scalaz.Leibniz.scala Maven / Gradle / Ivy
package scalaz
import Id._
/**
* Leibnizian equality: a better `=:=`
*
* This technique was first used in
* [[https://portal.acm.org/citation.cfm?id=583852.581494 Typing Dynamic Typing]] (Baars and Swierstra, ICFP 2002).
*
* It is generalized here to handle subtyping so that it can be used with constrained type constructors.
*
* `Leibniz[L,H,A,B]` says that `A` = `B`, and that both of its types are between `L` and `H`. Subtyping lets you
* loosen the bounds on `L` and `H`.
*
* If you just need a witness that `A` = `B`, then you can use `A===B` which is a supertype of any `Leibniz[L,H,A,B]`
*
* The more refined types are useful if you need to be able to substitute into restricted contexts.
*/
sealed abstract class Leibniz[-L, +H >: L, A >: L <: H, B >: L <: H] {
def apply(a: A): B = subst[Id](a)
def subst[F[_ >: L <: H]](p: F[A]): F[B]
def compose[L2 <: L, H2 >: H, C >: L2 <: H2](that: Leibniz[L2, H2, C, A]): Leibniz[L2, H2, C, B] =
Leibniz.trans[L2, H2, C, A, B](this, that)
def andThen[L2 <: L, H2 >: H, C >: L2 <: H2](that: Leibniz[L2, H2, B, C]): Leibniz[L2, H2, A, C] =
Leibniz.trans[L2, H2, A, B, C](that, this)
def flip: Leibniz[L, H, B, A] =
Leibniz.symm(this)
def onF[X](fa: X => A): X => B = subst[X => *](fa)
def onCov[FA](fa: FA)(implicit U: Unapply.AuxA[Functor, FA, A]): U.M[B] =
subst(U(fa))
def onContra[FA](fa: FA)(implicit U: Unapply.AuxA[Contravariant, FA, A]): U.M[B] =
subst(U(fa))
/** `A === B` implies `A <~< B`. */
def liskov: Liskov[A, B] = Liskov.fromLeibniz(this)
}
sealed abstract class LeibnizInstances {
import Leibniz._
implicit val leibniz: Category[===] = new Category[===] {
def id[A]: (A === A) = refl[A]
def compose[A, B, C](bc: B === C, ab: A === B) = bc compose ab
}
// TODO
/*sealed class LeibnizGroupoid[L_, H_ >: L_] extends GeneralizedGroupoid with Hom {
type L = L_
type H = H_
type C[A >: L <: H, B >: L <: H] = Leibniz[L, H, A, B]
type U = LeibnizGroupoid[L, H]
def id[A >: L <: H]: Leibniz[A, A, A, A] = refl[A]
def compose[A >: L <: H, B >: L <: H, C >: L <: H](
bc: Leibniz[L, H, B, C],
ab: Leibniz[L, H, A, B]
): Leibniz[L, H, A, C] = trans[L, H, A, B, C](bc, ab)
def invert[A >: L <: H, B >: L <: H](
ab: Leibniz[L, H, A, B]
): Leibniz[L, H, B, A] = symm(ab)
}
implicit def leibnizGroupoid[L, H >: L]: LeibnizGroupoid[L, H] = new LeibnizGroupoid[L, H]*/
}
object Leibniz extends LeibnizInstances {
/** Equality is reflexive -- we rely on subtyping to expand this type */
implicit def refl[A]: Leibniz[A, A, A, A] = new Leibniz[A, A, A, A] {
def subst[F[_ >: A <: A]](p: F[A]): F[A] = p
}
/** We can witness equality by using it to convert between types
* We rely on subtyping to enable this to work for any Leibniz arrow
*/
implicit def witness[A, B](f: scalaz.===[A, B]): A => B =
f.subst[A => *](identity)
implicit def subst[A, B](a: A)(implicit f: scalaz.===[A, B]): B = f.subst[Id](a)
/** Equality is transitive */
def trans[L, H >: L, A >: L <: H, B >: L <: H, C >: L <: H](
f: Leibniz[L, H, B, C],
g: Leibniz[L, H, A, B]
): Leibniz[L, H, A, C] =
f.subst[({type l[X >: L <: H] = Leibniz[L, H, A, X]})#l](g)
/** Equality is symmetric */
def symm[L, H >: L, A >: L <: H, B >: L <: H](
f: Leibniz[L, H, A, B]
) : Leibniz[L, H, B, A] =
f.subst[({type l[X >: L <: H] = Leibniz[L, H, X, A]})#l](refl)
/** We can lift equality into any type constructor */
def lift[
LA, LT,
HA >: LA, HT >: LT,
T[_ >: LA <: HA] >: LT <: HT,
A >: LA <: HA, A2 >: LA <: HA
](
a: Leibniz[LA, HA, A, A2]
): Leibniz[LT, HT, T[A], T[A2]] =
a.subst[({type l[X >: LA <: HA] = Leibniz[LT, HT, T[A], T[X]]})#l](refl)
/** We can lift equality into any type constructor */
def lift2[
LA, LB, LT,
HA >: LA, HB >: LB, HT >: LT,
T[_ >: LA <: HA, _ >: LB <: HB] >: LT <: HT,
A >: LA <: HA, A2 >: LA <: HA,
B >: LB <: HB, B2 >: LB <: HB
](
a: Leibniz[LA, HA, A, A2],
b: Leibniz[LB, HB, B, B2]
) : Leibniz[LT, HT, T[A, B], T[A2, B2]] =
b.subst[({type l[X >: LB <: HB] = Leibniz[LT, HT, T[A, B], T[A2, X]]})#l](
a.subst[({type l[X >: LA <: HA] = Leibniz[LT, HT, T[A, B], T[X, B]]})#l](
refl))
/** We can lift equality into any type constructor */
def lift3[
LA, LB, LC, LT,
HA >: LA, HB >: LB, HC >: LC, HT >: LT,
T[_ >: LA <: HA, _ >: LB <: HB, _ >: LC <: HC] >: LT <: HT,
A >: LA <: HA, A2 >: LA <: HA,
B >: LB <: HB, B2 >: LB <: HB,
C >: LC <: HC, C2 >: LC <: HC
](
a: Leibniz[LA, HA, A, A2],
b: Leibniz[LB, HB, B, B2],
c: Leibniz[LC, HC, C, C2]
): Leibniz[LT, HT, T[A, B, C], T[A2, B2, C2]] =
c.subst[({type l[X >: LC <: HC] = Leibniz[LT, HT, T[A, B, C], T[A2, B2, X]]})#l](
b.subst[({type l[X >: LB <: HB] = Leibniz[LT, HT, T[A, B, C], T[A2, X, C]]})#l](
a.subst[({type l[X >: LA <: HA] = Leibniz[LT, HT, T[A, B, C], T[X, B, C]]})#l](
refl)))
/**
* Unsafe coercion between types. force abuses asInstanceOf to explicitly coerce types.
* It is unsafe, but needed where Leibnizian equality isn't sufficient
*/
def force[L, H >: L, A >: L <: H, B >: L <: H]: Leibniz[L, H, A, B] = new Leibniz[L, H, A, B] {
def subst[F[_ >: L <: H]](fa: F[A]): F[B] = fa.asInstanceOf[F[B]]
}
/**
* Emir Pasalic's PhD thesis mentions that it is unknown whether or not `((A,B) === (C,D)) => (A === C)` is inhabited.
*
* Haskell can work around this issue by abusing type families as noted in
* Leibniz equality can be injective (Oleg Kiselyov, Haskell Cafe Mailing List 2010)
* but we instead turn to force.
*
*
*/
def lower[
LA, HA >: LA,
T[_ >: LA <: HA] /*: Injective*/,
A >: LA <: HA, A2 >: LA <: HA
](
t: scalaz.===[T[A], T[A2]]
): Leibniz[LA, HA, A, A2] = force[LA, HA, A, A2]
def lower2[
LA, HA >: LA,
LB, HB >: LB,
T[_ >: LA <: HA, _ >: LB <: HB]/*: Injective2*/,
A >: LA <: HA, A2 >: LA <: HA,
B >: LB <: HB, B2 >: LB <: HB
](
t: scalaz.===[T[A, B], T[A2, B2]]
): (Leibniz[LA, HA, A, A2], Leibniz[LB, HB, B, B2]) = (force[LA, HA, A, A2], force[LB, HB, B, B2])
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy