatcherGenerator, will cause the
* above line of code to be eventually transformed into:
*
* book should have (convertSymbolToHavePropertyMatcherGenerator('title).apply("A Tale of Two Cities"))
*
*/
def apply(expectedValue: Any): HavePropertyMatcher[AnyRef, Any] =
new HavePropertyMatcher[AnyRef, Any] {
/**
* This method enables the following syntax:
*
*
* book should have ('title ("A Tale of Two Cities"))
*
*
*
* This method uses reflection to discover a field or method with a name that indicates it represents
* the value of the property with the name contained in the Symbol passed to the
* HavePropertyMatcherGenerator's constructor. The field or method must be public. To be a
* candidate, a field must have the name symbol.name, so if symbol is 'title,
* the field name sought will be "title". To be a candidate, a method must either have the name
* symbol.name, or have a JavaBean-style get or is. If the type of the
* passed expectedValue is Boolean, "is" is prepended, else "get"
* is prepended. Thus if 'title is passed as symbol, and the type of the expectedValue is
* String, a method named getTitle will be considered a candidate (the return type
* of getTitle will not be checked, so it need not be String. By contrast, if 'defined
* is passed as symbol, and the type of the expectedValue is Boolean, a method
* named isTitle will be considered a candidate so long as its return type is Boolean.
*
Symbol to a
* HavePropertyMatcherGenerator, to enable the symbol to be used with the have ('author ("Dickens")) syntax.
*/
implicit def convertSymbolToHavePropertyMatcherGenerator(symbol: Symbol): HavePropertyMatcherGenerator = new HavePropertyMatcherGenerator(symbol)
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
class ResultOfBeWordForAny[T](left: T, shouldBeTrue: Boolean) {
/**
* This method enables the following syntax (positiveNumber is a AMatcher):
*
*
* 1 should be a positiveNumber
* ^
*
*/
def a(aMatcher: AMatcher[T]) {
val matcherResult = aMatcher(left)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage
)
}
}
/**
* This method enables the following syntax (positiveNumber is a AMatcher):
*
*
* 1 should be an oddNumber
* ^
*
*/
def an(anMatcher: AnMatcher[T]) {
val matcherResult = anMatcher(left)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage
)
}
}
/**
* This method enables the following syntax:
*
*
* result should be theSameInstanceAs anotherObject
* ^
*
*/
def theSameInstanceAs(right: AnyRef)(implicit ev: T <:< AnyRef) {
if ((left eq right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotSameInstanceAs" else "wasSameInstanceAs",
left,
right
)
)
}
/* *
* This method enables the following syntax:
*
*
* result should be a [String]
* ^
*
def a[EXPECTED : ClassManifest] {
val clazz = implicitly[ClassManifest[EXPECTED]].erasure.asInstanceOf[Class[EXPECTED]]
if (clazz.isAssignableFrom(left.getClass)) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotAnInstanceOf", left, UnquotedString(clazz.getName))
else
FailureMessages("wasAnInstanceOf")
)
}
}
*/
/**
* This method enables the following syntax:
*
*
* fileMock should be a ('file)
* ^
*
*/
def a(symbol: Symbol)(implicit ev: T <:< AnyRef) {
val matcherResult = matchSymbolToPredicateMethod(left, symbol, true, true)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage
)
}
}
// TODO: Check the shouldBeTrues, are they sometimes always false or true?
/**
* This method enables the following syntax, where badBook is, for example, of type Book and
* goodRead refers to a BePropertyMatcher[Book]:
*
*
* badBook should be a (goodRead)
* ^
*
*/
def a(bePropertyMatcher: BePropertyMatcher[T])(implicit ev: T <:< AnyRef) { // TODO: Try expanding this to 2.10 AnyVals
val result = bePropertyMatcher(left)
if (result.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotA", left, UnquotedString(result.propertyName))
else
FailureMessages("wasA", left, UnquotedString(result.propertyName))
)
}
}
// TODO, in both of these, the failure message doesn't have a/an
/**
* This method enables the following syntax:
*
*
* fruit should be an ('orange)
* ^
*
*/
def an(symbol: Symbol)(implicit ev: T <:< AnyRef) {
val matcherResult = matchSymbolToPredicateMethod(left, symbol, true, false)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage
)
}
}
/**
* This method enables the following syntax, where badBook is, for example, of type Book and
* excellentRead refers to a BePropertyMatcher[Book]:
*
*
* book should be an (excellentRead)
* ^
*
*/
def an(beTrueMatcher: BePropertyMatcher[T])(implicit ev: T <:< AnyRef) { // TODO: Try expanding this to 2.10 AnyVals
val beTrueMatchResult = beTrueMatcher(left)
if (beTrueMatchResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotAn", left, UnquotedString(beTrueMatchResult.propertyName))
else
FailureMessages("wasAn", left, UnquotedString(beTrueMatchResult.propertyName))
)
}
}
/**
* This method enables the following syntax, where fraction is, for example, of type PartialFunction:
*
*
* fraction should be definedAt (6)
* ^
*
*/
def definedAt[U](right: U)(implicit ev: T <:< PartialFunction[U, _]) {
if (left.isDefinedAt(right) != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotDefinedAt", left, right)
else
FailureMessages("wasDefinedAt", left, right)
)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class RegexWord {
/**
* This method enables the following syntax:
*
*
* "eight" should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""".r)
* ^
*
*/
def apply(regexString: String): ResultOfRegexWordApplication = new ResultOfRegexWordApplication(regexString, IndexedSeq.empty)
/**
* This method enables the following syntax:
*
*
* "eight" should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
* ^
*
*/
def apply(regex: Regex): ResultOfRegexWordApplication = new ResultOfRegexWordApplication(regex, IndexedSeq.empty)
/**
* This method enables the following syntax:
*
*
* string should not fullyMatch regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def apply(regexWithGroups: RegexWithGroups) =
new ResultOfRegexWordApplication(regexWithGroups.regex, regexWithGroups.groups)
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfIncludeWordForString(left: String, shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* string should include regex ("world")
* ^
*
*/
def regex(rightRegexString: String) { regex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* string should include regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) {
val result = includeRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage
)
}
/**
* This method enables the following syntax:
*
*
* string should include regex ("wo.ld".r)
* ^
*
*/
def regex(rightRegex: Regex) {
if (rightRegex.findFirstIn(left).isDefined != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotIncludeRegex" else "includedRegex",
left,
rightRegex
)
)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfStartWithWordForString(left: String, shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* string should startWith regex ("Hel*o")
* ^
*
*/
def regex(rightRegexString: String) { regex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* string should startWith regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) {
val result = startWithRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage
)
}
/**
* This method enables the following syntax:
*
*
* string should startWith regex ("Hel*o".r)
* ^
*
*/
def regex(rightRegex: Regex) {
if (rightRegex.pattern.matcher(left).lookingAt != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotStartWithRegex" else "startedWithRegex",
left,
rightRegex
)
)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfEndWithWordForString(left: String, shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* string should endWith regex ("wor.d")
* ^
*
*/
def regex(rightRegexString: String) { regex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* string should endWith regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) {
val result = endWithRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage
)
}
/**
* This method enables the following syntax:
*
*
* string should endWith regex ("wor.d".r)
* ^
*
*/
def regex(rightRegex: Regex) {
val allMatches = rightRegex.findAllIn(left)
if ((allMatches.hasNext && (allMatches.end == left.length)) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotEndWithRegex" else "endedWithRegex",
left,
rightRegex
)
)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfFullyMatchWordForString(left: String, shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* string should fullMatch regex ("Hel*o world")
* ^
*
*/
def regex(rightRegexString: String) { regex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* string should fullMatch regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) {
val result = fullyMatchRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage
)
}
/**
* This method enables the following syntax:
*
*
* string should fullymatch regex ("Hel*o world".r)
* ^
*
*/
def regex(rightRegex: Regex) {
if (rightRegex.pattern.matcher(left).matches != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotFullyMatchRegex" else "fullyMatchedRegex",
left,
rightRegex
)
)
}
}
// Going back to original, legacy one to get to a good place to check in.
/*
def equal(right: Any): Matcher[Any] =
new Matcher[Any] {
def apply(left: Any): MatchResult = {
val (leftee, rightee) = Suite.getObjectsForFailureMessage(left, right)
MatchResult(
areEqualComparingArraysStructurally(left, right),
FailureMessages("didNotEqual", leftee, rightee),
FailureMessages("equaled", left, right)
)
}
}
*/
/**
* This method enables syntax such as the following:
*
* * result should equal (100 +- 1) * ^ **/ def equal[T](interval: Interval[T]): Matcher[T] = { new Matcher[T] { def apply(left: T): MatchResult = { MatchResult( interval.isWithin(left), FailureMessages("didNotEqualPlusOrMinus", left, interval.pivot, interval.tolerance), FailureMessages("equaledPlusOrMinus", left, interval.pivot, interval.tolerance) ) } } } /** * This method enables syntax such as the following: * *
* result should equal (null) * ^ **/ def equal(o: Null): Matcher[AnyRef] = new Matcher[AnyRef] { def apply(left: AnyRef): MatchResult = { MatchResult( left == null, FailureMessages("didNotEqualNull", left), FailureMessages("equaledNull"), FailureMessages("didNotEqualNull", left), FailureMessages("midSentenceEqualedNull") ) } } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for
Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfElementWordApplication[T](val expectedElement: T)
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class KeyWord {
/**
* This method enables the following syntax:
*
*
* map should not contain key (10)
* ^
*
*/
def apply[T](expectedKey: T): ResultOfKeyWordApplication[T] = new ResultOfKeyWordApplication(expectedKey)
}
/**
* This field enables the following syntax:
*
* * map should not contain key (10) * ^ **/ val key = new KeyWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for
Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ValueWord {
/**
* This method enables the following syntax:
*
*
* map should not contain value (10)
* ^
*
*/
def apply[T](expectedValue: T): ResultOfValueWordApplication[T] = new ResultOfValueWordApplication(expectedValue)
}
/**
* This field enables the following syntax:
*
* * map should not contain value (10) * ^ **/ val value = new ValueWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for
Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class AWord {
/**
* This method enables the following syntax:
*
*
* badBook should not be a ('goodRead)
* ^
*
*/
def apply(symbol: Symbol): ResultOfAWordToSymbolApplication = new ResultOfAWordToSymbolApplication(symbol)
/**
* This method enables the following syntax, where, for example, badBook is of type Book and goodRead
* is a BePropertyMatcher[Book]:
*
*
* badBook should not be a (goodRead)
* ^
*
*/
def apply[T](beTrueMatcher: BePropertyMatcher[T]): ResultOfAWordToBePropertyMatcherApplication[T] = new ResultOfAWordToBePropertyMatcherApplication(beTrueMatcher)
/**
* This method enables the following syntax, where, positiveNumber is an AMatcher[Book]:
*
*
* result should not be a (positiveNumber)
* ^
*
*/
def apply[T](aMatcher: AMatcher[T]): ResultOfAWordToAMatcherApplication[T] = new ResultOfAWordToAMatcherApplication(aMatcher)
}
/**
* This field enables the following syntax:
*
*
* badBook should not be a ('goodRead)
* ^
*
*/
val a = new AWord
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class AnWord {
/**
* This method enables the following syntax:
*
*
* badBook should not be an ('excellentRead)
* ^
*
*/
def apply(symbol: Symbol): ResultOfAnWordToSymbolApplication = new ResultOfAnWordToSymbolApplication(symbol)
/**
* This method enables the following syntax, where, for example, badBook is of type Book and excellentRead
* is a BePropertyMatcher[Book]:
*
*
* badBook should not be an (excellentRead)
* ^
*
*/
def apply[T](beTrueMatcher: BePropertyMatcher[T]): ResultOfAnWordToBePropertyMatcherApplication[T] = new ResultOfAnWordToBePropertyMatcherApplication(beTrueMatcher)
/**
* This method enables the following syntax, where, positiveNumber is an AnMatcher[Book]:
*
*
* result should not be an (positiveNumber)
* ^
*
*/
def apply[T](anMatcher: AnMatcher[T]): ResultOfAnWordToAnMatcherApplication[T] = new ResultOfAnWordToAnMatcherApplication(anMatcher)
}
/**
* This field enables the following syntax:
*
* * badBook should not be an (excellentRead) * ^ **/ val an = new AnWord /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for
Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class TheSameInstanceAsPhrase {
/**
* This method enables the following syntax:
*
*
* oneString should not be theSameInstanceAs (anotherString)
* ^
*
*/
def apply(anyRef: AnyRef): ResultOfTheSameInstanceAsApplication = new ResultOfTheSameInstanceAsApplication(anyRef)
}
/**
* This field enables the following syntax:
*
* * oneString should not be theSameInstanceAs (anotherString) * ^ **/ val theSameInstanceAs: TheSameInstanceAsPhrase = new TheSameInstanceAsPhrase /** * This field enables the following syntax: * *
* "eight" should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""".r)
* ^
*
*/
val regex = new RegexWord
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfHaveWordForExtent[A](left: A, shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* obj should have length (2L)
* ^
*
*
*
* This method is ultimately invoked for objects that have a length property structure
* of type Long,
* but is of a type that is not handled by implicit conversions from nominal types such as
* scala.Seq, java.lang.String, and java.util.List.
*
* obj should have size (2L)
* ^
*
*
*
* This method is ultimately invoked for objects that have a size property structure
* of type Long,
* but is of a type that is not handled by implicit conversions from nominal types such as
* Traversable and java.util.Collection.
*
* num should (not be < (10) and not be > (17)) * ^ **/ def <[T <% Ordered[T]] (right: T): ResultOfLessThanComparison[T] = new ResultOfLessThanComparison(right) /** * This method enables the following syntax: * *
* num should (not be > (10) and not be < (7)) * ^ **/ def >[T <% Ordered[T]] (right: T): ResultOfGreaterThanComparison[T] = new ResultOfGreaterThanComparison(right) /** * This method enables the following syntax: * *
* num should (not be <= (10) and not be > (17)) * ^ **/ def <=[T <% Ordered[T]] (right: T): ResultOfLessThanOrEqualToComparison[T] = new ResultOfLessThanOrEqualToComparison(right) /** * This method enables the following syntax: * *
* num should (not be >= (10) and not be < (7)) * ^ **/ def >=[T <% Ordered[T]] (right: T): ResultOfGreaterThanOrEqualToComparison[T] = new ResultOfGreaterThanOrEqualToComparison(right) /** * This method enables the following syntax: * *
* list should (not be definedAt (7) and not be definedAt (9)) * ^ **/ def definedAt[T](right: T): ResultOfDefinedAt[T] = new ResultOfDefinedAt(right) /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for
Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfEvaluatingApplication(val fun: () => Any) {
/**
* This method enables syntax such as the following:
*
*
* evaluating { "hi".charAt(-1) } should produce [StringIndexOutOfBoundsException]
* ^
*
*/
def should[T](resultOfProduceApplication: ResultOfProduceInvocation[T]): T = {
val clazz = resultOfProduceApplication.clazz
val caught = try {
fun()
None
}
catch {
case u: Throwable => {
if (!clazz.isAssignableFrom(u.getClass)) {
val s = Resources("wrongException", clazz.getName, u.getClass.getName)
throw newTestFailedException(s, Some(u))
// throw new TestFailedException(s, u, 3)
}
else {
Some(u)
}
}
}
caught match {
case None =>
val message = Resources("exceptionExpected", clazz.getName)
throw newTestFailedException(message)
// throw new TestFailedException(message, 3)
case Some(e) => e.asInstanceOf[T] // I know this cast will succeed, becuase isAssignableFrom succeeded above
}
}
}
/**
* This method enables syntax such as the following:
*
*
* evaluating { "hi".charAt(-1) } should produce [StringIndexOutOfBoundsException]
* ^
*
*/
def evaluating(fun: => Any): ResultOfEvaluatingApplication =
new ResultOfEvaluatingApplication(fun _)
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfProduceInvocation[T](val clazz: Class[T])
/**
* This method enables the following syntax:
*
*
* evaluating { "hi".charAt(-1) } should produce [StringIndexOutOfBoundsException]
* ^
*
*/
def produce[T](implicit manifest: Manifest[T]): ResultOfProduceInvocation[T] =
new ResultOfProduceInvocation(manifest.erasure.asInstanceOf[Class[T]])
trait ContainMethods[T] {
val left: scala.collection.GenTraversable[T]
val shouldBeTrue: Boolean
/**
* This method enables the following syntax (positiveNumber is a AMatcher):
*
*
* traversable should contain a positiveNumber
* ^
*
*/
def a(aMatcher: AMatcher[T]) {
left.find(aMatcher(_).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = aMatcher(e)
throw newTestFailedException(FailureMessages("containedA", left, UnquotedString(aMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainA", left, UnquotedString(aMatcher.nounName)))
}
}
/**
* This method enables the following syntax (oddNumber is a AMatcher):
*
*
* traversable should contain an oddNumber
* ^
*
*/
def an(anMatcher: AnMatcher[T]) {
left.find(anMatcher(_).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = anMatcher(e)
throw newTestFailedException(FailureMessages("containedAn", left, UnquotedString(anMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainAn", left, UnquotedString(anMatcher.nounName)))
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
class ResultOfContainWordForTraversable[E, L[_] <: scala.collection.GenTraversable[_]](val left: scala.collection.GenTraversable[E], val shouldBeTrue: Boolean = true) extends ResultOfContainWord[L[E]](left.asInstanceOf[L[E]]) with ContainMethods[E]
class ResultOfContainWordForArray[E](val left: Array[E], val shouldBeTrue: Boolean = true) extends ResultOfContainWord[Array[E]](left) {
/**
* This method enables the following syntax (positiveNumber is a AMatcher):
*
*
* traversable should contain a positiveNumber
* ^
*
*/
def a(aMatcher: AMatcher[E]) {
left.find(aMatcher(_).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = aMatcher(e)
throw newTestFailedException(FailureMessages("containedA", left, UnquotedString(aMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainA", left, UnquotedString(aMatcher.nounName)))
}
}
/**
* This method enables the following syntax (oddNumber is a AMatcher):
*
*
* traversable should contain an oddNumber
* ^
*
*/
def an(anMatcher: AnMatcher[E]) {
left.find(anMatcher(_).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = anMatcher(e)
throw newTestFailedException(FailureMessages("containedAn", left, UnquotedString(anMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainAn", left, UnquotedString(anMatcher.nounName)))
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfContainWordForJavaCollection[E, L[_] <: java.util.Collection[_]](left: L[E], shouldBeTrue: Boolean) extends ResultOfContainWord[L[E]](left) {
/**
* This method enables the following syntax (positiveNumber is a AMatcher):
*
*
* javaCol should contain a positiveNumber
* ^
*
*/
def a(aMatcher: AMatcher[E]) {
val leftWrapper = new JavaCollectionWrapper(left.asInstanceOf[java.util.Collection[E]])
leftWrapper.find(e => aMatcher(e).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = aMatcher(e)
throw newTestFailedException(FailureMessages("containedA", leftWrapper, UnquotedString(aMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainA", leftWrapper, UnquotedString(aMatcher.nounName)))
}
}
/**
* This method enables the following syntax (oddNumber is a AnMatcher):
*
*
* javaCol should contain an oddNumber
* ^
*
*/
def an(anMatcher: AnMatcher[E]) {
val leftWrapper = new JavaCollectionWrapper(left.asInstanceOf[java.util.Collection[E]])
leftWrapper.find(e => anMatcher(e).matches) match {
case Some(e) =>
if (!shouldBeTrue) {
val result = anMatcher(e)
throw newTestFailedException(FailureMessages("containedAn", leftWrapper, UnquotedString(anMatcher.nounName), UnquotedString(result.negatedFailureMessage)))
}
case None =>
if (shouldBeTrue)
throw newTestFailedException(FailureMessages("didNotContainAn", leftWrapper, UnquotedString(anMatcher.nounName)))
}
}
}
/**
* This method enables the following syntax:
*
* * List(1, 2, 3) should contain (oneOf(1, 2)) * ^ **/ def oneOf(xs: Any*) = new ResultOfOneOfApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (atLeastOneOf(1, 2)) * ^ **/ def atLeastOneOf(xs: Any*) = new ResultOfAtLeastOneOfApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (noneOf(1, 2)) * ^ **/ def noneOf(xs: Any*) = new ResultOfNoneOfApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (theSameElementsAs(1, 2)) * ^ **/ def theSameElementsAs(xs: GenTraversable[_]) = new ResultOfTheSameElementsAsApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (theSameElementsInOrderAs(1, 2)) * ^ **/ def theSameElementsInOrderAs(xs: GenTraversable[_]) = new ResultOfTheSameElementsInOrderAsApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (only(1, 2)) * ^ **/ def only(xs: Any*) = new ResultOfOnlyApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (inOrderOnly(1, 2)) * ^ **/ def inOrderOnly[T](xs: Any*) = new ResultOfInOrderOnlyApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (allOf(1, 2)) * ^ **/ def allOf(xs: Any*) = new ResultOfAllOfApplication(xs) /** * This method enables the following syntax: * *
* List(1, 2, 3) should contain (inOrder(1, 2)) * ^ **/ def inOrder(xs: Any*) = new ResultOfInOrderApplication(xs) // For safe keeping private implicit def nodeToCanonical(node: scala.xml.Node) = new Canonicalizer(node) private class Canonicalizer(node: scala.xml.Node) { def toCanonical: scala.xml.Node = { node match { case elem: scala.xml.Elem => val canonicalizedChildren = for (child <- node.child if !child.toString.trim.isEmpty) yield { child match { case elem: scala.xml.Elem => elem.toCanonical case other => other } } new scala.xml.Elem(elem.prefix, elem.label, elem.attributes, elem.scope, canonicalizedChildren: _*) case other => other } } } /* class AType[T : ClassManifest] { private val clazz = implicitly[ClassManifest[T]].erasure.asInstanceOf[Class[T]] def isAssignableFromClassOf(o: Any): Boolean = clazz.isAssignableFrom(o.getClass) def className: String = clazz.getName } def a[T : ClassManifest]: AType[T] = new AType[T] */ // This is where InspectorShorthands started private sealed trait Collected private case object AllCollected extends Collected private case object EveryCollected extends Collected private case class BetweenCollected(from: Int, to: Int) extends Collected private case class AtLeastCollected(num: Int) extends Collected private case class AtMostCollected(num: Int) extends Collected private case object NoCollected extends Collected private case class ExactlyCollected(num: Int) extends Collected import InspectorsHelper._ def doCollected[T](collected: Collected, xs: scala.collection.GenTraversable[T], methodName: String, stackDepth: Int)(fun: T => Unit) { collected match { case AllCollected => doForAll(xs, "allShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case AtLeastCollected(num) => doForAtLeast(num, xs, "atLeastShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case EveryCollected => doForEvery(xs, "everyShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case ExactlyCollected(num) => doForExactly(num, xs, "exactlyShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case NoCollected => doForNo(xs, "noShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case BetweenCollected(from, to) => doForBetween(from, to, xs, "betweenShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } case AtMostCollected(num) => doForAtMost(num, xs, "atMostShorthandFailed", "Matchers.scala", methodName, stackDepth) { e => fun(e) } } } /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for
InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
sealed class ResultOfNotWordForCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T], shouldBeTrue: Boolean) {
import org.scalatest.InspectorsHelper._
/**
* This method enables the following syntax:
*
*
* all(xs) should not equal (7)
* ^
*
*/
def equal(right: Any)(implicit equality: Equality[T]) {
doCollected(collected, xs, "equal", 1) { e =>
if ((equality.areEqual(e, right)) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotEqual" else "equaled",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be (7)
* ^
*
*/
def be(right: Any) {
doCollected(collected, xs, "be", 1) { e =>
if ((e == right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotEqualTo" else "wasEqualTo",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be <= (7)
* ^
*
*/
def be(comparison: ResultOfLessThanOrEqualToComparison[T]) {
doCollected(collected, xs, "be", 1) { e =>
if (comparison(e) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotLessThanOrEqualTo" else "wasLessThanOrEqualTo",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be >= (7)
* ^
*
*/
def be(comparison: ResultOfGreaterThanOrEqualToComparison[T]) {
doCollected(collected, xs, "be", 1) { e =>
if (comparison(e) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotGreaterThanOrEqualTo" else "wasGreaterThanOrEqualTo",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be < (7)
* ^
*
*/
def be(comparison: ResultOfLessThanComparison[T]) {
doCollected(collected, xs, "be", 1) { e =>
if (comparison(e) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotLessThan" else "wasLessThan",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be > (7)
* ^
*
*/
def be(comparison: ResultOfGreaterThanComparison[T]) {
doCollected(collected, xs, "be", 1) { e =>
if (comparison(e) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotGreaterThan" else "wasGreaterThan",
e,
comparison.right
),
None,
6
)
}
}
}
/**
*
* The should be === syntax has been deprecated and will be removed in a future version of ScalaTest. Please use should equal, should ===, shouldEqual,
* should be, or shouldBe instead. Note, the reason this was deprecated was so that === would mean only one thing in ScalaTest: a customizable, type-
* checkable equality comparison.
*
*
* This method enables the following syntax:
*
*
* all(xs) should not be === (7)
* ^
*
*/
@deprecated("The should be === syntax has been deprecated. Please use should equal, should ===, shouldEqual, should be, or shouldBe instead.")
def be(comparison: TripleEqualsInvocation[_]) {
doCollected(collected, xs, "be", 1) { e =>
if ((e == comparison.right) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotEqualTo" else "wasEqualTo",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables the following syntax, where odd refers to
* a BeMatcher[Int]:
*
*
* all(xs) should not be (odd)
* ^
*
*/
def be(beMatcher: BeMatcher[T]) {
doCollected(collected, xs, "be", 1) { e =>
val result = beMatcher(e)
if (result.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
result.failureMessage
else
result.negatedFailureMessage,
None,
10
)
}
}
}
/**
* This method enables the following syntax, where stack is, for example, of type Stack and
* empty refers to a BePropertyMatcher[Stack]:
*
*
* all(xs) should not be (empty)
* ^
*
*/
def be(bePropertyMatcher: BePropertyMatcher[T]) {
doCollected(collected, xs, "be", 1) { e =>
val result = bePropertyMatcher(e)
if (result.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNot", e, UnquotedString(result.propertyName))
else
FailureMessages("was", e, UnquotedString(result.propertyName)),
None,
6
)
}
}
}
/**
* This method enables the following syntax, where notFileMock is, for example, of type File and
* file refers to a BePropertyMatcher[File]:
*
*
* all(xs) should not be a (file)
* ^
*
*/
def be[U >: T](resultOfAWordApplication: ResultOfAWordToBePropertyMatcherApplication[U]) {
doCollected(collected, xs, "be", 1) { e =>
val result = resultOfAWordApplication.bePropertyMatcher(e)
if (result.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotA", e, UnquotedString(result.propertyName))
else
FailureMessages("wasA", e, UnquotedString(result.propertyName)),
None,
6
)
}
}
}
/**
* This method enables the following syntax, where keyEvent is, for example, of type KeyEvent and
* actionKey refers to a BePropertyMatcher[KeyEvent]:
*
*
* all(keyEvents) should not be an (actionKey)
* ^
*
*/
def be[U >: T](resultOfAnWordApplication: ResultOfAnWordToBePropertyMatcherApplication[U]) {
doCollected(collected, xs, "be", 1) { e =>
val result = resultOfAnWordApplication.bePropertyMatcher(e)
if (result.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotAn", e, UnquotedString(result.propertyName))
else
FailureMessages("wasAn", e, UnquotedString(result.propertyName)),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be theSameInstanceAs (string)
* ^
*
*/
def be(resultOfSameInstanceAsApplication: ResultOfTheSameInstanceAsApplication) {
doCollected(collected, xs, "be", 1) { e =>
e match {
case ref: AnyRef =>
if ((resultOfSameInstanceAsApplication.right eq ref) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotSameInstanceAs" else "wasSameInstanceAs",
e,
resultOfSameInstanceAsApplication.right
),
None,
6
)
}
case _ =>
throw new IllegalArgumentException("theSameInstanceAs should only be used for AnyRef")
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be definedAt ("apple")
* ^
*
*/
def be[U](resultOfDefinedAt: ResultOfDefinedAt[U])(implicit ev: T <:< PartialFunction[U, _]) {
doCollected(collected, xs, "be", 1) { e =>
if (e.isDefinedAt(resultOfDefinedAt.right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotDefinedAt" else "wasDefinedAt",
e,
resultOfDefinedAt.right
),
None,
6
)
}
}
// Any for not TODO: Scaladoc
// TODO: Write tests and implement cases for:
// have(length (9), title ("hi")) (this one we'll use this have method but add a HavePropertyMatcher* arg)
// have(size (9), title ("hi")) (this one we'll use the next have method but add a HavePropertyMatcher* arg)
// have(length(9), size (9), title ("hi")) (for this one we'll need a new overloaded have(ROLWA, ROSWA, HPM*))
// have(size(9), length (9), title ("hi")) (for this one we'll need a new overloaded have(ROSWA, ROLWA, HPM*))
def have(resultOfLengthWordApplication: ResultOfLengthWordApplication)(implicit len: Length[T]) {
doCollected(collected, xs, "have", 1) { e =>
val right = resultOfLengthWordApplication.expectedLength
val leftLength = len.lengthOf(e)
if ((leftLength == right) != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("hadLengthInsteadOfExpectedLength", e, leftLength, right)
else
FailureMessages("hadExpectedLength", e, right),
None,
6
)
}
}
}
// Any for not TODO: Scaladoc
def have(resultOfSizeWordApplication: ResultOfSizeWordApplication)(implicit sz: Size[T]) {
doCollected(collected, xs, "have", 1) { e =>
val right = resultOfSizeWordApplication.expectedSize
val leftSize = sz.sizeOf(e)
if ((leftSize == right) != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("hadSizeInsteadOfExpectedSize", e, leftSize, right)
else
FailureMessages("hadExpectedSize", e, right),
None,
6
)
}
}
}
/**
* This method enables the following syntax, where badBook is, for example, of type Book and
* title ("One Hundred Years of Solitude") results in a HavePropertyMatcher[Book]:
*
*
* all(books) should not have (title ("One Hundred Years of Solitude"))
* ^
*
*/
def have[U >: T](firstPropertyMatcher: HavePropertyMatcher[U, _], propertyMatchers: HavePropertyMatcher[U, _]*) {
doCollected(collected, xs, "have", 1) { e =>
val results =
for (propertyVerifier <- firstPropertyMatcher :: propertyMatchers.toList) yield
propertyVerifier(e)
val firstFailureOption = results.find(pv => !pv.matches)
val justOneProperty = propertyMatchers.length == 0
// if shouldBeTrue is false, then it is like "not have ()", and should throw TFE if firstFailureOption.isDefined is false
// if shouldBeTrue is true, then it is like "not (not have ()), which should behave like have ()", and should throw TFE if firstFailureOption.isDefined is true
if (firstFailureOption.isDefined == shouldBeTrue) {
firstFailureOption match {
case Some(firstFailure) =>
// This is one of these cases, thus will only get here if shouldBeTrue is true
// 0 0 | 0 | 1
// 0 1 | 0 | 1
// 1 0 | 0 | 1
throw newTestFailedException(
FailureMessages(
"propertyDidNotHaveExpectedValue",
UnquotedString(firstFailure.propertyName),
firstFailure.expectedValue,
firstFailure.actualValue,
e
),
None,
6
)
case None =>
// This is this cases, thus will only get here if shouldBeTrue is false
// 1 1 | 1 | 0
val failureMessage =
if (justOneProperty) {
val firstPropertyResult = results.head // know this will succeed, because firstPropertyMatcher was required
FailureMessages(
"propertyHadExpectedValue",
UnquotedString(firstPropertyResult.propertyName),
firstPropertyResult.expectedValue,
e
)
}
else FailureMessages("allPropertiesHadExpectedValues", e)
throw newTestFailedException(failureMessage, None, 6)
}
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be (null)
* ^
*
*/
def be(o: Null)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "be", 1) { e =>
if ((e == null) != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotNull", e)
else
FailureMessages("wasNull"),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be ('empty)
* ^
*
*/
def be(symbol: Symbol)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "be", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, symbol, false, false)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be a ('file)
* ^
*
*/
def be(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "be", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, resultOfAWordApplication.symbol, true, true)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be an ('actionKey)
* ^
*
*/
def be(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "be", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, resultOfAnWordApplication.symbol, true, false)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should not be sorted
* ^
*
*/
def be(sortedWord: SortedWord)(implicit sortable: Sortable[T]) {
doCollected(collected, xs, "be", 1) { e =>
if (sortable.isSorted(e) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(if (shouldBeTrue) "wasNotSorted" else "wasSorted", e),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain ("one")
* ^
*
*/
def contain(expectedElement: Any)(implicit containing: Containing[T]) {
doCollected(collected, xs, "contain", 1) { e =>
val right = expectedElement
if ((containing.contains(e, right)) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainExpectedElement" else "containedExpectedElement",
e,
right
),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain oneOf ("one")
* ^
*
*/
def contain(newOneOf: ResultOfOneOfApplication)(implicit containing: Containing[T]) {
val right = newOneOf.right
doCollected(collected, xs, "contain", 1) { e =>
if (containing.containsOneOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainOneOfElements" else "containedOneOfElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain atLeastOneOf ("one")
* ^
*
*/
def contain(atLeastOneOf: ResultOfAtLeastOneOfApplication)(implicit aggregating: Aggregating[T]) {
val right = atLeastOneOf.right
doCollected(collected, xs, "contain", 1) { e =>
if (aggregating.containsAtLeastOneOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainAtLeastOneOf" else "containedAtLeastOneOf",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain noneOf ("one")
* ^
*
*/
def contain(newNoneOf: ResultOfNoneOfApplication)(implicit containing: Containing[T]) {
val right = newNoneOf.right
doCollected(collected, xs, "contain", 1) { e =>
if (containing.containsNoneOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "containedOneOfElements" else "didNotContainOneOfElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain theSameElementsAs ("one")
* ^
*
*/
def contain(theSameElementsAs: ResultOfTheSameElementsAsApplication)(implicit aggregating: Aggregating[T]) {
val right = theSameElementsAs.right
doCollected(collected, xs, "contain", 1) { e =>
if (aggregating.containsTheSameElementsAs(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainSameElements" else "containedSameElements",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain theSameElementsInOrderAs ("one")
* ^
*
*/
def contain(theSameElementsInOrderAs: ResultOfTheSameElementsInOrderAsApplication)(implicit aggregating: Aggregating[T]) {
val right = theSameElementsInOrderAs.right
doCollected(collected, xs, "contain", 1) { e =>
if (aggregating.containsTheSameElementsInOrderAs(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainSameElementsInOrder" else "containedSameElementsInOrder",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain only ("one")
* ^
*
*/
def contain(only: ResultOfOnlyApplication)(implicit aggregating: Aggregating[T]) {
val right = only.right
doCollected(collected, xs, "contain", 1) { e =>
if (aggregating.containsOnly(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainOnlyElements" else "containedOnlyElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain inOrderOnly ("one", "two")
* ^
*
*/
def contain(only: ResultOfInOrderOnlyApplication)(implicit aggregating: Aggregating[T]) {
val right = only.right
doCollected(collected, xs, "contain", 1) { e =>
if (aggregating.containsInOrderOnly(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainInOrderOnlyElements" else "containedInOrderOnlyElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain allOf ("one")
* ^
*
*/
def contain(only: ResultOfAllOfApplication)(implicit aggregating: Aggregating[T]) {
val right = only.right
doCollected(collected, xs, "contain", 1) { e =>
if (aggregating.containsAllOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainAllOfElements" else "containedAllOfElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should not contain inOrder ("one")
* ^
*
*/
def contain(only: ResultOfInOrderApplication)(implicit aggregating: Aggregating[T]) {
val right = only.right
doCollected(collected, xs, "contain", 1) { e =>
if (aggregating.containsInOrder(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainAllOfElementsInOrder" else "containedAllOfElementsInOrder",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfNotWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], shouldBeTrue: Boolean) extends
ResultOfNotWordForCollectedAny[String](collected, xs, shouldBeTrue) {
/**
* This method enables the following syntax:
*
*
* all(string) should not startWith ("1.7")
* ^
*
*/
def startWith(right: String) {
doCollected(collected, xs, "startWith", 1) { e =>
if ((e.indexOf(right) == 0) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotStartWith" else "startedWith",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(string) should not startWith regex ("Hel*o")
* ^
*
*
*
* The regular expression passed following the regex token can be either a String
* or a scala.util.matching.Regex.
*
* all(string) should not endWith ("1.7")
* ^
*
*/
def endWith(expectedSubstring: String) {
doCollected(collected, xs, "endWith", 1) { e =>
if ((e endsWith expectedSubstring) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotEndWith" else "endedWith",
e,
expectedSubstring
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(string) should not endWith regex ("wor.d")
* ^
*
*/
def endWith(resultOfRegexWordApplication: ResultOfRegexWordApplication) {
doCollected(collected, xs, "endWith", 1) { e =>
val result = endWithRegexWithGroups(e, resultOfRegexWordApplication.regex, resultOfRegexWordApplication.groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage,
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(string) should not include regex ("wo.ld")
* ^
*
*
*
* The regular expression passed following the regex token can be either a String
* or a scala.util.matching.Regex.
*
* all(string) should not include ("world")
* ^
*
*/
def include(expectedSubstring: String) {
doCollected(collected, xs, "include", 1) { e =>
if ((e.indexOf(expectedSubstring) >= 0) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotIncludeSubstring" else "includedSubstring",
e,
expectedSubstring
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(string) should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
* ^
*
*
*
* The regular expression passed following the regex token can be either a String
* or a scala.util.matching.Regex.
*
InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
sealed class ResultOfNotWordForCollectedGenTraversable[E, C[_] <: scala.collection.GenTraversable[_]](collected: Collected, xs: scala.collection.GenTraversable[C[E]], shouldBeTrue: Boolean) extends
ResultOfNotWordForCollectedAny[C[E]](collected, xs, shouldBeTrue)
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
sealed class ResultOfNotWordForCollectedArray[E, T <: Array[E]](collected: Collected, xs: scala.collection.GenTraversable[T], shouldBeTrue: Boolean) extends
ResultOfNotWordForCollectedAny[T](collected, xs, shouldBeTrue) {
// TODO: I think we could merge the next three overrides up, and just do a pattern match looking for arrays.
/**
* This method enables the following syntax:
*
*
* all(colOfArray) should not be ('empty)
* ^
*
*/
override def be(symbol: Symbol)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "be", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e.deep, symbol, false, false)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(colOfArray) should not be a ('file)
* ^
*
*/
override def be(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "be", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e.deep, resultOfAWordApplication.symbol, true, true)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
10
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(colOfArray) should not be an ('actionKey)
* ^
*
*/
override def be(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "be", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e.deep, resultOfAnWordApplication.symbol, true, false)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
10
)
}
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfNotWordForCollectedGenMap[K, V, T <: scala.collection.GenMap[K, V]](collected: Collected, xs: scala.collection.GenTraversable[T], shouldBeTrue: Boolean) extends ResultOfNotWordForCollectedAny[T](collected, xs, shouldBeTrue) {
/**
* This method enables the following syntax:
*
*
* all(colOfMap) should not contain key ("three")
* ^
*
*/
def contain(resultOfKeyWordApplication: ResultOfKeyWordApplication[K]) {
doCollected(collected, xs, "contain", 1) { e =>
val right = resultOfKeyWordApplication.expectedKey
if ((e.exists(_._1 == right)) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainKey" else "containedKey",
e,
right
),
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(colOfMap) should not contain value (3)
* ^
*
*/
def contain(resultOfValueWordApplication: ResultOfValueWordApplication[V]) {
doCollected(collected, xs, "contain", 1) { e =>
val right = resultOfValueWordApplication.expectedValue
if ((e.exists(_._2 == right)) != shouldBeTrue) {
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainValue" else "containedValue",
e,
right
),
None,
6
)
}
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
sealed class ResultOfContainWordForCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T], shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* option should contain oneOf (1, 2)
* ^
*
*/
def oneOf(right: Any*)(implicit containing: Containing[T]) {
doCollected(collected, xs, "oneOf", 1) { e =>
if (containing.containsOneOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainOneOfElements" else "containedOneOfElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain atLeastOneOf (1, 2)
* ^
*
*/
def atLeastOneOf(right: Any*)(implicit aggregating: Aggregating[T]) {
doCollected(collected, xs, "atLeastOneOf", 1) { e =>
if (aggregating.containsAtLeastOneOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainAtLeastOneOf" else "containedAtLeastOneOf",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain noneOf (1, 2)
* ^
*
*/
def noneOf(right: Any*)(implicit containing: Containing[T]) {
doCollected(collected, xs, "noneOf", 1) { e =>
if (containing.containsNoneOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "containedOneOfElements" else "didNotContainOneOfElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain theSameElementsAs (1, 2)
* ^
*
*/
def theSameElementsAs(right: GenTraversable[_])(implicit aggregating: Aggregating[T]) {
doCollected(collected, xs, "theSameElementsAs", 1) { e =>
if (aggregating.containsTheSameElementsAs(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainSameElements" else "containedSameElements",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain theSameElementsInOrderAs (1, 2)
* ^
*
*/
def theSameElementsInOrderAs(right: GenTraversable[_])(implicit aggregating: Aggregating[T]) {
doCollected(collected, xs, "theSameElementsInOrderAs", 1) { e =>
if (aggregating.containsTheSameElementsInOrderAs(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainSameElementsInOrder" else "containedSameElementsInOrder",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain only (1, 2)
* ^
*
*/
def only(right: Any*)(implicit aggregating: Aggregating[T]) {
doCollected(collected, xs, "only", 1) { e =>
if (aggregating.containsOnly(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainOnlyElements" else "containedOnlyElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain inOrderOnly (1, 2)
* ^
*
*/
def inOrderOnly(right: Any*)(implicit aggregating: Aggregating[T]) {
doCollected(collected, xs, "inOrderOnly", 1) { e =>
if (aggregating.containsInOrderOnly(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainInOrderOnlyElements" else "containedInOrderOnlyElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain allOf (1, 2)
* ^
*
*/
def allOf(right: Any*)(implicit aggregating: Aggregating[T]) {
doCollected(collected, xs, "allOf", 1) { e =>
if (aggregating.containsAllOf(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainAllOfElements" else "containedAllOfElements",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* option should contain inOrder (1, 2)
* ^
*
*/
def inOrder(right: Any*)(implicit aggregating: Aggregating[T]) {
doCollected(collected, xs, "inOrder", 1) { e =>
if (aggregating.containsInOrder(e, right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainAllOfElementsInOrder" else "containedAllOfElementsInOrder",
e,
UnquotedString(right.map(FailureMessages.decorateToStringValue).mkString(", "))
),
None,
6
)
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
sealed class ResultOfBeWordForCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T], shouldBeTrue: Boolean) {
// TODO: Missing should(AMatcher) and should(AnMatcher)
/**
* This method enables the following syntax:
*
*
* all(xs) should be theSameInstanceAs anotherObject
* ^
*
*/
def theSameInstanceAs(right: AnyRef)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "theSameInstanceAs", 1) { e =>
if ((e eq right) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "wasNotSameInstanceAs" else "wasSameInstanceAs",
e,
right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should be a ('file)
* ^
*
*/
def a(symbol: Symbol)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "a", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, symbol, true, true)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
6
)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) should be an ('orange)
* ^
*
*/
def an(symbol: Symbol)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "an", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, symbol, true, false)
if (matcherResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue) matcherResult.failureMessage else matcherResult.negatedFailureMessage,
None,
6
)
}
}
}
/**
* This method enables the following syntax, where badBook is, for example, of type Book and
* goodRead refers to a BePropertyMatcher[Book]:
*
*
* all(books) should be a (goodRead)
* ^
*
*/
def a[U <: T](bePropertyMatcher: BePropertyMatcher[U])(implicit ev: T <:< AnyRef) { // TODO: Try supporting 2.10 AnyVals
doCollected(collected, xs, "a", 1) { e =>
val result = bePropertyMatcher(e.asInstanceOf[U])
if (result.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotA", e, UnquotedString(result.propertyName))
else
FailureMessages("wasA", e, UnquotedString(result.propertyName)),
None,
6
)
}
}
}
/**
* This method enables the following syntax, where badBook is, for example, of type Book and
* excellentRead refers to a BePropertyMatcher[Book]:
*
*
* all(books) should be an (excellentRead)
* ^
*
*/
def an[U <: T](beTrueMatcher: BePropertyMatcher[U])(implicit ev: T <:< AnyRef) { // TODO: Try supporting 2.10 AnyVals
doCollected(collected, xs, "an", 1) { e =>
val beTrueMatchResult = beTrueMatcher(e.asInstanceOf[U])
if (beTrueMatchResult.matches != shouldBeTrue) {
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotAn", e, UnquotedString(beTrueMatchResult.propertyName))
else
FailureMessages("wasAn", e, UnquotedString(beTrueMatchResult.propertyName)),
None,
6
)
}
}
}
/**
* This method enables the following syntax, where fraction is, for example, of type PartialFunction:
*
*
* all(xs) should be definedAt (6)
* ^
*
*/
def definedAt[U](right: U)(implicit ev: T <:< PartialFunction[U, _]) {
doCollected(collected, xs, "definedAt", 1) { e =>
if (e.isDefinedAt(right) != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("wasNotDefinedAt", e, right)
else
FailureMessages("wasDefinedAt", e, right),
None,
6
)
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfBeWordForCollectedArray[T](collected: Collected, xs: scala.collection.GenTraversable[Array[T]], shouldBeTrue: Boolean)
extends ResultOfBeWordForCollectedAny(collected, xs, shouldBeTrue) {
/**
* This method enables the following syntax:
*
*
* all(colOfArray) should be ('empty)
* ^
*
*/
def apply(right: Symbol): Matcher[Array[T]] =
new Matcher[Array[T]] {
def apply(left: Array[T]): MatchResult = matchSymbolToPredicateMethod(left.deep, right, false, false)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfContainWordForCollectedArray[T](collected: Collected, xs: scala.collection.GenTraversable[Array[T]], shouldBeTrue: Boolean) extends ResultOfContainWordForCollectedAny[Array[T]](collected, xs, shouldBeTrue) {
// TODO: This apply method looks very wrong
/**
* This method enables the following syntax:
*
*
* all(colOfArray) should contain (element)
* ^
*
*/
def apply(expectedElement: T): Matcher[Array[T]] =
new Matcher[Array[T]] {
def apply(left: Array[T]): MatchResult =
MatchResult(
left.exists(_ == expectedElement),
FailureMessages("didNotContainExpectedElement", left, expectedElement),
FailureMessages("containedExpectedElement", left, expectedElement)
)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
sealed class ResultOfCollectedAny[T](collected: Collected, xs: scala.collection.GenTraversable[T]) {
// TODO: shouldBe null works, b ut should be (null) does not when type is Any:
/*
scala> val ys = List(null, null, 1)
ys: List[Any] = List(null, null, 1)
scala> all (ys) shouldBe null
* all(xs) should be (3)
* ^
*
*/
def should(rightMatcher: Matcher[T]) {
doCollected(collected, xs, "should", 1) { e =>
rightMatcher(e) match {
case MatchResult(false, failureMessage, _, _, _) =>
throw newTestFailedException(failureMessage, None, 6)
case _ => ()
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all (xs) shouldEqual 7
* ^
*
*/
def shouldEqual(right: Any)(implicit equality: Equality[T]) {
doCollected(collected, xs, "shouldEqual", 1) { e =>
if (!equality.areEqual(e, right)) {
val (eee, rightee) = Suite.getObjectsForFailureMessage(e, right)
throw newTestFailedException(FailureMessages("didNotEqual", eee, rightee), None, 6)
}
}
}
/**
* This method enables syntax such as the following:
*
*
* result shouldEqual 7.1 +- 0.2
* ^
*
*/
def shouldEqual(interval: Interval[T]) {
doCollected(collected, xs, "shouldEqual", 1) { e =>
if (!interval.isWithin(e)) {
throw newTestFailedException(FailureMessages("didNotEqualPlusOrMinus", e, interval.pivot, interval.tolerance), None, 6)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) shouldBe sorted
* ^
*
*/
def shouldBe(sortedWord: SortedWord)(implicit sortable: Sortable[T]) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (!sortable.isSorted(e))
throw newTestFailedException(FailureMessages("wasNotSorted", e), None, 6)
}
}
/**
* This method enables syntax such as the following:
*
*
* result shouldEqual null
* ^
*
*/
def shouldEqual(right: Null)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "shouldEqual", 1) { e =>
if (e != null) {
throw newTestFailedException(FailureMessages("didNotEqualNull", e), None, 6)
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all(xs) should equal (3)
* ^
*
*/
def should[TYPECLASS1[_]](rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]) {
val rightMatcher = rightMatcherFactory1.matcher
doCollected(collected, xs, "should", 1) { e =>
rightMatcher(e) match {
case MatchResult(false, failureMessage, _, _, _) =>
throw newTestFailedException(failureMessage, None, 6)
case _ => ()
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all(xs) should (equal (expected) and have length 12)
* ^
*
*/
def should[TYPECLASS1[_], TYPECLASS2[_]](rightMatcherFactory2: MatcherFactory2[T, TYPECLASS1, TYPECLASS2])(implicit typeClass1: TYPECLASS1[T], typeClass2: TYPECLASS2[T]) {
val rightMatcher = rightMatcherFactory2.matcher
doCollected(collected, xs, "should", 1) { e =>
rightMatcher(e) match {
case MatchResult(false, failureMessage, _, _, _) =>
throw newTestFailedException(failureMessage, None, 6)
case _ => ()
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all(xs) should be theSameInstanceAs anotherObject
* ^
*
*/
def should(beWord: BeWord) = new ResultOfBeWordForCollectedAny[T](collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all(xs) should not equal (3)
* ^
*
*/
def should(notWord: NotWord): ResultOfNotWordForCollectedAny[T] =
new ResultOfNotWordForCollectedAny(collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all (results) should have length (3)
* ^
* all (results) should have size (3)
* ^
*
*/
def should(haveWord: HaveWord): ResultOfHaveWordForCollectedExtent[T] =
new ResultOfHaveWordForCollectedExtent(collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all (xs) shouldBe 7
* ^
*
*/
def shouldBe(right: Any) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (e != right) {
val (eee, rightee) = Suite.getObjectsForFailureMessage(e, right)
throw newTestFailedException(FailureMessages("wasNot", eee, rightee), None, 6)
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all(4, 5, 6) shouldBe < (7)
* ^
*
*/
def shouldBe(comparison: ResultOfLessThanComparison[T]) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (!comparison(e)) {
throw newTestFailedException(
FailureMessages(
"wasNotLessThan",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all(4, 5, 6) shouldBe <= (7)
* ^
*
*/
def shouldBe(comparison: ResultOfLessThanOrEqualToComparison[T]) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (!comparison(e)) {
throw newTestFailedException(
FailureMessages(
"wasNotLessThanOrEqualTo",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all(8, 9, 10) shouldBe > (7)
* ^
*
*/
def shouldBe(comparison: ResultOfGreaterThanComparison[T]) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (!comparison(e)) {
throw newTestFailedException(
FailureMessages(
"wasNotGreaterThan",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all(8, 9, 10) shouldBe >= (7)
* ^
*
*/
def shouldBe(comparison: ResultOfGreaterThanOrEqualToComparison[T]) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (!comparison(e)) {
throw newTestFailedException(
FailureMessages(
"wasNotGreaterThanOrEqualTo",
e,
comparison.right
),
None,
6
)
}
}
}
/**
* This method enables the following syntax, where odd refers to a BeMatcher[Int]:
*
* testing
* all(xs) shouldBe odd
* ^
*
*/
def shouldBe(beMatcher: BeMatcher[T]) {
doCollected(collected, xs, "shouldBe", 1) { e =>
val result = beMatcher.apply(e)
if (!result.matches)
throw newTestFailedException(result.failureMessage, None, 6)
}
}
/**
* This method enables syntax such as the following:
*
*
* all(xs) shouldBe 7.1 +- 0.2
* ^
*
*/
def shouldBe(interval: Interval[T]) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (!interval.isWithin(e))
throw newTestFailedException(FailureMessages("wasNotPlusOrMinus", e, interval.pivot, interval.tolerance), None, 6)
}
}
/**
* This method enables syntax such as the following:
*
*
* all(xs) shouldBe theSameInstanceAs (anotherObject)
* ^
*
*/
def shouldBe(resultOfSameInstanceAsApplication: ResultOfTheSameInstanceAsApplication)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (e ne resultOfSameInstanceAsApplication.right)
throw newTestFailedException(
FailureMessages(
"wasNotSameInstanceAs",
e,
resultOfSameInstanceAsApplication.right
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) shouldBe 'empty
* ^
*
*/
def shouldBe(symbol: Symbol)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "shouldBe", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, symbol, false, true, 6)
if (!matcherResult.matches)
throw newTestFailedException(matcherResult.failureMessage, None, 6)
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) shouldBe a ('empty)
* ^
*
*/
def shouldBe(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "shouldBe", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, resultOfAWordApplication.symbol, true, true, 6)
if (!matcherResult.matches) {
throw newTestFailedException(matcherResult.failureMessage, None, 6)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) shouldBe an ('empty)
* ^
*
*/
def shouldBe(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "shouldBe", 1) { e =>
val matcherResult = matchSymbolToPredicateMethod(e, resultOfAnWordApplication.symbol, true, false, 6)
if (!matcherResult.matches) {
throw newTestFailedException(matcherResult.failureMessage, None, 6)
}
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) shouldBe null
* ^
*
*/
def shouldBe(o: Null)(implicit ev: T <:< AnyRef) {
doCollected(collected, xs, "shouldBe", 1) { e =>
if (e != null)
throw newTestFailedException(FailureMessages("wasNotNull", e), None, 6)
}
}
/**
* This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:
*
*
* all(xs) shouldBe excellentRead
* ^
*
*/
def shouldBe[U <: T](bePropertyMatcher: BePropertyMatcher[U])(implicit ev: T <:< AnyRef) { // TODO: Try supporting this with 2.10 AnyVals
doCollected(collected, xs, "shouldBe", 1) { e =>
val result = bePropertyMatcher(e.asInstanceOf[U])
if (!result.matches)
throw newTestFailedException(FailureMessages("wasNot", e, UnquotedString(result.propertyName)), None, 6)
}
}
/**
* This method enables the following syntax, where goodRead refers to a BePropertyMatcher[Book]:
*
*
* all(xs) shouldBe a (goodRead)
* ^
*
*/
def shouldBe[U <: T](resultOfAWordApplication: ResultOfAWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try supporting this with 2.10 AnyVals
doCollected(collected, xs, "shouldBe", 1) { e =>
val result = resultOfAWordApplication.bePropertyMatcher(e.asInstanceOf[U])
if (!result.matches)
throw newTestFailedException(FailureMessages("wasNotA", e, UnquotedString(result.propertyName)), None, 6)
}
}
/**
* This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:
*
*
* all(xs) shouldBe an (excellentRead)
* ^
*
*/
def shouldBe[U <: T](resultOfAnWordApplication: ResultOfAnWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try supporting this with 2.10 AnyVals
doCollected(collected, xs, "shouldBe", 1) { e =>
val result = resultOfAnWordApplication.bePropertyMatcher(e.asInstanceOf[U])
if (!result.matches)
throw newTestFailedException(FailureMessages("wasNotAn", e, UnquotedString(result.propertyName)), None, 6)
}
}
/**
* This method enables syntax such as the following:
*
*
* all(xs) shouldNot (be (3))
* ^
*
*/
def shouldNot[U <: T](rightMatcherX1: Matcher[U]) {
doCollected(collected, xs, "shouldNot", 1) { e =>
val result =
try rightMatcherX1.apply(e.asInstanceOf[U])
catch {
case tfe: TestFailedException =>
throw newTestFailedException(tfe.getMessage, tfe.cause, 6)
}
if (result.matches)
throw newTestFailedException(result.negatedFailureMessage, None, 6)
}
}
def shouldNot[TYPECLASS1[_]](rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]) {
val rightMatcher = rightMatcherFactory1.matcher
doCollected(collected, xs, "shouldNot", 1) { e =>
rightMatcher(e) match {
case MatchResult(true, _, negatedFailureMessage, _, _) =>
throw newTestFailedException(negatedFailureMessage, None, 6)
case _ => ()
}
}
}
/**
* This method enables syntax such as the following:
*
*
* all (xs) should === (b)
* ^
*
*/
def should[U](inv: TripleEqualsInvocation[U])(implicit constraint: EqualityConstraint[T, U]) {
doCollected(collected, xs, "should", 1) { e =>
if ((constraint.areEqual(e, inv.right)) != inv.expectingEqual)
throw newTestFailedException(
FailureMessages(
if (inv.expectingEqual) "didNotEqual" else "equaled",
e,
inv.right
),
None,
6
)
}
}
/**
* This method enables syntax such as the following:
*
*
* all (xs) should === (100 +- 1)
* ^
*
*/
def should(inv: TripleEqualsInvocationOnInterval[T])(implicit ev: Numeric[T]) {
doCollected(collected, xs, "should", 1) { e =>
if ((inv.interval.isWithin(e)) != inv.expectingEqual)
throw newTestFailedException(
FailureMessages(
if (inv.expectingEqual) "didNotEqualPlusOrMinus" else "equaledPlusOrMinus",
e,
inv.interval.pivot,
inv.interval.tolerance
),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(xs) shouldNot be theSameInstanceAs anotherInstance
* ^
*
*/
def shouldNot(beWord: BeWord): ResultOfBeWordForCollectedAny[T] =
new ResultOfBeWordForCollectedAny[T](collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all (xs) should contain oneOf (1, 2, 3)
* ^
*
*/
def should(containWord: ContainWord): ResultOfContainWordForCollectedAny[T] = {
new ResultOfContainWordForCollectedAny(collected, xs, true)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
*/
final class ResultOfHaveWordForCollectedExtent[A](collected: Collected, xs: scala.collection.GenTraversable[A], shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* all (xs) should have length (12)
* ^
*
*/
def length(expectedLength: Long)(implicit len: Length[A]) {
doCollected(collected, xs, "length", 1) { e =>
val eLength = len.lengthOf(e)
if ((eLength == expectedLength) != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("hadLengthInsteadOfExpectedLength", e, eLength, expectedLength)
else
FailureMessages("hadExpectedLength", e, expectedLength),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all (xs) should have size (12)
* ^
*
*/
def size(expectedSize: Long)(implicit sz: Size[A]) {
doCollected(collected, xs, "size", 1) { e =>
val eSize = sz.sizeOf(e)
if ((eSize == expectedSize) != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue)
FailureMessages("hadSizeInsteadOfExpectedSize", e, eSize, expectedSize)
else
FailureMessages("hadExpectedSize", e, expectedSize),
None,
6
)
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String]) extends ResultOfCollectedAny(collected, xs) {
/**
* This method enables syntax such as the following:
*
*
* all(string) should not have length (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForCollectedString =
new ResultOfNotWordForCollectedString(collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all(string) should startWith regex ("Hel*o")
* ^
*
*/
def should(startWithWord: StartWithWord): ResultOfStartWithWordForCollectedString =
new ResultOfStartWithWordForCollectedString(collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all(string) should endWith regex ("wo.ld")
* ^
*
*/
def should(endWithWord: EndWithWord): ResultOfEndWithWordForCollectedString =
new ResultOfEndWithWordForCollectedString(collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all(string) should include regex ("wo.ld")
* ^
*
*/
def should(includeWord: IncludeWord): ResultOfIncludeWordForCollectedString =
new ResultOfIncludeWordForCollectedString(collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all(string) should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
* ^
*
*/
def should(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForCollectedString =
new ResultOfFullyMatchWordForCollectedString(collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all(string) shouldNot fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
* ^
*
*/
def shouldNot(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForCollectedString =
new ResultOfFullyMatchWordForCollectedString(collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all(string) shouldNot startWith regex ("Hel*o")
* ^
*
*/
def shouldNot(startWithWord: StartWithWord): ResultOfStartWithWordForCollectedString =
new ResultOfStartWithWordForCollectedString(collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all(string) shouldNot endWith regex ("wo.ld")
* ^
*
*/
def shouldNot(endWithWord: EndWithWord): ResultOfEndWithWordForCollectedString =
new ResultOfEndWithWordForCollectedString(collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all(string) shouldNot include regex ("wo.ld")
* ^
*
*/
def shouldNot(includeWord: IncludeWord): ResultOfIncludeWordForCollectedString =
new ResultOfIncludeWordForCollectedString(collected, xs, false)
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfStartWithWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* all(string) should startWith regex ("Hel*o")
* ^
*
*/
def regex(rightRegexString: String) { checkRegex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* all(string) should fullMatch regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) }
/**
* This method enables the following syntax:
*
*
* all(string) should startWith regex ("Hel*o".r)
* ^
*
*/
def regex(rightRegex: Regex) { checkRegex(rightRegex) }
def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) {
doCollected(collected, xs, "regex", 2) { e =>
val result = startWithRegexWithGroups(e, rightRegex, groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage,
None,
7
)
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfIncludeWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* all(string) should include regex ("world")
* ^
*
*/
def regex(rightRegexString: String) { checkRegex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* all(string) should include regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) }
/**
* This method enables the following syntax:
*
*
* all(string) should include regex ("wo.ld".r)
* ^
*
*/
def regex(rightRegex: Regex) { checkRegex(rightRegex) }
private def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) {
doCollected(collected, xs, "regex", 2) { e =>
val result = includeRegexWithGroups(e, rightRegex, groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage,
None,
7
)
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfEndWithWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* all(string) should endWith regex ("wor.d")
* ^
*
*/
def regex(rightRegexString: String) { checkRegex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* all(string) should endWith regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) }
/**
* This method enables the following syntax:
*
*
* all(string) should endWith regex ("wor.d".r)
* ^
*
*/
def regex(rightRegex: Regex) { checkRegex(rightRegex) }
private def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) {
doCollected(collected, xs, "regex", 2) { e =>
val result = endWithRegexWithGroups(e, rightRegex, groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage,
None,
7
)
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfFullyMatchWordForCollectedString(collected: Collected, xs: scala.collection.GenTraversable[String], shouldBeTrue: Boolean) {
/**
* This method enables the following syntax:
*
*
* all(string) should fullMatch regex ("Hel*o world")
* ^
*
*/
def regex(rightRegexString: String) { checkRegex(rightRegexString.r) }
/**
* This method enables the following syntax:
*
*
* all(string) should fullMatch regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def regex(regexWithGroups: RegexWithGroups) { checkRegex(regexWithGroups.regex, regexWithGroups.groups) }
/**
* This method enables the following syntax:
*
*
* all(string) should fullymatch regex ("Hel*o world".r)
* ^
*
*/
def regex(rightRegex: Regex) { checkRegex(rightRegex) }
private def checkRegex(rightRegex: Regex, groups: IndexedSeq[String] = IndexedSeq.empty) {
doCollected(collected, xs, "regex", 2) { e =>
val result = fullyMatchRegexWithGroups(e, rightRegex, groups)
if (result.matches != shouldBeTrue)
throw newTestFailedException(
if (shouldBeTrue) result.failureMessage else result.negatedFailureMessage,
None,
7
)
}
}
}
// TODO add loneElement
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfCollectedGenTraversable[E, C[_] <: scala.collection.GenTraversable[_]](collected: Collected, xs: scala.collection.GenTraversable[C[E]]) extends ResultOfCollectedAny(collected, xs) {
/**
* This method enables syntax such as the following:
*
*
* all(colOfTraversable) should not have size (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForCollectedGenTraversable[E, C] =
new ResultOfNotWordForCollectedGenTraversable(collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all(colOfTraversable) should contain (containMatcher)
* ^
*
*/
override def should(containWord: ContainWord): ResultOfContainWordForCollectedGenTraversable[E, C] =
new ResultOfContainWordForCollectedGenTraversable(collected, xs, true)
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfContainWordForCollectedGenTraversable[E, C[_] <: scala.collection.GenTraversable[_]](collected: Collected, xs: scala.collection.GenTraversable[C[E]], shouldBeTrue: Boolean) extends ResultOfContainWordForCollectedAny[C[E]](collected, xs, shouldBeTrue)
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfCollectedArray[T](collected: Collected, xs: scala.collection.GenTraversable[Array[T]]) extends ResultOfCollectedAny(collected, xs) {
/**
* This method enables syntax such as the following:
*
*
* all(colOfArray) should be theSameInstanceAs anotherObject
* ^
*
*/
override def should(beWord: BeWord) = new ResultOfBeWordForCollectedArray(collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all(colOfArray) should not have size (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForCollectedArray[T, Array[T]] =
new ResultOfNotWordForCollectedArray(collected, xs, false)
/**
* This method enables syntax such as the following:
*
*
* all(colOfArray) should contain (containMatcher)
* ^
*
*/
override def should(containWord: ContainWord): ResultOfContainWordForCollectedArray[T] =
new ResultOfContainWordForCollectedArray(collected, xs, true)
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfCollectedGenMap[K, V](collected: Collected, xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) extends ResultOfCollectedAny(collected, xs) {
/**
* This method enables syntax such as the following:
*
*
* all(colOfMap) should contain key (10)
* ^
*
*/
override def should(containWord: ContainWord): ResultOfContainWordForCollectedGenMap[K, V] =
new ResultOfContainWordForCollectedGenMap(collected, xs, true)
/**
* This method enables syntax such as the following:
*
*
* all(colOfMap) should not have size (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForCollectedGenMap[K, V, scala.collection.GenMap[K, V]] =
new ResultOfNotWordForCollectedGenMap(collected, xs, false)
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of
* the matchers DSL.
*
* @author Bill Venners
* @author Chee Seng
*/
final class ResultOfContainWordForCollectedGenMap[K, V](collected: Collected, xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]], shouldBeTrue: Boolean) extends ResultOfContainWordForCollectedAny[scala.collection.GenMap[K, V]](collected, xs, shouldBeTrue) {
/**
* This method enables the following syntax:
*
*
* all(colOfMap) should contain key ("one")
* ^
*
*/
def key(expectedKey: K) {
doCollected(collected, xs, "key", 1) { e =>
if (e.exists(_._1 == expectedKey) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainKey" else "containedKey",
e,
expectedKey),
None,
6
)
}
}
/**
* This method enables the following syntax:
*
*
* all(colOfMap) should contain value (1)
* ^
*
*/
def value(expectedValue: V) {
doCollected(collected, xs, "value", 1) { e =>
if (e.exists(expectedValue == _._2) != shouldBeTrue)
throw newTestFailedException(
FailureMessages(
if (shouldBeTrue) "didNotContainValue" else "containedValue",
e,
expectedValue),
None,
6
)
}
}
}
def all[T](xs: scala.collection.GenTraversable[T]): ResultOfCollectedAny[T] =
new ResultOfCollectedAny(AllCollected, xs)
def all(xs: scala.collection.GenTraversable[String]): ResultOfCollectedString =
new ResultOfCollectedString(AllCollected, xs)
def all[E, C[_] <: scala.collection.GenTraversable[_]](xs: scala.collection.GenTraversable[C[E]]) =
new ResultOfCollectedGenTraversable(AllCollected, xs)
def all[T](xs: scala.collection.GenTraversable[Array[T]]) =
new ResultOfCollectedArray(AllCollected, xs)
def all[K, V](xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) =
new ResultOfCollectedGenMap(AllCollected, xs)
def atLeast[T](num: Int, xs: scala.collection.GenTraversable[T]): ResultOfCollectedAny[T] =
new ResultOfCollectedAny(AtLeastCollected(num), xs)
def atLeast(num: Int, xs: scala.collection.GenTraversable[String]): ResultOfCollectedString =
new ResultOfCollectedString(AtLeastCollected(num), xs)
def atLeast[E, C[_] <: scala.collection.GenTraversable[_]](num: Int, xs: scala.collection.GenTraversable[C[E]]) =
new ResultOfCollectedGenTraversable(AtLeastCollected(num), xs)
def atLeast[T](num: Int, xs: scala.collection.GenTraversable[Array[T]]) =
new ResultOfCollectedArray(AtLeastCollected(num), xs)
def atLeast[K, V](num: Int, xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) =
new ResultOfCollectedGenMap(AtLeastCollected(num), xs)
def every[T](xs: scala.collection.GenTraversable[T]): ResultOfCollectedAny[T] =
new ResultOfCollectedAny(EveryCollected, xs)
def every(xs: scala.collection.GenTraversable[String]): ResultOfCollectedString =
new ResultOfCollectedString(EveryCollected, xs)
def every[E, C[_] <: scala.collection.GenTraversable[_]](xs: scala.collection.GenTraversable[C[E]]) =
new ResultOfCollectedGenTraversable(EveryCollected, xs)
def every[T](xs: scala.collection.GenTraversable[Array[T]]) =
new ResultOfCollectedArray(EveryCollected, xs)
def every[K, V](xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) =
new ResultOfCollectedGenMap(EveryCollected, xs)
def exactly[T](num: Int, xs: scala.collection.GenTraversable[T]): ResultOfCollectedAny[T] =
new ResultOfCollectedAny(ExactlyCollected(num), xs)
def exactly(num: Int, xs: scala.collection.GenTraversable[String]): ResultOfCollectedString =
new ResultOfCollectedString(ExactlyCollected(num), xs)
def exactly[E, C[_] <: scala.collection.GenTraversable[_]](num: Int, xs: scala.collection.GenTraversable[C[E]]) =
new ResultOfCollectedGenTraversable(ExactlyCollected(num), xs)
def exactly[T](num: Int, xs: scala.collection.GenTraversable[Array[T]]) =
new ResultOfCollectedArray(ExactlyCollected(num), xs)
def exactly[K, V](num: Int, xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) =
new ResultOfCollectedGenMap(ExactlyCollected(num), xs)
def no[T](xs: scala.collection.GenTraversable[T]): ResultOfCollectedAny[T] =
new ResultOfCollectedAny(NoCollected, xs)
def no(xs: scala.collection.GenTraversable[String]): ResultOfCollectedString =
new ResultOfCollectedString(NoCollected, xs)
def no[E, C[_] <: scala.collection.GenTraversable[_]](xs: scala.collection.GenTraversable[C[E]]) =
new ResultOfCollectedGenTraversable(NoCollected, xs)
def no[T](xs: scala.collection.GenTraversable[Array[T]]) =
new ResultOfCollectedArray(NoCollected, xs)
def no[K, V](xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) =
new ResultOfCollectedGenMap(NoCollected, xs)
def between[T](from: Int, upTo:Int, xs: scala.collection.GenTraversable[T]): ResultOfCollectedAny[T] =
new ResultOfCollectedAny(BetweenCollected(from, upTo), xs)
def between(from: Int, upTo:Int, xs: scala.collection.GenTraversable[String]): ResultOfCollectedString =
new ResultOfCollectedString(BetweenCollected(from, upTo), xs)
def between[E, C[_] <: scala.collection.GenTraversable[_]](from: Int, upTo:Int, xs: scala.collection.GenTraversable[C[E]]) =
new ResultOfCollectedGenTraversable(BetweenCollected(from, upTo), xs)
def between[T](from: Int, upTo:Int, xs: scala.collection.GenTraversable[Array[T]]) =
new ResultOfCollectedArray(BetweenCollected(from, upTo), xs)
def between[K, V](from: Int, upTo:Int, xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) =
new ResultOfCollectedGenMap(BetweenCollected(from, upTo), xs)
def atMost[T](num: Int, xs: scala.collection.GenTraversable[T]): ResultOfCollectedAny[T] =
new ResultOfCollectedAny(AtMostCollected(num), xs)
def atMost(num: Int, xs: scala.collection.GenTraversable[String]): ResultOfCollectedString =
new ResultOfCollectedString(AtMostCollected(num), xs)
def atMost[E, C[_] <: scala.collection.GenTraversable[_]](num: Int, xs: scala.collection.GenTraversable[C[E]]) =
new ResultOfCollectedGenTraversable(AtMostCollected(num), xs)
def atMost[T](num: Int, xs: scala.collection.GenTraversable[Array[T]]) =
new ResultOfCollectedArray(AtMostCollected(num), xs)
def atMost[K, V](num: Int, xs: scala.collection.GenTraversable[scala.collection.GenMap[K, V]]) =
new ResultOfCollectedGenMap(AtMostCollected(num), xs)
// This is where ShouldMatchers.scala started
private object ShouldMethodHelper {
def shouldMatcher[T](left: T, rightMatcher: Matcher[T], stackDepthAdjustment: Int = 0) {
rightMatcher(left) match {
case MatchResult(false, failureMessage, _, _, _) => throw newTestFailedException(failureMessage, None, stackDepthAdjustment)
case _ => ()
}
}
def shouldNotMatcher[T](left: T, rightMatcher: Matcher[T], stackDepthAdjustment: Int = 0) {
rightMatcher(left) match {
case MatchResult(true, _, negatedFailureMessage, _, _) => throw newTestFailedException(negatedFailureMessage, None, stackDepthAdjustment)
case _ => ()
}
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable should methods to
* be invoked on objects of type Any.
*
* result should be (3)
* ^
*
*/
def should(rightMatcherX1: Matcher[T]) {
ShouldMethodHelper.shouldMatcher(left, rightMatcherX1)
}
/**
* This method enables syntax such as the following:
*
*
* result should equal (3)
* ^
*
*/
def should[TYPECLASS1[_]](rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]) {
ShouldMethodHelper.shouldMatcher(left, rightMatcherFactory1.matcher)
}
/**
* This method enables syntax such as the following:
*
*
* result should (equal (expected) and have length 3)
* ^
*
*/
def should[TYPECLASS1[_], TYPECLASS2[_]](rightMatcherFactory2: MatcherFactory2[T, TYPECLASS1, TYPECLASS2])(implicit typeClass1: TYPECLASS1[T], typeClass2: TYPECLASS2[T]) {
ShouldMethodHelper.shouldMatcher(left, rightMatcherFactory2.matcher)
}
/**
* This method enables syntax such as the following:
*
*
* a shouldEqual b
* ^
*
*/
def shouldEqual(right: Any)(implicit equality: Equality[T]) {
if (!equality.areEqual(left, right)) {
val (leftee, rightee) = Suite.getObjectsForFailureMessage(left, right)
throw newTestFailedException(FailureMessages("didNotEqual", leftee, rightee))
}
}
/**
* This method enables syntax such as the following:
*
*
* result shouldEqual 7.1 +- 0.2
* ^
*
*/
def shouldEqual(interval: Interval[T]) {
if (!interval.isWithin(left)) {
throw newTestFailedException(FailureMessages("didNotEqualPlusOrMinus", left, interval.pivot, interval.tolerance))
}
}
/**
* This method enables syntax such as the following:
*
*
* result shouldEqual null
* ^
*
*/
def shouldEqual(right: Null)(implicit ev: T <:< AnyRef) {
if (left != null) {
throw newTestFailedException(FailureMessages("didNotEqualNull", left))
}
}
/**
* This method enables syntax such as the following:
*
*
* result should not equal (3)
* ^
*
*/
def should(notWord: NotWord): ResultOfNotWordForAny[T] = new ResultOfNotWordForAny[T](left, false)
// In 2.10, will work with AnyVals. TODO: Also, Need to ensure Char works
/**
* This method enables syntax such as the following:
*
*
* a should === (b)
* ^
*
*/
def should[U](inv: TripleEqualsInvocation[U])(implicit constraint: EqualityConstraint[T, U]) {
if ((constraint.areEqual(left, inv.right)) != inv.expectingEqual)
throw newTestFailedException(
FailureMessages(
if (inv.expectingEqual) "didNotEqual" else "equaled",
left,
inv.right
)
)
}
/**
* This method enables syntax such as the following:
*
*
* result should === (100 +- 1)
* ^
*
*/
def should(inv: TripleEqualsInvocationOnInterval[T])(implicit ev: Numeric[T]) {
if ((inv.interval.isWithin(left)) != inv.expectingEqual)
throw newTestFailedException(
FailureMessages(
if (inv.expectingEqual) "didNotEqualPlusOrMinus" else "equaledPlusOrMinus",
left,
inv.interval.pivot,
inv.interval.tolerance
)
)
}
// TODO: Need to make sure this works in inspector shorthands. I moved this
// up here from NumericShouldWrapper.
/**
* This method enables syntax such as the following:
*
*
* result should be a aMatcher
* ^
*
*/
def should(beWord: BeWord): ResultOfBeWordForAny[T] = new ResultOfBeWordForAny(left, true)
/**
* This method enables syntax such as the following:
*
*
* aDouble shouldBe 8.8
* ^
*
*/
def shouldBe(right: T) {
if (!areEqualComparingArraysStructurally(left, right)) {
val (leftee, rightee) = Suite.getObjectsForFailureMessage(left, right)
throw newTestFailedException(FailureMessages("wasNotEqualTo", leftee, rightee))
}
}
/**
* This method enables syntax such as the following:
*
*
* 5 shouldBe < (7)
* ^
*
*/
def shouldBe(comparison: ResultOfLessThanComparison[T]) {
if (!comparison(left)) {
throw newTestFailedException(
FailureMessages(
"wasNotLessThan",
left,
comparison.right
)
)
}
}
/**
* This method enables syntax such as the following:
*
*
* 8 shouldBe > (7)
* ^
*
*/
def shouldBe(comparison: ResultOfGreaterThanComparison[T]) {
if (!comparison(left)) {
throw newTestFailedException(
FailureMessages(
"wasNotGreaterThan",
left,
comparison.right
)
)
}
}
/**
* This method enables syntax such as the following:
*
*
* 5 shouldBe <= (7)
* ^
*
*/
def shouldBe(comparison: ResultOfLessThanOrEqualToComparison[T]) {
if (!comparison(left)) {
throw newTestFailedException(
FailureMessages(
"wasNotLessThanOrEqualTo",
left,
comparison.right
)
)
}
}
/**
* This method enables syntax such as the following:
*
*
* 8 shouldBe >= (7)
* ^
*
*/
def shouldBe(comparison: ResultOfGreaterThanOrEqualToComparison[T]) {
if (!comparison(left)) {
throw newTestFailedException(
FailureMessages(
"wasNotGreaterThanOrEqualTo",
left,
comparison.right
)
)
}
}
/**
* This method enables the following syntax, where odd refers to a BeMatcher[Int]:
*
* testing
* 1 shouldBe odd
* ^
*
*/
def shouldBe(beMatcher: BeMatcher[T]) {
val result = beMatcher.apply(left)
if (!result.matches)
throw newTestFailedException(result.failureMessage)
}
/**
* This method enables syntax such as the following:
*
*
* result shouldBe 7.1 +- 0.2
* ^
*
*/
def shouldBe(interval: Interval[T]) {
if (!interval.isWithin(left)) {
throw newTestFailedException(FailureMessages("wasNotPlusOrMinus", left, interval.pivot, interval.tolerance))
}
}
/**
* This method enables syntax such as the following:
*
*
* result shouldBe sorted
* ^
*
*/
def shouldBe(right: SortedWord)(implicit sortable: Sortable[T]) {
if (!sortable.isSorted(left))
throw newTestFailedException(FailureMessages("wasNotSorted", left))
}
/**
* This method enables syntax such as the following:
*
*
* result shouldNot be (3)
* ^
*
*/
def shouldNot(beWord: BeWord): ResultOfBeWordForAny[T] = new ResultOfBeWordForAny(left, false)
/**
* This method enables syntax such as the following:
*
*
* result shouldNot (be (3))
* ^
*
*/
def shouldNot(rightMatcherX1: Matcher[T]) {
ShouldMethodHelper.shouldNotMatcher(left, rightMatcherX1)
}
/**
* This method enables syntax such as the following:
*
*
* result should have length (3)
* ^
* result should have size (3)
* ^
*
*/
def should(haveWord: HaveWord): ResultOfHaveWordForExtent[T] =
new ResultOfHaveWordForExtent(left, true)
/**
* This method enables syntax such as the following:
*
*
* result shouldBe null
* ^
*
*/
def shouldBe(right: Null)(implicit ev: T <:< AnyRef) {
if (left != null) {
throw newTestFailedException(FailureMessages("wasNotNull", left))
}
}
/**
* This method enables syntax such as the following:
*
*
* result shouldBe theSameInstanceAs (anotherObject)
* ^
*
*/
def shouldBe(resultOfSameInstanceAsApplication: ResultOfTheSameInstanceAsApplication)(implicit ev: T <:< AnyRef) {
if (resultOfSameInstanceAsApplication.right ne left) {
throw newTestFailedException(
FailureMessages(
"wasNotSameInstanceAs",
left,
resultOfSameInstanceAsApplication.right
)
)
}
}
// TODO: Remember to write tests for inspector shorthands uncovering the bug below, always a empty because always true true passed to matchSym
/**
* This method enables the following syntax:
*
*
* list shouldBe 'empty
* ^
*
*/
def shouldBe(symbol: Symbol)(implicit ev: T <:< AnyRef) {
val matcherResult = matchSymbolToPredicateMethod(left, symbol, false, true)
if (!matcherResult.matches)
throw newTestFailedException(matcherResult.failureMessage)
}
/**
* This method enables the following syntax:
*
*
* list shouldBe a ('empty)
* ^
*
*/
def shouldBe(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
val matcherResult = matchSymbolToPredicateMethod(left, resultOfAWordApplication.symbol, true, true)
if (!matcherResult.matches) {
throw newTestFailedException(
matcherResult.failureMessage
)
}
}
/**
* This method enables the following syntax:
*
*
* list shouldBe an ('empty)
* ^
*
*/
def shouldBe(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit ev: T <:< AnyRef) {
val matcherResult = matchSymbolToPredicateMethod(left, resultOfAnWordApplication.symbol, true, false)
if (!matcherResult.matches) {
throw newTestFailedException(
matcherResult.failureMessage
)
}
}
/**
* This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:
*
*
* programmingInScala shouldBe excellentRead
* ^
*
*/
def shouldBe(bePropertyMatcher: BePropertyMatcher[T])(implicit ev: T <:< AnyRef) { // TODO: Try expanding this to 2.10 AnyVal
val result = bePropertyMatcher(left)
if (!result.matches)
throw newTestFailedException(FailureMessages("wasNot", left, UnquotedString(result.propertyName)))
}
/**
* This method enables the following syntax, where goodRead refers to a BePropertyMatcher[Book]:
*
*
* programmingInScala shouldBe a (goodRead)
* ^
*
*/
def shouldBe[U >: T](resultOfAWordApplication: ResultOfAWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try expanding this to 2.10 AnyVal
val result = resultOfAWordApplication.bePropertyMatcher(left)
if (!result.matches) {
throw newTestFailedException(FailureMessages("wasNotA", left, UnquotedString(result.propertyName)))
}
}
/**
* This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:
*
*
* programmingInScala shouldBe an (excellentRead)
* ^
*
*/
def shouldBe[U >: T](resultOfAnWordApplication: ResultOfAnWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef) {// TODO: Try expanding this to 2.10 AnyVal
val result = resultOfAnWordApplication.bePropertyMatcher(left)
if (!result.matches) {
throw newTestFailedException(FailureMessages("wasNotAn", left, UnquotedString(result.propertyName)))
}
}
/*
def shouldBe[U](right: AType[U]) {
if (!right.isAssignableFromClassOf(left)) {
throw newTestFailedException(FailureMessages("wasNotAnInstanceOf", left, UnquotedString(right.className)))
}
}
*/
/**
* This method enables syntax such as the following:
*
*
* xs should contain oneOf (1, 2, 3)
* ^
*
*/
def should(containWord: ContainWord): ResultOfContainWord[T] = {
new ResultOfContainWord(left, true)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable should methods to
* be invoked on Strings.
