scalaz.TreeLoc.scala Maven / Gradle / Ivy
package scalaz
import TreeLoc._
import annotation.tailrec
/**
* A rose-tree zipper. Represents a [[scalaz.Tree]] together with a position in that tree.
* Provides navigation, persistent update, insertion, and deletes.
*
* @param tree The currently selected node.
* @param lefts The left siblings of the current node.
* @param rights The right siblings of the current node.
* @param parents The parent contexts of the current node.
*/
final case class TreeLoc[A](tree: Tree[A], lefts: TreeForest[A],
rights: TreeForest[A], parents: Parents[A]) {
import Tree._
/** Select the parent of the current node. */
def parent: Option[TreeLoc[A]] = parents match {
case (pls, v, prs) #:: ps => Some(loc(Node(v, combChildren(lefts, tree, rights)), pls, prs, ps))
case Stream.Empty => None
}
/** Select the root node of the tree. */
@tailrec
def root: TreeLoc[A] =
parent match {
case Some(z) => z.root
case None => this
}
/** Select the left sibling of the current node. */
def left: Option[TreeLoc[A]] = lefts match {
case t #:: ts => Some(loc(t, ts, tree #:: rights, parents))
case Stream.Empty => None
}
/** Select the right sibling of the current node. */
def right: Option[TreeLoc[A]] = rights match {
case t #:: ts => Some(loc(t, tree #:: lefts, ts, parents))
case Stream.Empty => None
}
/** Select the leftmost child of the current node. */
def firstChild: Option[TreeLoc[A]] = tree.subForest match {
case t #:: ts => Some(loc(t, Stream.Empty, ts, downParents))
case Stream.Empty => None
}
/** Select the rightmost child of the current node. */
def lastChild: Option[TreeLoc[A]] = tree.subForest.reverse match {
case t #:: ts => Some(loc(t, ts, Stream.Empty, downParents))
case Stream.Empty => None
}
/** Select the nth child of the current node. */
def getChild(n: Int): Option[TreeLoc[A]] =
for {lr <- splitChildren(Stream.Empty, tree.subForest, n)
ls = lr._1
} yield loc(ls.head, ls.tail, lr._2, downParents)
/** Select the first immediate child of the current node that satisfies the given predicate. */
def findChild(p: Tree[A] => Boolean): Option[TreeLoc[A]] = {
@tailrec
def split(acc: TreeForest[A], xs: TreeForest[A]): Option[(TreeForest[A], Tree[A], TreeForest[A])] =
(acc, xs) match {
case (acc, Stream.cons(x, xs)) => if (p(x)) Some((acc, x, xs)) else split(Stream.cons(x, acc), xs)
case _ => None
}
for (ltr <- split(Stream.Empty, tree.subForest)) yield loc(ltr._2, ltr._1, ltr._3, downParents)
}
/** Select the first descendant node of the current node that satisfies the given predicate. */
def find(p: TreeLoc[A] => Boolean): Option[TreeLoc[A]] =
Cobind[TreeLoc].cojoin(this).tree.flatten.find(p)
/** Get the entire tree represented by this zipper. */
def toTree: Tree[A] = root.tree
/** Get the entire forest represented by this zipper. */
def toForest: TreeForest[A] = combChildren(root.lefts, root.tree, root.rights)
/** True if the current node is the root node. */
def isRoot: Boolean = parents.isEmpty
/** True if the current node has no left siblings. */
def isFirst: Boolean = lefts.isEmpty
/** True if the current node has no right siblings. */
def isLast: Boolean = rights.isEmpty
/** True if the current node has no children. */
def isLeaf: Boolean = tree.subForest.isEmpty
/** True if the current node is not the root node. */
def isChild: Boolean = !isRoot
/** True if the current node has children. */
def hasChildren: Boolean = !isLeaf
/** Replace the current node with the given one. */
def setTree(t: Tree[A]): TreeLoc[A] = loc(t, lefts, rights, parents)
/** Modify the current node with the given function. */
def modifyTree(f: Tree[A] => Tree[A]): TreeLoc[A] = setTree(f(tree))
/** Modify the label at the current node with the given function. */
def modifyLabel(f: A => A): TreeLoc[A] = setLabel(f(getLabel))
/** Get the label of the current node. */
def getLabel: A = tree.rootLabel
/** Set the label of the current node. */
def setLabel(a: A): TreeLoc[A] = modifyTree((t: Tree[A]) => Node(a, t.subForest))
/** Insert the given node to the left of the current node and give it focus. */
def insertLeft(t: Tree[A]): TreeLoc[A] = loc(t, lefts, Stream.cons(tree, rights), parents)
/** Insert the given node to the right of the current node and give it focus. */
def insertRight(t: Tree[A]): TreeLoc[A] = loc(t, Stream.cons(tree, lefts), rights, parents)
/** Insert the given node as the first child of the current node and give it focus. */
def insertDownFirst(t: Tree[A]): TreeLoc[A] = loc(t, Stream.Empty, tree.subForest, downParents)
/** Insert the given node as the last child of the current node and give it focus. */
def insertDownLast(t: Tree[A]): TreeLoc[A] = loc(t, tree.subForest.reverse, Stream.Empty, downParents)
/** Insert the given node as the nth child of the current node and give it focus. */
def insertDownAt(n: Int, t: Tree[A]): Option[TreeLoc[A]] =
for (lr <- splitChildren(Stream.Empty, tree.subForest, n)) yield loc(t, lr._1, lr._2, downParents)
/** Delete the current node and all its children. */
def delete: Option[TreeLoc[A]] = rights match {
case Stream.cons(t, ts) => Some(loc(t, lefts, ts, parents))
case _ => lefts match {
case Stream.cons(t, ts) => Some(loc(t, ts, rights, parents))
case _ => for (loc1 <- parent) yield loc1.modifyTree((t: Tree[A]) => Node(t.rootLabel, Stream.Empty))
}
}
/**
* The path from the focus to the root.
*/
def path: Stream[A] = getLabel #:: parents.map(_._2)
/** Maps the given function over the elements. */
def map[B](f: A => B): TreeLoc[B] = {
val ff = (_: Tree[A]).map(f)
TreeLoc.loc(tree map f, lefts map ff, rights map ff,
parents.map {
case (l, t, r) => (l map ff, f(t), r map ff)
})
}
def cojoin: TreeLoc[TreeLoc[A]] = {
val lft = (_: TreeLoc[A]).left
val rgt = (_: TreeLoc[A]).right
def dwn[A](tz: TreeLoc[A]): (TreeLoc[A], () => Stream[TreeLoc[A]]) = {
val f = () => std.stream.unfold(tz.firstChild) {
(o: Option[TreeLoc[A]]) => for (c <- o) yield (c, c.right)
}
(tz, f)
}
def uf[A](a: TreeLoc[A], f: TreeLoc[A] => Option[TreeLoc[A]]): Stream[Tree[TreeLoc[A]]] = {
std.stream.unfold(f(a)) {
(o: Option[TreeLoc[A]]) => for (c <- o) yield (Tree.unfoldTree(c)(dwn[A](_: TreeLoc[A])), f(c))
}
}
val p = std.stream.unfold(parent) {
(o: Option[TreeLoc[A]]) => for (z <- o) yield ((uf(z, lft), z, uf(z, rgt)), z.parent)
}
TreeLoc.loc(Tree.unfoldTree(this)(dwn[A](_: TreeLoc[A])), uf(this, lft), uf(this, rgt), p)
}
private def downParents = (lefts, tree.rootLabel, rights) #:: parents
private def combChildren[A](ls: Stream[A], t: A, rs: Stream[A]) =
ls.foldLeft(t #:: rs)((a, b) => b #:: a)
@tailrec
private def splitChildren[A](acc: Stream[A], xs: Stream[A], n: Int): Option[(Stream[A], Stream[A])] =
(acc, xs, n) match {
case (acc, xs, 0) => Some((acc, xs))
case (acc, Stream.cons(x, xs), n) => splitChildren(Stream.cons(x, acc), xs, n - 1)
case _ => None
}
}
sealed abstract class TreeLocInstances {
implicit val treeLocInstance: Comonad[TreeLoc] with Traverse1[TreeLoc] = new Comonad[TreeLoc] with Traverse1[TreeLoc] {
import Stream.Empty
import scalaz.std.stream._
def copoint[A](p: TreeLoc[A]): A = p.tree.rootLabel
override def map[A, B](fa: TreeLoc[A])(f: A => B): TreeLoc[B] = fa map f
def cobind[A, B](fa: TreeLoc[A])(f: TreeLoc[A] => B): TreeLoc[B] = map(cojoin(fa))(f)
override def cojoin[A](a: TreeLoc[A]): TreeLoc[TreeLoc[A]] = a.cojoin
override def all[A](fa: TreeLoc[A])(f: A => Boolean) =
Foldable[Tree].all(fa.tree)(f) && ForestT.all(fa.lefts)(f) && ForestT.all(fa.rights)(f) && ParentsT.all(fa.parents)(f)
override def any[A](fa: TreeLoc[A])(f: A => Boolean) =
Foldable[Tree].any(fa.tree)(f) || ForestT.any(fa.lefts)(f) || ForestT.any(fa.rights)(f) || ParentsT.any(fa.parents)(f)
override def foldMap1[A, B](fa: TreeLoc[A])(f: A => B)(implicit B: Semigroup[B]) =
foldMapLeft1(fa)(f)((b, a) => B.append(b, f(a)))
override def foldMap[A, B](fa: TreeLoc[A])(f: A => B)(implicit B: Monoid[B]) =
B.append(
B.append(
Foldable[Tree].foldMap(fa.tree)(f),
ForestT.foldMap(fa.lefts)(f)
),
B.append(
ForestT.foldMap(fa.rights)(f),
ParentsT.foldMap(fa.parents)(f)
)
)
override def foldLeft[A, B](fa: TreeLoc[A], z: B)(f: (B, A) => B) =
ParentsT.foldLeft(
fa.parents, ForestT.foldLeft(
fa.rights, ForestT.foldLeft(
fa.lefts, Foldable[Tree].foldLeft(fa.tree, z)(f))(f))(f))(f)
override def foldMapLeft1[A, B](fa: TreeLoc[A])(z: A => B)(f: (B, A) => B) =
ParentsT.foldLeft(
fa.parents, ForestT.foldLeft(
fa.rights, ForestT.foldLeft(
fa.lefts, Foldable1[Tree].foldMapLeft1(fa.tree)(z)(f))(f))(f))(f)
override def traverse1Impl[G[_], A, B](fa: TreeLoc[A])(f: A => G[B])(implicit G: Apply[G]) = fa.lefts match {
case l #:: ls =>
val lefts1 = ForestT1.traverse1(OneAnd(l, ls))(f)
fa.rights match {
case r #:: rs =>
val rights1 = ForestT1.traverse1(OneAnd(r, rs))(f)
fa.parents match {
case p #:: ps =>
G.apply4(fa.tree.traverse1(f), lefts1, rights1, ParentsT1.traverse1(OneAnd(p, ps))(f))(
(tree, lefts, rights, parents) =>
TreeLoc(
tree = tree,
lefts = lefts.head #:: lefts.tail,
rights = rights.head #:: rights.tail,
parents = parents.head #:: parents.tail
)
)
case Empty =>
G.apply3(fa.tree.traverse1(f), lefts1, rights1)(
(tree, lefts, rights) =>
TreeLoc(
tree = tree,
lefts = lefts.head #:: lefts.tail,
rights = rights.head #:: rights.tail,
parents = Empty
)
)
}
case Empty =>
fa.parents match {
case p #:: ps =>
G.apply3(fa.tree.traverse1(f), lefts1, ParentsT1.traverse1(OneAnd(p, ps))(f))(
(tree, lefts, parents) =>
TreeLoc(
tree = tree,
lefts = lefts.head #:: lefts.tail,
rights = Empty,
parents = parents.head #:: parents.tail
)
)
case Empty =>
G.apply2(fa.tree.traverse1(f), lefts1)(
(tree, lefts) =>
TreeLoc(
tree = tree,
lefts = lefts.head #:: lefts.tail,
rights = Empty,
parents = Empty
)
)
}
}
case Empty =>
fa.rights match {
case r #:: rs =>
val rights1 = ForestT1.traverse1(OneAnd(r, rs))(f)
fa.parents match {
case p #:: ps =>
G.apply3(fa.tree.traverse1(f), rights1, ParentsT1.traverse1(OneAnd(p, ps))(f))(
(tree, rights, parents) =>
TreeLoc(
tree = tree,
lefts = Empty,
rights = rights.head #:: rights.tail,
parents = parents.head #:: parents.tail
)
)
case Empty =>
G.apply2(fa.tree.traverse1(f), rights1)(
(tree, rights) =>
TreeLoc(
tree = tree,
lefts = Empty,
rights = rights.head #:: rights.tail,
parents = Empty
)
)
}
case Empty =>
fa.parents match {
case p #:: ps =>
G.apply2(fa.tree.traverse1(f), ParentsT1.traverse1(OneAnd(p, ps))(f))(
(tree, parents) =>
TreeLoc(
tree = tree,
lefts = Empty,
rights = Empty,
parents = parents.head #:: parents.tail
)
)
case Empty =>
G.map(fa.tree.traverse1(f))(t =>
TreeLoc(t, Empty, Empty, Empty)
)
}
}
}
override def foldMapRight1[A, B](fa: TreeLoc[A])(z: A => B)(f: (A, => B) => B) =
ParentsT.foldMapRight1Opt(fa.parents)(z)(f) match {
case Some(p) =>
fa.tree.foldRight(
ForestT.foldRight(fa.lefts, ForestT.foldRight(fa.rights, p)(f))(f)
)(f)
case None =>
ForestT.foldMapRight1Opt(fa.rights)(z)(f) match {
case Some(r) =>
fa.tree.foldRight(ForestT.foldRight(fa.lefts, r)(f))(f)
case None =>
ForestT.foldMapRight1Opt(fa.lefts)(z)(f) match {
case Some(l) =>
fa.tree.foldRight(l)(f)
case None =>
Foldable1[Tree].foldMapRight1(fa.tree)(z)(f)
}
}
}
private[this] val ForestT: Traverse[TreeForest] =
Traverse[Stream].compose[Tree]
private[this] val ForestT1: Traverse1[Lambda[a => OneAnd[Stream, Tree[a]]]] =
Traverse1[Lambda[a => OneAnd[Stream, a]]].compose[Tree]
private[this] implicit val ParentT: Traverse1[Parent] = new Traverse1[Parent] {
override def all[A](fa: Parent[A])(f: A => Boolean) =
ForestT.all(fa._1)(f) && f(fa._2) && ForestT.all(fa._3)(f)
override def any[A](fa: Parent[A])(f: A => Boolean) =
ForestT.any(fa._1)(f) || f(fa._2) || ForestT.any(fa._3)(f)
override def foldLeft[A, B](fa: Parent[A], z: B)(f: (B, A) => B) =
ForestT.foldLeft(fa._3, f(ForestT.foldLeft(fa._1, z)(f), fa._2))(f)
override def foldMap[A, B](fa: Parent[A])(f: A => B)(implicit B: Monoid[B]) =
B.append(B.append(ForestT.foldMap(fa._1)(f), f(fa._2)), ForestT.foldMap(fa._3)(f))
override def traverse1Impl[G[_], A, B](fa: Parent[A])(f: A => G[B])(implicit G: Apply[G]): G[Parent[B]] = {
(fa._1, fa._3) match {
case (x #:: xs, y #:: ys) =>
G.apply3(ForestT1.traverse1(OneAnd(x, xs))(f), f(fa._2), ForestT1.traverse1(OneAnd(y, ys))(f)) {
case (l, c, r) =>
(l.head #:: l.tail, c, r.head #:: r.tail)
}
case (x #:: xs, _) =>
G.apply2(ForestT1.traverse1(OneAnd(x, xs))(f), f(fa._2)) {
case (l, c) =>
(l.head #:: l.tail, c, Empty)
}
case (_, x #:: xs) =>
G.apply2(f(fa._2), ForestT1.traverse1(OneAnd(x, xs))(f)) {
case (c, r) =>
(Empty, c, r.head #:: r.tail)
}
case (Empty, Empty) =>
G.map(f(fa._2))(c => (Empty, c, Empty))
}
}
override def foldMapRight1[A, B](fa: Parent[A])(z: A => B)(f: (A, => B) => B): B =
ForestT.foldMapRight1Opt(fa._3)(z)(f) match {
case Some(r) =>
ForestT.foldRight(fa._1, f(fa._2, r))(f)
case None =>
ForestT.foldRight(fa._1, z(fa._2))(f)
}
}
private[this] val ParentsT: Traverse[Parents] =
Traverse[Stream].compose[Parent]
private[this] val ParentsT1: Traverse1[Lambda[a => OneAnd[Stream, Parent[a]]]] =
Traverse1[Lambda[a => OneAnd[Stream, a]]].compose[Parent]
}
implicit def treeLocEqual[A](implicit A: Equal[A]): Equal[TreeLoc[A]] =
new TreeLocEqual[A] { def E = A }
implicit def treeLocOrder[A](implicit A: Order[A]): Order[TreeLoc[A]] =
new Order[TreeLoc[A]] with TreeLocEqual[A] {
def E = A
import std.stream._, std.tuple._
override def order(a: TreeLoc[A], b: TreeLoc[A]) =
Divide[Order].deriving4(Function.unlift(TreeLoc.unapply[A])).order(a, b)
}
}
object TreeLoc extends TreeLocInstances {
type TreeForest[A] =
Stream[Tree[A]]
type Parent[A] =
(TreeForest[A], A, TreeForest[A])
type Parents[A] =
Stream[Parent[A]]
def loc[A](t: Tree[A], l: TreeForest[A], r: TreeForest[A], p: Parents[A]): TreeLoc[A] =
TreeLoc(t, l, r, p)
def fromForest[A](ts: TreeForest[A]): Option[TreeLoc[A]] = ts match {
case (Stream.cons(t, ts)) => Some(loc(t, Stream.Empty, ts, Stream.Empty))
case _ => None
}
}
private trait TreeLocEqual[A] extends Equal[TreeLoc[A]] {
implicit def E: Equal[A]
import std.stream._, std.tuple._
override final def equal(a: TreeLoc[A], b: TreeLoc[A]) = {
Equal[Tree[A]].equal(a.tree, b.tree) &&
Equal[TreeForest[A]].equal(a.lefts, b.lefts) &&
Equal[TreeForest[A]].equal(a.rights, b.rights) &&
Equal[Parents[A]].equal(a.parents, b.parents)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy