scalaz.IdT.scala Maven / Gradle / Ivy
package scalaz
final case class IdT[F[_], A](run: F[A]) {
def map[B](f: A => B)(implicit F: Functor[F]) =
new IdT[F, B](F.map(run)(f))
def flatMap[B](f: A => IdT[F, B])(implicit F: Bind[F]) =
new IdT[F, B](F.bind(run)(f andThen ((_: IdT[F, B]).run)))
def flatMapF[B](f: A => F[B])(implicit F: Bind[F]) =
new IdT[F, B](F.bind(run)(f))
def foldRight[Z](z: => Z)(f: (A, => Z) => Z)(implicit F: Foldable[F]): Z =
F.foldRight[A, Z](run, z)(f)
def traverse[G[_], B](f: A => G[B])(implicit F: Traverse[F], G: Applicative[G]): G[IdT[F, B]] =
G.map(F.traverse(run)(f))(IdT(_))
def ap[B](f: => IdT[F, A => B])(implicit F: Apply[F]) =
new IdT(F.ap(run)(f.run))
}
sealed abstract class IdTInstances4 {
implicit def idTFunctor[F[_]](implicit F0: Functor[F]): Functor[IdT[F, ?]] =
new IdTFunctor[F] {
implicit def F: Functor[F] = F0
}
}
sealed abstract class IdTInstances3 extends IdTInstances4 {
implicit def idTApply[F[_]](implicit F0: Apply[F]): Apply[IdT[F, ?]] =
new IdTApply[F] {
implicit def F: Apply[F] = F0
}
}
sealed abstract class IdTInstances2 extends IdTInstances3 {
implicit def idTApplicative[F[_]](implicit F0: Applicative[F]): Applicative[IdT[F, ?]] =
new IdTApplicative[F] {
implicit def F: Applicative[F] = F0
}
}
sealed abstract class IdTInstances1 extends IdTInstances2 {
implicit def idTFoldable[F[_]](implicit F0: Foldable[F]): Foldable[IdT[F, ?]] =
new IdTFoldable[F] {
implicit def F: Foldable[F] = F0
}
implicit def idTBindRec[F[_]](implicit F0: BindRec[F]): BindRec[IdT[F, ?]] =
new IdTBindRec[F] {
implicit def F: BindRec[F] = F0
}
}
sealed abstract class IdTInstances0 extends IdTInstances1 {
implicit def idTMonad[F[_]](implicit F0: Monad[F]): Monad[IdT[F, ?]] =
new IdTMonad[F] {
implicit def F: Monad[F] = F0
}
implicit def idTOrder[F[_], A](implicit F: Order[F[A]]): Order[IdT[F, A]] =
F.contramap(_.run)
}
sealed abstract class IdTInstances extends IdTInstances0 {
implicit val idTHoist: Hoist[IdT] = IdTHoist
implicit def idTTraverse[F[_]](implicit F0: Traverse[F]): Traverse[IdT[F, ?]] =
new IdTTraverse[F] {
implicit def F: Traverse[F] = F0
}
implicit def idTEqual[F[_], A](implicit F: Equal[F[A]]): Equal[IdT[F, A]] =
F.contramap(_.run)
}
object IdT extends IdTInstances
//
// Implementation traits for type class instances
//
private trait IdTFunctor[F[_]] extends Functor[IdT[F, ?]] {
implicit def F: Functor[F]
override def map[A, B](fa: IdT[F, A])(f: A => B) = fa map f
}
private trait IdTApply[F[_]] extends Apply[IdT[F, ?]] with IdTFunctor[F] {
implicit def F: Apply[F]
override def ap[A, B](fa: => IdT[F, A])(f: => IdT[F, A => B]): IdT[F, B] = fa ap f
}
private trait IdTApplicative[F[_]] extends Applicative[IdT[F, ?]] with IdTApply[F] {
implicit def F: Applicative[F]
def point[A](a: => A) = new IdT[F, A](F.point(a))
}
private trait IdTBind[F[_]] extends Bind[IdT[F, ?]] with IdTApply[F] {
implicit def F: Bind[F]
final def bind[A, B](fa: IdT[F, A])(f: A => IdT[F, B]) = fa flatMap f
}
private trait IdTBindRec[F[_]] extends BindRec[IdT[F, ?]] with IdTBind[F] {
implicit def F: BindRec[F]
final def tailrecM[A, B](f: A => IdT[F, A \/ B])(a: A): IdT[F, B] =
IdT(F.tailrecM[A, B](a => F.map(f(a).run)(identity))(a))
}
private trait IdTMonad[F[_]] extends Monad[IdT[F, ?]] with IdTApplicative[F] with IdTBind[F] {
implicit def F: Monad[F]
}
private trait IdTFoldable[F[_]] extends Foldable.FromFoldr[IdT[F, ?]] {
implicit def F: Foldable[F]
override def foldRight[A, B](fa: IdT[F, A], z: => B)(f: (A, => B) => B): B = fa.foldRight(z)(f)
}
private trait IdTTraverse[F[_]] extends Traverse[IdT[F, ?]] with IdTFoldable[F] with IdTFunctor[F]{
implicit def F: Traverse[F]
def traverseImpl[G[_] : Applicative, A, B](fa: IdT[F, A])(f: A => G[B]): G[IdT[F, B]] = fa traverse f
}
private object IdTHoist extends Hoist[IdT] {
def liftM[G[_], A](a: G[A])(implicit G: Monad[G]): IdT[G, A] =
new IdT[G, A](a)
def hoist[M[_]: Monad, N[_]](f: M ~> N) =
new (IdT[M, ?] ~> IdT[N, ?]) {
def apply[A](fa: IdT[M, A]): IdT[N, A] =
new IdT[N, A](f(fa.run))
}
implicit def apply[G[_] : Monad]: Monad[IdT[G, ?]] =
IdT.idTMonad[G]
}
// vim: set ts=4 sw=4 et:
© 2015 - 2025 Weber Informatics LLC | Privacy Policy