*
* string should include regex ("hi")
* ^
*
*/
def should(includeWord: IncludeWord): ResultOfIncludeWordForString = {
new ResultOfIncludeWordForString(left, true)
}
/**
* This method enables syntax such as the following:
*
*
* string should startWith regex ("hello")
* ^
*
*/
def should(startWithWord: StartWithWord): ResultOfStartWithWordForString = {
new ResultOfStartWithWordForString(left, true)
}
/**
* This method enables syntax such as the following:
*
*
* string should endWith regex ("world")
* ^
*
*/
def should(endWithWord: EndWithWord): ResultOfEndWithWordForString = {
new ResultOfEndWithWordForString(left, true)
}
/**
* This method enables syntax such as the following:
*
*
* string should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
* ^
*
*/
def should(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString = {
new ResultOfFullyMatchWordForString(left, true)
}
/**
* This method enables syntax such as the following:
*
*
* string should not have length (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForString = {
new ResultOfNotWordForString(left, false)
}
/**
* This method enables syntax such as the following:
*
*
* string should fullyMatch regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def withGroup(group: String) =
new RegexWithGroups(left.r, IndexedSeq(group))
/**
* This method enables syntax such as the following:
*
*
* string should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
* ^
*
*/
def withGroups(groups: String*) =
new RegexWithGroups(left.r, IndexedSeq(groups: _*))
/**
* This method enables syntax such as the following:
*
*
* string shouldNot fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
* ^
*
*/
def shouldNot(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString =
new ResultOfFullyMatchWordForString(left, false)
/**
* This method enables syntax such as the following:
*
*
* string shouldNot startWith regex ("hello")
* ^
*
*/
def shouldNot(startWithWord: StartWithWord): ResultOfStartWithWordForString =
new ResultOfStartWithWordForString(left, false)
/**
* This method enables syntax such as the following:
*
*
* string shouldNot endWith regex ("world")
* ^
*
*/
def shouldNot(endWithWord: EndWithWord): ResultOfEndWithWordForString =
new ResultOfEndWithWordForString(left, false)
/**
* This method enables syntax such as the following:
*
*
* string shouldNot include regex ("hi")
* ^
*
*/
def shouldNot(includeWord: IncludeWord): ResultOfIncludeWordForString =
new ResultOfIncludeWordForString(left, false)
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable withGroup and withGroups methods to
* be invoked on Regexs.
*
* regex should fullyMatch regex ("a(b*)c" withGroup "bb")
* ^
*
*/
def withGroup(group: String) =
new RegexWithGroups(regex, IndexedSeq(group))
/**
* This method enables syntax such as the following:
*
*
* regex should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
* ^
*
*/
def withGroups(groups: String*) =
new RegexWithGroups(regex, IndexedSeq(groups: _*))
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable should methods to
* be invoked on objects of type scala.Array[T].
*
positiveNumber is a AMatcher:
*
*
* array should contain a positiveNumber
* ^
*
*/
override def should(containWord: ContainWord) =
new ResultOfContainWordForArray[E](left, true)
/**
* This method enables syntax such as the following:
*
*
* array should not have length (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForArray[E] =
new ResultOfNotWordForArray(left, false)
}
// TODO: Am I doing conversions on immutable.GenTraversable and immutable.GenSeq? If so, write a test that fails and make it general.
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable should methods to
* be invoked on objects of type scala.collection.GenMap[K, V].
*
* map should contain key (10)
* ^
*
*/
override def should(containWord: ContainWord): ResultOfContainWordForMap[K, V, L] = {
new ResultOfContainWordForMap(left.asInstanceOf[GenMap[K, V]], true)
}
/**
* This method enables syntax such as the following:
*
*
* map should not have size (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForGenMap[K, V, L] = {
new ResultOfNotWordForGenMap(left.asInstanceOf[L[K, V]], false)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable should methods to
* be invoked on objects of type scala.Collection[T].
*
* traversable should contain theSameElementsAs anotherTraversable
* ^
*
*/
override def should(containWord: ContainWord): ResultOfContainWordForTraversable[E, L] =
new ResultOfContainWordForTraversable(left.asInstanceOf[scala.collection.GenTraversable[E]], true)
/**
* This method enables syntax such as the following:
*
*
* traversable should not have size (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForGenTraversable[E, L] =
new ResultOfNotWordForGenTraversable(left, false)
/**
* This method enables syntax such as the following:
*
*
* xs.loneElement should be > 9
* ^
*
*/
def loneElement: E = {
if (left.size == 1)
left.head.asInstanceOf[E] // Why do I need to cast?
else
throw newTestFailedException(
FailureMessages(
"notLoneElement",
left,
left.size)
)
}
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable should methods to
* be invoked on objects of type java.util.Collection[T].
*
* javaCollection should contain theSameElementsAs anotherSeq
* ^
*
*/
override def should(containWord: ContainWord): ResultOfContainWordForJavaCollection[E, L] =
// new ResultOfContainWordForJavaCollection(left.asInstanceOf[java.util.Collection[E]], true)
new ResultOfContainWordForJavaCollection(left, true)
/**
* This method enables syntax such as the following:
*
*
* javaCollection should not have size (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForJavaCollection[E, L] =
new ResultOfNotWordForJavaCollection(left, false)
}
/**
* This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of
* the matchers DSL.
*
*
* This class is used in conjunction with an implicit conversion to enable should methods to
* be invoked on objects of type java.util.Map[K, V].
*
* javaMap should contain value (3)
* ^
*
*/
override def should(containWord: ContainWord): ResultOfContainWordForJavaMap[K, V, L] = {
new ResultOfContainWordForJavaMap(left, true)
}
/**
* This method enables syntax such as the following:
*
*
* javaMap should not have length (3)
* ^
*
*/
override def should(notWord: NotWord): ResultOfNotWordForJavaMap[K, V, L] = {
new ResultOfNotWordForJavaMap[K, V, L](left, false)
}
}
/**
* Implicitly converts an object of type T to a AnyShouldWrapper[T],
* to enable should methods to be invokable on that object.
*/
implicit def convertToAnyShouldWrapper[T](o: T): AnyShouldWrapper[T] = new AnyShouldWrapper(o)
/**
* Implicitly converts an object of type scala.Collection[T] to a CollectionShouldWrapper,
* to enable should methods to be invokable on that object.
*/
implicit def convertToTraversableShouldWrapper[E, L[_] <: scala.collection.GenTraversable[_]](o: L[E]): TraversableShouldWrapper[E, L] = new TraversableShouldWrapper[E, L](o)
/**
* Implicitly converts an object of type scala.Array[T] to a ArrayShouldWrapper[T],
* to enable should methods to be invokable on that object.
*/
implicit def convertToArrayShouldWrapper[T](o: Array[T]): ArrayShouldWrapper[T] = new ArrayShouldWrapper[T](o)
/**
* Implicitly converts an object of type scala.collection.GenMap[K, V] to a MapShouldWrapper[K, V],
* to enable should methods to be invokable on that object.
*/
implicit def convertToMapShouldWrapper[K, V, L[_, _] <: scala.collection.GenMap[_, _]](o: L[K, V]): MapShouldWrapper[K, V, L] = new MapShouldWrapper[K, V, L](o)
/**
* Implicitly converts an object of type java.lang.String to a StringShouldWrapper,
* to enable should methods to be invokable on that object.
*/
implicit override def convertToStringShouldWrapper(o: String): StringShouldWrapper = new StringShouldWrapper(o)
/**
* Implicitly converts an object of type scala.util.matching.Regex to a RegexWrapper,
* to enable withGroup and withGroups methods to be invokable on that object.
*/
implicit def convertToRegexWrapper(o: Regex): RegexWrapper = new RegexWrapper(o)
/**
* Implicitly converts an object of type java.util.Collection[T] to a JavaCollectionShouldWrapper[T],
* to enable should methods to be invokable on that object.
*/
implicit def convertToJavaCollectionShouldWrapper[E, L[_] <: java.util.Collection[_]](o: L[E]): JavaCollectionShouldWrapper[E, L] = new JavaCollectionShouldWrapper[E, L](o)
/**
* Implicitly converts an object of type java.util.Map[K, V] to a JavaMapShouldWrapper[K, V],
* to enable should methods to be invokable on that object.
*/
implicit def convertToJavaMapShouldWrapper[K, V, L[_, _] <: java.util.Map[_, _]](o: L[K, V]): JavaMapShouldWrapper[K, V, L] = new JavaMapShouldWrapper[K, V, L](o)
/**
* Turn off implicit conversion of LoneElement, so that if user accidentally mixin LoneElement it does conflict with convertToTraversableShouldWrapper
*/
override def convertToTraversableLoneElementWrapper[T](xs: scala.collection.GenTraversable[T]): LoneElementTraversableWrapper[T] = new LoneElementTraversableWrapper[T](xs)
}
/**
* Companion object that facilitates the importing of Matchers members as
an alternative to mixing it the trait. One use case is to import Matchers members so you can use
* them in the Scala interpreter:
*
*
* $scala -classpath scalatest.jar
* Welcome to Scala version 2.7.3.final (Java HotSpot(TM) Client VM, Java 1.5.0_16).
* Type in expressions to have them evaluated.
* Type :help for more information.
*
* scala> import org.scalatest.Matchers._
* import org.scalatest.Matchers._
*
* scala> 1 should equal (2)
* org.scalatest.TestFailedException: 1 did not equal 2
* at org.scalatest.matchers.Helper$.newTestFailedException(Matchers.template:40)
* at org.scalatest.matchers.ShouldMatchers$ShouldMethodHelper$.shouldMatcher(ShouldMatchers.scala:826)
* at org.scalatest.matchers.ShouldMatchers$IntShouldWrapper.should(ShouldMatchers.scala:1123)
* at .<init>(<console>:9)
* at .<clinit>(<console>)
* at RequestR...
*
* scala> "hello, world" should startWith ("hello")
*
* scala> 7 should (be >= (3) and not be <= (7))
* org.scalatest.TestFailedException: 7 was greater than or equal to 3, but 7 was less than or equal to 7
* at org.scalatest.matchers.Helper$.newTestFailedException(Matchers.template:40)
* at org.scalatest.matchers.ShouldMatchers$ShouldMethodHelper$.shouldMatcher(ShouldMatchers.scala:826)
* at org.scalatest.matchers.ShouldMatchers$IntShouldWrapper.should(ShouldMatchers.scala:1123)
* at .<init>(...
*
*
* @author Bill Venners
*/
object Matchers extends Matchers