scalaz.Codensity.scala Maven / Gradle / Ivy
package scalaz
abstract class Codensity[F[_], A] { self =>
def apply[B](f: A => F[B]): F[B]
def improve(implicit F: Applicative[F]): F[A] =
apply(a => F.point(a))
def flatMap[B](k: A => Codensity[F, B]): Codensity[F, B] = {
new Codensity[F, B] {
def apply[C](h: B => F[C]): F[C] =
self.apply(a => k(a)(h))
}
}
def map[B](k: A => B): Codensity[F, B] =
flatMap(x => Codensity.pureCodensity(k(x)))
/** `Codensity[F,_]` is a right Kan extension of `F` along itself. */
def toRan: Ran[F, F, A] = new Ran[F, F, A] {
def apply[B](f: A => F[B]) = self(f)
}
}
object Codensity extends CodensityInstances {
def rep[F[_], A](f: F[A])(implicit F: Monad[F]): Codensity[F, A] =
new Codensity[F, A] {
def apply[B](k: A => F[B]) = F.bind(f)(k)
}
def pureCodensity[F[_], A](a: => A): Codensity[F, A] =
new Codensity[F, A] {
def apply[B](f: A => F[B]): F[B] = f(a)
}
/** Supposing we have the guarantees of consistency between
* [[scalaz.Applicative]] and [[scalaz.PlusEmpty]] for `F`, the
* [[scalaz.MonadPlus]] laws should hold.
*/
implicit def codensityMonadPlus[F[_]](implicit F: ApplicativePlus[F]): MonadPlus[Codensity[F, ?]] =
new CodensityMonad[F] with MonadPlus[Codensity[F, ?]] {
def empty[A] =
new Codensity[F, A] {
def apply[B](f: A => F[B]) = F.empty[B]
}
def plus[A](a: Codensity[F, A], b: => Codensity[F, A]) =
new Codensity[F, A] {
def apply[B](f: A => F[B]) = F.plus(a(f), b(f))
}
}
implicit val codensityTrans: MonadTrans[Codensity] =
new MonadTrans[Codensity] {
def liftM[G[_]: Monad, A](a: G[A]) = Codensity.rep(a)
def apply[G[_]: Monad] = codensityMonad[G]
}
}
sealed abstract class CodensityInstances {
implicit def codensityMonad[F[_]]: Monad[Codensity[F, ?]] =
new CodensityMonad[F]
}
private[scalaz] sealed class CodensityMonad[F[_]] extends Monad[Codensity[F, ?]] {
final def point[A](a: => A) = Codensity.pureCodensity(a)
override final def map[A, B](fa: Codensity[F, A])(f: A => B) =
fa map f
final def bind[A, B](fa: Codensity[F, A])(k: A => Codensity[F, B]) =
fa flatMap k
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy