scalaz.InvariantFunctor.scala Maven / Gradle / Ivy
package scalaz
////
/**
* Unary type constructor that supports an `xmap` operation that converts an `F[A]` to an `F[B]` given
* two functions, `A => B` and `B => A`.
*
* An invariant functor must satisfy two laws:
* - identity - xmap(ma)(identity, identity) == ma
* - composite - xmap(xmap(ma, f1, g1), f2, g2) == xmap(ma, f2 compose f1, g1, compose g2)
*
* Also known as an exponential functor.
*
* @see [[http://hackage.haskell.org/packages/archive/invariant/latest/doc/html/Data-Functor-Invariant.html]]
* @see [[http://comonad.com/reader/2008/rotten-bananas/]]
*
* @see [[scalaz.InvariantFunctor.InvariantFunctorLaw]]
*/
////
trait InvariantFunctor[F[_]] { self =>
////
import BijectionT.Bijection
import Isomorphism.<=>
/** Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`. */
def xmap[A, B](ma: F[A], f: A => B, g: B => A): F[B]
/** Converts `ma` to a value of type `F[B]` using the provided bijection. */
def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B] = xmap(ma, b.to, b.from)
/** Converts `ma` to a value of type `F[B]` using the provided isomorphism. */
def xmapi[A, B](ma: F[A])(iso: A <=> B): F[B] = xmap(ma, iso.to, iso.from)
trait InvariantFunctorLaw {
def invariantIdentity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean =
FA.equal(xmap[A, A](fa, x => x, x => x), fa)
def invariantComposite[A, B, C](fa: F[A], f1: A => B, g1: B => A, f2: B => C, g2: C => B)(implicit FC: Equal[F[C]]): Boolean =
FC.equal(xmap(xmap(fa, f1, g1), f2, g2), xmap(fa, f2 compose f1, g1 compose g2))
}
def invariantFunctorLaw = new InvariantFunctorLaw {}
////
val invariantFunctorSyntax = new scalaz.syntax.InvariantFunctorSyntax[F] { def F = InvariantFunctor.this }
}
object InvariantFunctor {
@inline def apply[F[_]](implicit F: InvariantFunctor[F]): InvariantFunctor[F] = F
////
////
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy